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A social system is susceptible to perturbation when its collective properties
depend sensitively on a few pivotal components. Using the information geo-
metry of minimal models from statistical physics, we develop an approach to
identify pivotal components to which coarse-grained, or aggregate, proper-
ties are sensitive. As an example, we introduce our approach on a reduced
toy model with a median voter who always votes in the majority. The
sensitivity of majority–minority divisions to changing voter behaviour
pinpoints the unique role of the median. More generally, the sensitivity
identifies pivotal components that precisely determine collective outcomes
generated by a complex network of interactions. Using perturbations to
target pivotal components in the models, we analyse datasets from political
voting, finance and Twitter. Across these systems, we find remarkable
variety, from systems dominated by a median-like component to those
whose components behave more equally. In the context of political insti-
tutions such as courts or legislatures, our methodology can help describe
how changes in voters map to new collective voting outcomes. For economic
indices, differing system response reflects varying fiscal conditions across
time. Thus, our information-geometric approach provides a principled,
quantitative framework that may help assess the robustness of collective
outcomes to targeted perturbation and compare social institutions, or even
biological networks, with one another and across time.
1. Introduction
When collective outcomes are highly sensitive to the behaviour of few individ-
ual components, these components are pivotal. Collective outcomes could be
the partition of voters into blocs, the pattern of co-moving financial indices,
or the coalescence of shared vocabulary in a social community. A classic
example is the swing, or median, voter, prominent in political science and econ-
omics: if voters can be deterministically ranked according to preference, the
median will always vote in the majority and thus is predictive of the outcome
[1–3]. In real systems, this simple picture becomes much more complicated
because the median might change depending on the contested issue [4], mul-
tiple issues may be at stake simultaneously [5], voters might exchange votes
strategically [6,7], etc. In other words, competing interactions between voters
imply that changes in individual voting behaviour may cascade into alignment
or antagonistic changes in others resulting from direct physical interactions or
indirect ones, i.e. mediated through a new compromise on the contents of a leg-
islative bill. In contrast with an idealized notion of a median, we consider a
‘pivotal’ voter, one that could change collective outcomes even when account-
ing for such complexity. Here, we develop this generalized notion and use it to
identify components that are especially indicative of collective changes in
political voting, financial indices and social media on Twitter.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2019.0873&domain=pdf&date_stamp=2020-06-03
mailto:edlee@santafe.edu
https://doi.org/10.6084/m9.figshare.c.4980572
https://doi.org/10.6084/m9.figshare.c.4980572
http://orcid.org/
http://orcid.org/0000-0003-2075-6342
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


da
ta

m
od

el
se

ns
iti

vi
ty

fe
at

ur
es

p(s;{Jij}) = e−E(s)/Z

E(s) = − 1
2 i,j=1

Jijsisj

Z =
s

e−E(s)

p(s)sisj

Fx¢ y¢ xy = lim
2

DKL[q
J

||q
J
]˜ ˜

ay =
1
4

N

S
x=1

(vxy−vyx)2

(Fisher information matrix)

(component asymmetry)

l̃y = ly /|l|

(component eigenvalue)

(pairwise maxent model)

M subspace

R
 s

ub
sp

ac
e

(pairwise correlation)
1.00.50

–0.10

–0.20

0.5

0.25 0.30 0.35

0.6 0.7

–0.15

0.05

0

–0.05

1 0.3

0.2

0.1

0

ei
ge

nm
at

ri
x 

v xy

10–1

10–2

ay

Ry
R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

R6

R6
M M

M

voter

7
11
15
19

N

co
up

lin
g 

J R
R

coupling JMR

DKL
 = 0.004 bits

DKL
 = 0.001 bits

DKL
 = 0.004 bits

pair correlation ·sMsRÒ

pair correlation ·sMsRi
Ò

pa
ir

 c
or

re
la

tio
n 

·s
R

is R
jÒ

ly

~

N

S

s
S

S

·sisjÒ =

(b)

(a)

(c)

(d )

Figure 1. Overview of method for identifying pivotal voters for the Median Voter Model. (a) Taking the pairwise correlations (note hsRi sRj=ii ¼ 0), (b) we solve a
pairwise maxent model to learn the probability distribution p(s; {Jij}) parametrized by the couplings Jij. MVMs of different sizes N correspond to different coordinates
in this two-dimensional space, but we focus on N = 7 as an example. (c) We calculate the FIM for q(k), the probability of k votes in the majority, measuring
the sensitivity of q(k) to changes in voter behaviour as described by equations (2.1) and (2.2). As we describe in electronic supplementary material, appendix
C, the sensitivity corresponds to the curvature of the Kullback–Leibler divergence DKL. We show a two-dimensional cut of DKL when M copies Ri and Ri copies
Rj. The principal directions in the full space, vxy, determine the combinations of perturbations to which q(k) is most sensitive. We show projections of eigenvectors
obtained from limiting perturbations to the Median or an Random voter as black arrows. (d ) The principal eigenvector of the FIM, reshaped into an ‘eigenmatrix’ on
the right, specifies the relative change in the rate that x’s votes are replaced by y’s (i.e. a positive value is the rate at which x’s voting record becomes y’s and a
negative the rate at which its disagreements increase). The vector of principal subspace eigenvalues per voter ~li , corresponding to the outlined diagonal blocks in
electronic supplementary material, figure S.2C, are divided by norm |λ| to give our pivotal measure. The asymmetry ay measures the difference in perturbations
localized to a specific voter versus all its neighbours in turn. If a voter and all its neighbours are similar, the asymmetry is close to zero. Otherwise, it is bounded by
a maximum value of one (see electronic supplementary material, appendix D).
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Information geometry provides a natural framework for
measuring how sensitive collective properties are to change
in component behaviour. The Fisher information, the funda-
mental quantity of information geometry, establishes a
unique, invariant metric over probability distributions p(s;
{Jij}) of states s (e.g. a voting configuration, stock and sector
price movement, behaviour on social networks) determined
by the set of parameters {Jij} indexed by ij [8]. When the par-
ameters are infinitesimally changed to {~Jij}, the distribution
becomes p(s; {~Jij}), and the distance between the two distri-
butions is given by the Fisher information (FI) [9]. By
measuring the FI for perturbations to each pair of variables
Jij and Ji0j0 in turn, we construct the Fisher information
matrix (FIM) Fiji0j0, whose eigenvectors describe how changes
to the parameters lead either to sharp change in the model
(large eigenvalues) or slow change (small eigenvalues)
[10,11]. In our approach, we coarse-grain states s to a lower-
dimensional collective outcome f(s), mapping the probability
distribution to one over the coarse-grained state p(s)→ q[ f (s)].
An example is when the full vector of votes is compressed
into a majority outcome. By computing the FIM over the dis-
tribution of coarse-grained states, we investigate when
aggregate properties are highly sensitive to a few com-
ponents, components that we determine to be pivotal to the
system’s collective properties.

We outline our approach in figure 1, where we fit a mini-
mal statistical model to a dataset, measure the FIM and
extract properties of the local information geometry. We first
discuss this approach on a toy median voter model to build
intuition, and we extend detailed analysis to voting on an
example from the US Supreme Court (SCOTUS) and State
Street Global Advisors SPDR exchange-traded funds [12,13].
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Then, we perform a survey across multiple systems in society
including examples of judicial voting across US state high
courts [14], California (CA) state legislatures [15], US federal
legislatures [16], and communities on Twitter [17]. Across
these examples, we find large diversity ranging from examples
of median-like systems, with pivotal components, to other
examples in which no special component emerges.
ing.org/journal/rsif
J.R.Soc.Interface

17:20190873
2. Results
2.1. Median Voter Model
The role of the median derives from the fact that in a
majority-rule voting system, the voting outcome is a coarse-
graining instead of depending on the detailed nature of
every individual’s vote. The margin by which the majority
wins, as is captured in the probability q(k) that k voters of
the system are in the majority, can reflect the appeal of the
voting outcome or even its legitimacy, perceptions of which
feed back into the decision process [18]. Thus, q(k) serves as
an aggregate measure of underlying decision dynamics that
we will use to identify pivotal blocs.

To outline our approach, we study the sensitivity of q(k) in
the context of a reduced toy model that captures the essence
of a median voter. The ideal median voter exists in a
majority-rule system where voters’ preferences are unidimen-
sional. By virtue of the unique ranking of preference, the
median is always in the majority [1]. We propose a statistical
generalization, the Median Voter Model (MVM), with an odd
number of N voters. The MVM consists of N− 1 Random
voters and one Median voter who always joins the majority.
The binary vote of voter i, si, is equally likely to be −1 and 1
such that only majority–minority divisions are relevant. As a
result, the average votes are all the same, but the set of pairwise
correlations as shown in figure 1a for N = 7 voters are nonzero
between M and R, 〈sMsR 〉= 0.3125, and zero between R’s,
hsRisRj=ii ¼ 0. Thus, this model consists of a special voter, the
Median (M), who after a voting sample has been taken, is
perfectly correlated with the majority, whereas Random (R)
voters all behave in a statistically uniform and random way.

To capture the network of interactions between individuals
from which majority–minority coalitions emerge, we take a
pairwise maximum entropy (maxent) approach [19]. The
maxent principle describes a way of building minimal
models based on data. We maximize the information entropy
S ¼ �Ps p(s) ln p(s) while fixing the model to match the pair-
wise correlations from the data, 〈sisj 〉 data = 〈sisj 〉 as defined in
figure 1a. The result is a minimal model parametrized by statisti-
cal interactions between voters, or ‘couplings’ Jij in figure 1b [20].
For each pair of voters with pairwise correlations in figure 1a,
there is a corresponding coupling such that the set of couplings
is specified exactly by the pairwise correlation matrix. For the

MVM, the N
2

� �
couplings only take two possible values, one

for each of the two unique correlations. The couplings for the
MVM indicate that all R’s tend to vote with M (agreement
between M and R leads to an increase in the log-probability
ln r(sM= sR)∝ JMR as in figure 1b) with a slight tendency for R’s
to disagree with each other more than would be expected
given their shared correlation with M (disagreement between
Ri and Rj decreases the log-probability of the vote by
ln r(sRi ¼ sRj )/ JRR). In principle, any probabilistic graph
model is a viable alternative for the approach we outline, but
the pairwise maxent model has been shown to capture voting
statistics better than other models of voting with surprisingly
few parameters [21,22], fits the data well (electronic supplemen-
tary material, appendix B), and presents a particularly tractable
formulation for calculating information quantities.

To probe how the collective properties captured by the
distribution q(k) depend on the voters, we ask how the distri-
bution would change if the voters were slightly different. In
this example of majority–minority voting, any change in
voting behaviour is reflected in the pairwise correlations
and preserves the symmetry between the two possible out-
comes −1 and 1. A natural endpoint for the set of possible
q(k) as we increase the pairwise correlations is when all
voters are perfectly correlated, so we consider perturbations
that take us towards this endpoint: with probability ϵ, voter
y’s votes are replaced by x’s,

~r(sy ¼ sx) ¼ (1� e)r(sy ¼ sx)þ e: (2:1)

Equation (2.1) is a weighted average that interpolates from
the observed probability of agreement between x and y
when ϵ = 0 to perfect agreement when ϵ = 1. We then account
for the changes to y’s correlations with the remaining voters:

~r(sy ¼ sx0=x) ¼ (1� e)r(sy ¼ sx0 )þ er(sx ¼ sx0 ): (2:2)

Equation (2.2) interpolates from the observed probability of
agreement between y and x0 when ϵ = 0 to that between x
and x0 when ϵ = 1. If replacing M with any R voter such
that y =M and x =R, the operation defined in equation (2.1)
increases the pairwise correlation 〈sMsR 〉 while simul-
taneously changing M’s correlations with the others to be
more like those with R, pushing them to zero. When the stat-
istical model exactly matches the entire distribution of votes
p(s) = pdata(s), the perturbation described in equations (2.1)
and (2.2) is equivalent to shifting the probability from any
voting configuration where i and j disagree to the voting con-
figuration where i and j agree, holding all other probabilities
constant. With the pairwise maxent model, however, the per-
turbation is only reflected in the pairwise correlations,
moving us from one model to another within the class of
pairwise maxent models. In this case, the perturbations can
be mapped to changes in the couplings Jij in the limit of
ϵ→ 0 that we use to determine the entries of the FIM
shown in electronic supplementary material, figure S.2C
(electronic supplementary material, appendix C).

The variation in the entries of the FIM indicates the
unique role of the median. The FIM describes the curvature
of the Kullback–Leibler divergence DKL as the probabilities
of pairwise agreement are modified. Under small pertur-
bations, the contours of DKL form an ellipse, whose major
and minor axes represent components of the FIM’s eigenvec-
tors, as in figure 1c. We show the principal eigenvector in
figure 1d. Its entries represent the relative amount by which
pairs should be simultaneously varied for maximal local
change to q(k)—as if one could change all the pairwise
voting ‘knobs’ at once. To be clear about the pairwise group-
ing of index, we reshape the principal eigenvector into an
‘eigenmatrix’ in figure 1d. Each column corresponds to a
directed change where voter y is made more similar to the
corresponding row voter x. Since R’s are all the same, the
first column connecting M to each R is uniformly valued.
In the first row, the entries all correspond to making the
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neighbours of M more like M, so these are also all uniformly
valued given that the R’s are interchangeable. Thus, each
column of the eigenmatrix describes perturbations localized
to the column voter and each row corresponds to changes
across all the neighbours of a particular voter such that the
symmetry between R’s and the unusual role of M manifests
in the comparison of local neighbourhood with the local
neighbourhood of neighbours.

This local versus neighbourhood asymmetry presents one
way of pinpointing an unusual voter by using the difference
between the eigenmatrix vxy and its transpose vyx. We define
this per voter asymmetry ay in figure 1d. Given a normalized
eigenmatrix, the total asymmetry over all voters A ;

P
y ay is

0 when the eigenmatrix is perfectly symmetric and is 1 when
perfectly antisymmetric vxy =−vyx. The point A = 1/2 marks
the maximum asymmetry possible when all the nonzero
elements are of the same sign—such as when for each vxy >
0, vyx = 0 (electronic supplementary material, appendix D).
For the MVM with N = 7, we find that M’s asymmetry aM =
0.06, whereas aR = 0.01, clearly distinguishing M from R. The
total A = 0.13, a point of reference for systems that are more
complex than the MVM. For larger N, the MVM asymmetry
aM grows as the role of M more visibly skews the distribution.
Thus, both the asymmetry in the roles of voters and the grow-
ing importance of amedianwith system size are reflected in the
symmetry of the eigenmatrices.

To measure the sensitivity of q(k) to each voter, we inspect
the subspace eigenvalues λi, specifying the sensitivity of q(k)
to change in a single voter’s behaviour. These values are cal-
culated from the subspace of the FIM describing localized
perturbations—the diagonal blocks of the FIM as outlined
in electronic supplementary material, figure S.2C, and
whose eigenvectors are projected into figure 1c. The upper
leftmost block of the FIM corresponds to M and the remain-
ing blocks correspond to each R in turn. For each subspace,
we retrieve the principal eigenvalue. To compare the eigen-
values across voters, we calculate the normalized
eigenvalue as defined in figure 1d, ~li, defining our measure
of how ‘pivotal’ a component is relative to others. For the
N = 7 MVM, the principal eigenvalues are ~lM ¼ 0:70 and
~lR ¼ 0:05. This large difference indicates that q(k) is over
10 times more sensitive to variation in M than R, again
reaffirming the special role of the median. It is important to
note that voters with strong asymmetry are not necessarily
the most pivotal—clearly because eigenvalues and eigenvec-
tors present different information. Still, asymmetry in the
eigenmatrix indicates heterogeneity among the voters; thus,
large asymmetry is necessary, if insufficient, for the pivotal
measure to vary across a wide range. Overall, the information
geometry of this minimal class of models provides a way of
quantifying the role of individual components on collective
outcomes, identifying key components with pivotal roles
that can emerge given strong heterogeneity in the population.
2.2. US Supreme Court and S&P 500
We perform the same analysis on an example from SCOTUS
of N = 9 voters, K = 909 votes, and between the years 1994 and
2005 (see §4.3 for details about datasets). We show the
principal eigenmatrix in figure 2 that consists of pertur-
bations primarily increasing similarity across ideological
wings given by the positive values connecting liberals and
conservatives.1 The principal mode has a total asymmetry
of A = 0.10 compared to A = 0.25 for the N = 9 MVM, indicat-
ing the absence of a median-like, pivotal voter. This absence
is surprising because discussion of medians A. Kennedy and
S. O’Connor is prominent in the context of this court. When
we consider voter-subspace eigenvalues shown in figure 2,
we find the justices in ranked order: C. Thomas, S. Breyer
and Chief Justice W. Rehnquist. A change in C.T., given his
strongly conservative voting record, would naturally consti-
tute consequential change, but the roles of W.R. and S.B.
are more subtle [21,24,25]. Despite A.K. and S.O.’s prominent
role in the narrative of Supreme Court voting, we find that
other justices come to the foreground when we consider the
sensitivity of the Court to behavioural change.

The principalmode can be projected into themore intuitive
space of dissenting coalitions in terms of the rate of change
of the probabilities for dissenting blocs (§4.2). Though the
eigenmatrix in figure 2 shows increasing similarity between
ideological wings, suggesting suppression of partisan 5–4
divides, the frequency of any 5–4 divide actually increases
strongly along with a decrease in lone and pair dissents as in
the bottom of figure 2. Seven of the nine most common pair
dissents found in the data decrease in likelihood. Thus,
this shift reflects an increasing tendency for justices to join
larger blocs, reflected in the suppression of every justice’s
lone dissents in a way that breaks the typical partisan
divide. To visualize changes in the existing 5–4 conservative–
liberal dynamic, we inspect defections from the liberal
bloc, or 6–3 votes where a single liberal vote is missing, and
likewise defections from the five-member conservative bloc.
On the whole, defections from the liberal bloc are less
surprising than those for the conservative bloc, consistent
with the balance of power favouring conservatives. For
the liberal bloc, the most prominent change entails R.G.
defecting, leaving D.S., J.S., S.B., which reflects the central
role of R.G. in the liberal coalition.On the other side, increasing
the probability of S.O. or A.K. defecting is important
though not as much as the defection of W.R., which reflects
his often-understated, unusual statistical role in the Court
[21]. Consistent with pundits’ understanding is the large
surprise associatedwith C.T.’s defection from the conservative
majority, a change that would represent a fundamental
shift in the established partisan dynamics. Overall, this indi-
vidual variation in the context of the partisan 5–4
dynamic reveals a portrait of much deeper subtlety than that
suggested by unidimensional partisan intuition [4,21,26].
Thus, the information geometry of statistical models of social
systems can provide detailed insight into specific components
or blocs in direct connection to their role in collective modes of
the system.

In figure 3, we analyse the founding set of State Street
Global Advisors SPDR exchange-traded funds (N = 9; K =
4779; 2000–2018), which replicate the indices and provide
daily price data (binarized to positive si = 1 or negative
daily changes including no change si =−1 in analogy to
votes). In contrast with SCOTUS, the collective behaviour of
each index reflects the aggregation of many individual inves-
tors: no stock index is monolithic in the sense of an individual
voter. Given this aggregate nature, it is natural to consider the
eigenvectors as the most surprising set of unanticipated
global changes—although entire sectors might be ‘perturbed’
by government policy like sector-specific regulation or tariffs.
From this point of view, fluctuations in the pivotal blocs
might reveal notable shifts in economic conditions or



rate of change
in log-likelihood

k 
vo

te
rs

 in
 m

aj
or

ity
 to

 N
–

k 
vo

te
rs

 in
 m

in
or

ity

rate of change
in log-likelihood

2

bloc freq. pb

110 0 –10

9–0

AK, AS, SO, WR

AK, CT, SO, WR
AS, CT, SO, WR

AK, AS, CT, SO

AK, AS, CT, WR

DS, RG, SB

JS, RG, SB
DS, JS, SB

DS, JS, RG

DS, RG
CT, WR
SB, SO
CT, JS
AK, JS
DS, JS
JS, SB
JS, RG
AS, CT

AK

di
ss

en
tin

g 
bl

oc
 b

DS
RG
SO

WR
SB
CT
AS
JS

AK

DS

RG

SO

WR

SB

CT

ju
st

ic
e

AS

JS

A
KD
S

R
G SO W
RSB C
T

A
SJS

8–1

7–2

6–3

5–4

10–2

1 10–2

0 –2

–0.4

J. Stephens

R. Ginsburg

D. Souter

S. Breyer

S. O’Connor

A. Kennedy

W. Rehnquist

A. Scalia

C. Thomas

0.40

eigenmatrix vxy normalized
eigenvalue
asymmetry

(e)

(b)(a)

(c) (d )
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collective perceptions thereof (electronic supplementary
material, appendix E). Taking a look at the model, we find
that the principal mode displays large asymmetry across
every index, reflecting the diversity of roles played by the
various sectors of the economy as captured in price move-
ments. Relatively large subspace eigenvalues highlight XLE
(energy) and XLU (utilities), in agreement with their role as
drivers of the economy on whose outputs many of the
other sectors depend [27,28]. Perhaps unsurprisingly, we
also find a ‘bellweather’ XLP (consumer staples) and XLV
(healthcare) as notably pivotal whereas XLF (financial) and
XLI (industrials) seem to be relatively not. Going beyond
the principal mode, we inspect the secondary mode and
find that it is remarkably symmetric, with an asymmetry
score of A = 0.07, in contrast with the second mode of the
SCOTUS example where A = 0.44. This secondary symmetry
is reminiscent of the MVM where a prominent asymmetric
mode hides a nearly symmetric mode arising from the uni-
formity of Random voters. Such a symmetry is not found
for the SCOTUS example, where at lower modes, asymmetry
actually increases, signalling notable individual roles in
determining collective outcomes. Taken together, these
examples are a comparison of opposites, where the apparent
asymmetry in components obscures shared structure for
SPDR, whereas for SCOTUS the overarching tendency to
consensus overshadows individual roles on the Court.
2.3. Pivotal components in society
We explore other examples of social systems, including
votes from US state high courts [14], the California State
Assembly and Senate [15], the US federal legislature [16],
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and communities on Twitter [17]. As with the previous two
examples, we map behaviour in these systems to binary
form. To reduce the larger legislative bodies to a comparable
number of blocs, we first separate voters into 9 nearly-
equally-sized blocs by ranked similarity according to a
standard political science measure of ideology, the first
W-Nominate dimension [29]. The bloc vote is given by the
majority vote of the members and is randomly chosen if
equally divided (see electronic supplementary material,
figure S.14). For Twitter communities, we identify individuals
as high-dimensional binary vectors where an element is posi-
tive if they used a corresponding keyword, or else negative,
such that the pairwise correlations reflect overlap in their
use of keywords. As outlined above, our analysis of the infor-
mation geometry involves the same procedure but for a wider
variety of social systems.

Considering the principal eigenmatrix of the Alaskan
(AK) Supreme Court (N = 5; K = 1021; 1998–2007), we find a
remarkable degree of symmetry between justices and a
small value for the total asymmetry A = 0.01. Such symmetry
implies that the justices on this court all dissent in a statisti-
cally uniform way as described by the set of their pairwise
correlations. Though this could be trivially true if all pairwise
couplings were the same, this is not the case, a fact that is mir-
rored in the spread of positive and negative values in the
eigenmatrix in figure 4. Checking the local interaction net-
works described by the set of couplings to every neighbour
j for justice i (electronic supplementary material, figure S.3),
we find that the sets are all similar for every justice i. This
symmetry is mirrored in the similarity of the individual sub-
space eigenvalues shown in figure 4. Consistent with this
symmetry extracted from the voting record, four out of the
five justices served as Chief Justice during this period,2 a
regular rotation of roles imposed by the state constitution sti-
pulating that the Chief Justice only serve for three consecutive
years at a time. In contrast, we show that the New Jersey (NJ)
Supreme Court (N = 7; K = 185; 2007–2010) has strong asym-
metry of A = 0.5 (electronic supplementary material, figure
S.8). Appointments to the NJ Court follow a tradition of
maintaining partisan balance, apparently codifying a
median role into the institution, and we find two nearly
equal pivotal voters. Despite the seeming alignment between
each of these two examples and the institutional norms, AK
Supreme Courts are not always less symmetric than their
NJ counterparts. The asymmetry is highly variable for pre-
vious years, suggesting that codified institutional rules only
partially determine the role of pivotal voters (electronic
supplementary material, figure S.15).

We also show the eigenmatrices of the 1999 session of the
CA State Assembly (N = 77; K = 5424; 1999–2000) and a
K-pop Twitter community (N = 10; K = 7940; 2009–2017).
The CA Assembly is an example of strong asymmetry (A =
0.46). For the sessions starting between the years 1993 and
2017, we find that the Assembly displays stronger signatures
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of asymmetry (average total asymmetry 〈A 〉 = 0.4 ± 0.1) com-
pared to the Senate (〈A 〉 = 0.3 ± 0.1), showing how the rules
of the institution might be reflected in the distribution of
pivotal blocs. We then compare the distribution of the
single largest pivotal measure ~lmax with that of the similarly
coarse-grained US House of Representatives and Senate.
Though the CA distributions for ~lmax are statistically indistin-
guishable from each other (Kolmogorov–Smirnov test statistic
k = 0.31 and significance level p = 0.5) and the federal bodies’
distributions are similar (k = 0.31, p = 0.05), the state versus
federal levels show larger differences (k > 0.46, p < 0.03).
This separation between the behaviour at state and federal
legislatures reflects institutional differences that are captured
in the sensitivity of majority–minority coalitions (see
electronic supplementary material, figure S.12).

As for the Twitter K-pop community, we find much hetero-
geneity among users with total asymmetry A = 0.30, exceeding
that of the N = 9 MVM. In contrast with the MVM, this
community contains multiple pivotal members but wide vari-
ation in the strength of their subspace eigenvalues. Twitter
communities may be on average sensitive to the behaviour
of a few individuals regardless of identity [17], but this indi-
vidual-level variation suggests that collective behaviour may
be much more sensitive to a select Twitter users even within
smaller communities [30]. Going beyond the detailed few
examples in figure 4, we find large diversity within political
institutions that highlights the important role of heterogeneity
in social institutions, heterogeneity that is captured in the
information geometry of minimal, maxent models.
3. Discussion
An important question in the study of social institutions is
whether or not collective decisions are robust to perturbation
targeting individual components. Robustness is reciprocal to
sensitivity: when a system is highly sensitive to small changes
to components, its collective properties are not robust. In
neural networks with avalanches of firing activity [31–33],
in bird flocks with propagating velocity fluctuations [34], or
in macaque societies with conflict cascades [35], such
sensitivity might have an adaptive functional role. In the con-
text of human society, questions of robustness are relevant to
the stability of voting coalitions or the susceptibility of a
population to disease or disinformation. For example, we
might be interested in comparing the impact of different judi-
cial nominees on the dynamics of voting on a judicial bench
or the impact of modified user behaviour on the spread of
disinformation in social networks. By relying on the formal
framework of information geometry to investigate statistical
signatures of sensitivity, we present a data-driven and general
approach to characterizing robustness. As a result, our
approach is not model-specific, only relying on the calcu-
lation of how sensitive a model is to changes in observable
individual behaviour as summarized in figure 1.

In voting systems, median voters are conventionally
considered to be power brokers who have outsize influence
[1,7,23]. Building on this idea, we propose a reduced
toy model to extract features of the FIM that correspond
to signatures of a median voter. We show how to identify
and interpret signatures of strong sensitivity on individual
components in multiple social contexts, generalizing the
intuition behind the median to pivotal components
on which aggregate properties, measured by majority–
minority divisions, depend strongly. Intriguingly, we find
hints that institutional differences may contribute to
structuring individual roles in collective outcomes both in
courts and legislatures. Though it is unsurprising that the
particular rules of a voting body may structure bloc
dynamics, pivotal components provide a principled way of
comparing social systems with differing composition, from
different eras, and across different institutions in a unified,
quantitative framework.

In social choice theory, the question of how institutional
rules structure outcomes has been long-studied, especially in
the context of political science [1,36,37]. We examine the collec-
tive structure of the system expressed in its statistics, an
approach closer to spatial voting analysis [4,21,23,25,26,38,39]
and complementary to one starting from first principles and
then determining resulting constraints on outcomes (such as
Arrow’s impossibility theorem [3,40]). From such examination,
we propose how one could extract the underlying levers on
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which collective outcomes pivot. In this sense, our framework
provides a way for investigating collective decisions in systems
where the ‘voting rules’ are unknown—even in biological sys-
tems, where the analogy to voting rules is looser but
information is likewise encoded in collective states [31,41].

There are several ways by which our work might be
extended to questions in the realm of social choice theory.
One possibility is to analyse how different strategies (such
as in tactical voting [6]) or different rule sets change the stat-
istics of outcomes. This question could be turned around and
posed as one about inferring underlying rules when they are
unknown and with limited data on outcomes, a natural fra-
mework for considering how players infer the rules by
which others are playing [42,43]. Though we limit ourselves
to analogues of majority voting outcomes in a binary
voting system, our framework is easily generalizable to
other types of voting. For example, a straightforward exten-
sion would be to consider multiple outcomes. In such
scenarios, a common technique for aggregating votes is the
Borda count, or ranked choice, where voters rank their top
choices, and the most favoured outcome is selected [44–46].
One generalization of our MVM to this situation would be
to have a voter who always agrees on the top outcome and
with the favoured outcomes thereafter. A final variation
could be to measure how the degree of pivot varies when
different issues are up for vote in political bodies. In this
final scenario, it may be interesting to consider how a pivotal
component could facilitate or diminish satisfaction of collec-
tive preference under measures like Pareto efficiency [47].
With variations like these on the space of possible outcomes
and aggregation of preference, we propose a statistical frame-
work for considering how collective outcomes are maximally
or minimally susceptible to voting system properties. Overall,
our work provides an opportunity to leverage a statistical,
information-geometric framework to answer intriguing,
and perhaps new, questions about how institutions structure
outcomes both in data and theory.

More intuitively, we might think of pivotal components as
‘knobs’ that could drive a system out of its current configur-
ation described by the ensemble p(s). If the subspace
eigenvectors are knobs, the pivotal measure is inversely pro-
portional to the spacing of the dials such that for large
eigenvalues the smallest turn results in the strongest effect.
Since each pivotal component only considers the effects of
perturbations localized to a single component, these knobs
are independent. If n components were accessible simul-
taneously, however, we would consider the joint space of
multiple pivotal components, and the principal subspace
eigenvalue must increase beyond (or stay at) the maximum
eigenvalue over the set of component subspaces: this reflects
the fact that enhancing the breadth of control only increases
the range of possible outcomes [48,49]. By considering
which knobs are accessible experimentally, our analysis
could be extended to measuring signs of statistical control
in real systems. For judicial voting, the realizable knobs that
change judicial voting behaviour may be the submission of
amicus curiae briefs, choice of litigating cases, or lobbying.3

Those trying to craft a legislative coalition might ‘perturb’
aspects of proposed policy to affect its acceptability to poten-
tial supporters [50]. In controlled biological systems, localized
perturbations to single components could include manipu-
lation of single neurons or the upregulation of specific
genes.4 Our work presents the possibility of informing the
direction of such external perturbations in the broader con-
text of control.

The understanding of the interplay between components
and multi-component structures across social and biological
examples remains nascent at mesoscopic and macroscopic
scales. With this principled, quantitative approach for
measuring pivotal components, we might, by comparing sys-
tems, better understand how institutional and environmental
factors shape the emergence of social structure.
4. Methods
4.1. Calculation of the Fisher information matrix
Here, we calculate the FIM for the transformation described
in equations (2.1) and (2.2) and go through some examples
to show how to calculate the FIM. We go into some detail
with the derivation to make clear how to perform such a
calculation for those less familiar with maxent models and
information geometry.

In equations (2.1) and (2.2), we consider how the correlations
between component y and all other components x0 change when
component y appears to vote more like component x. To effect
this perturbation, we use a parameter ϵ→ 0 that leads to a
linear change in the couplings Jx0y0 as described by the rate of
change d Jx0y0, where we are taking a total derivative with respect
to the change in the pairwise probabilities described by the
vector r(sx = sy). To obtain this derivative, we perturb to first
order in ϵ the expression for the pairwise correlations (equation
(S.2)) to obtain the self-consistent equation

hsxsyipert � hsxsyi ¼ 1
2

XN
x0 ,y0

DxyJx0y0 hsxsysx0 sy0 i � hsxsyiperthsx0 sy0 i
� �

:

(4:1)

By self-consistent, we are referring to the fact that the new pair-
wise correlations after perturbation 〈sisj 〉 pert depend on the
change in the couplings ΔxyJx0y0, so the perturbations to the coup-
lings determine quantities on both sides of equation (4.1).5 The
coupling perturbations, ΔxyJx0y0, are related to the linear response
of the couplings to change in the collective statistics induced by
perturbing the pair of components x and y,

dJx0y0 ¼ lim
e!0

DxyJx0y0=e: (4:2)

The resulting matrix of new couplings is

~Jx0y0 ¼ Jx0y0 þ DxyJx0y0 (4:3)

and

~p(s; {~Jx0y0 }) ¼ p s; {Jx0y0 þ DxyJx0y0 }
� �

: (4:4)

The set of perturbations ΔxyJ≡ {ΔxyJx0y0} are also defined in elec-
tronic supplementary material, figure S.2C.

Equations (4.1)–(4.4) describe the numerical algorithm for
calculating the changes in the statistics of the system under the
perturbation described in equations (2.1) and (2.2). Note that
the algorithm implicitly depends on ϵ, which must be taken to
zero. The remaining calculations are to coarsen the full distri-
bution p(s) to q(k), the distribution of k votes in the majority
and to calculate the FIM on q. For pedagogical clarity, we will
first show how to calculate the FIM without coarse-graining.

There is a simple, intuitive form for the FIM for maxent
models. Under an infinitestimal change in the parameters such
that the energy of each voting configuration E(s)→ E(s) + ΔE(s),
we can expand

~p(s) ¼ p(s)[1þ hDEi � DE(s)]þO(DE2): (4:5)
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Now calculating the Kullback–Leibler divergence to second
order,

DKL[pk~p] ¼ 1
2
h(DE� hDEi)2i þO(DE3): (4:6)

The constant term is zero (DKL[ p||p] = 0) and the linear term is
zero because the changes to the probability function under per-
turbation must sum to zero to preserve normalization. The FI
is the second order term, or the curvature, so we must send the
norm change in the energy |ΔE|→ 0,

F ¼ lim
e!0

e�2 hDE2i � hDEi2
� �

, (4:7)

where ϵ is defined in equation (4.2). For the symmetrized pairwise
maxent model class, ΔE is the sum over all couplings. Thus, the FI
of the distribution over the full state space p(s) has a simple form in
terms of the change in energy for maxent models.

Alternatively, the result from equation (4.7) can be expressed
as a matrix of correlation functions. In other words, the corre-
lation functions are the linear response functions for
perturbations to the natural parameters, here the couplings Jxy.
As the simplest example, consider an Ising model under pertur-
bation to a particular coupling Jxy. Using our form equation (4.7)
for the FI and DJxy ; ~Jxy � Jxy,

Fxyxy ¼ lim
DJxy!0

DJ�2
xy h(DJxysxsy � DJxyhsxsyi)2i: (4:8)

The perturbations to the couplings ΔJxy do not depend on the
state s, so they can be pulled out of the averages to obtain

¼ hs2xs2yi � hsxsyi2 (4:9)

¼ 1� hsxsyi2: (4:10)

The diagonal entries of the FIM are the variance of the
pairwise correlation, which is a well-known result. It is
straightforward to see that the off-diagonal elements of the
FIM are the covariance 〈sxsysx0sy0 〉− 〈 sxsy 〉 〈sx0sy0 〉. Thus, the FI
for maxent models reduces to the covariance of the set of
observables chosen as constraints, when we are dealing with
natural parameters.

As a more general formulation, consider the set of Lagran-
gian multipliers θn and their corresponding bare observables
fun (s) (‘bare’ referring to the fact that we have yet to dress them
with brackets by averaging over the ensemble). For the pairwise
maxent model, the Lagrangian multipliers are the couplings and
the bare observables are the pairwise products sxsy. Working
through the same calculation as before but with this general
formulation of a maxent model, we find for the FI,

F ¼ lim
e!0

e�2
X
n

Du2n[hf2un i � hfuni2]
(

þ
X
n,m

DunDum[hfun fum i � hfunihfum i]
)
, (4:11)

where the Δθn depend implicitly on ϵ. As noted earlier, the per-
turbation in the pairwise agreement probabilities leads to a
nontrivial combination of changes to the entire vector of coup-
lings. As a result, the FI in equation (4.11) contains cross terms
between all pairwise correlations and the change in the Langran-
gian multipliers Δθn each come with a factor of the Jacobian
relating changes in the pairwise marginals to the couplings as
described by equation (4.1).

For the analysis in the main text, however, there is an
additional step. We do not consider the full state space, but
coarse-grain each p(s) to the distribution of k votes in the majority
q(k). As a result, we are not calculating the variance in the ener-
gies for the pairwise maxent model as described in equation
(4.7), but the variance in the logarithm of the sum of all terms
in the partition function with k voters in the majority. We label
the set of all states with k voters in the majority Sk to write

q(k) ¼
X
s[Sk

p(s) ¼ 1
Z

X
s[Sk

e�E(s) ¼ 1
Z
e�Emaj(k) (4:12)

and

Emaj(k) ; � ln
X
s[Sk

e�E(s)

 !
: (4:13)

Equation (4.13) defines an effective ‘k majority’ energy such that
under perturbation to the pair of components x and y as indi-
cated by Δxy

Fxy ¼ lim
e!0

e�2 hDxyE2
maji � hDxyEmaji2

� �
: (4:14)

Equation (4.14) is the form that the limit in figure 1c takes.
To summarize the algorithm, we first find the total derivative

of each coupling dJx0y0 with respect to the change in the pairwise
marginals as explained in equation (4.2). Then, we calculate the
change in the distribution of k votes in the majority for both
the model without the perturbation q(k) and with ~q(k) for a
range of small values ϵ as in equation (4.6). By comparing
these two distributions for increasingly smaller ϵ, we estimate
numerically the FIM, relying on the definition of an ‘effective’
energy Emaj as in equation (4.13) to deal with issues in numerical
precision that may arise when comparing ratios of floating point
numbers. These steps generate the FIM as shown in figure 1c
with which we calculate the eigenvalue spectrum to measure
our pivotal voters.

4.2. Dissenting coalitions
In figure 2, we project the eigenvectors onto the probabilities of
dissenting coalitions to obtain a detailed picture of how the par-
ameter directions obtained from the FIM affect dissenting
coalitions. Such a projection involves taking the sum over all
the probabilities of the states with the particular dissenting
bloc and calculating the effective energy. Expanding the log-like-
lihood to first order, we calculate the rate at which this
probability changes to be

d ln q(k) ¼ lim
e!0

1
e

DEmaj(k)� hDEmaj(k)i
� �

: (4:15)

The limit ϵ→ 0 refers to an infinitestimal perturbation of q(k)
along the first eigenvector of the FIM. Then, the rate of change
in the log-likelihood simplifies to comparing the change in the
effective majority energy Emaj(k) with the average change
across p(s).

4.3. Additional notes on datasets
4.3.1. US state supreme courts
We obtained the latest dataset from the State Supreme Court
Data Project (SSCDP) and used their binary coding of justice
votes [14].

We show the total asymmetry for all the natural courts on the
Alaska and New Jersey Supreme Courts we considered in elec-
tronic supplementary material, figure S.15. We only considered
natural courts with at least 100 where the full complement of
justices were voting. As we mention in the main text, there is
variation in the measured value of asymmetry that makes
unclear relationship between total asymmetry and codified
institutional rules of voting.

4.3.2. US Supreme Court
We use data from the Supreme Court Database Version 2016
Release 1, taking their binary coding of majority–minority
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votes [12]. This same dataset and version has been analysed
previously (see [21,22]).

4.3.3. SPDR
The SPDR Select Sector indices track the Standard & Poor’s (S&P)
and Morgan Stanley Capital International (MSCI) Global Indus-
try Classification Standard (GICS) sectors. As described on
Wikipedia, GICS ‘is an industry taxonomy developed in 1999
by MSCI and S&P for use by the global financial community.
The GICS structure consists of 11 sectors, 24 industry groups,
69 industries and 158 sub-industries into which S&P has categor-
ized all major public companies. The system is similar to the
Industry Classification Benchmark, a classification structure
maintained by FTSE [Financial Times Stock Exchange] Group.’

We focus on these assets and their adjusted price action
because (i) they are the most heavily traded and representative
sector assets in the world, so their prices and volumes reflect
actual interest in exposure to the sectors, (ii) they have been
traded daily without exception for over 20 years, and
(iii) unlike the Dow indices, the S&P indices are not subject to
effects of price-weighting such as reverse-split over-weighting.
The historical price data are available online on Yahoo! Finance.

4.3.4. Twitter
We analyse one of the communities from the data considered in
[17]. In this work, the authors divide the Twitter community
into smaller subcommunities using the CNM algorithm [51].
We take one example from their K-pop community with
10 individuals.

4.3.5. CA Assembly and Senate
Session records were obtained from Prof. Jeff Lewis’ scrape of the
CA legislature’s public data API [15]. For all sessions from 1993
to 2017, we solved the W-Nominate model using the code pro-
vided in [29]. We then removed any voter who did not
participate in more than 20% of the votes, rank-ordered the
voters by the first W-Nominate dimension, and divided them
as equally as possible into 9 groups as shown for the 1999–
2000 session in electronic supplementary material, figure S.14.

For the results of bootstrap sampling to calculate error bars,
we found that 3% of the Assembly samples showed significant
error from the fit correlations because of numerical precision
issues. This is generally an issue for systems that are poised
near the boundaries of the model manifold where the couplings
become large. For the error bars on the normalized subspace
eigenvalues, however, the contribution from these three missing
samples is negligible.

In figure 4, the most pivotal bloc that we observe, Bloc 8, is
constituted of Republicans while the State Assembly’s majority
is held by the Democratic party. Indeed, we find that the mutual
information between the vote of Bloc 8 with the majority vote
across the blocs is I8 = 0.96 bits versus that of a Democratic
Bloc 1, I1 = 0.17 bits. This measure of correlation indicates that this
Republican bloc is, like a median, highly predictive of the majority
outcome across all of these blocs and, additionally, is pivotal.6

4.3.6. US House of Representatives and Senate
Data were obtained from Voteview [16]. We analyse the 80–113th
Senate sessions and the 80–115th House sessions. The 80th con-
gressional session started in 1947 and each session lasts 2 years.

For filtering voters and coarse-graining, we used the same
procedure as specified for the CA Assembly above.
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Endnotes
1Since the recovered eigenvector is arbitrary with respect to sign, we
could just as well consider the negative eigenvector that would
reverse the sign but preserve the magnitude of the elements.
2W. Matthews, D. Fabe and A. Bryner rotated as Chief Justice during
the period 1997–2009 and W. Carpeneti from 2009 to 2012 (following
the period of analysis).
3We are careful to point out that the ensemble of votes for political
systems already include such effects so it is important to distinguish
between endogenous and exogenous factors.
4For example, manipulation of single neurons is possible by electrical
stimulation, optogenetic techniques or chemical stimulation, all ways of
enacting the localized perturbations of neural ‘votes’ [31]. Analogously,
gene expression might be perturbed by switching genes on and off or
by adding protein directly to simulate changed expression levels [52].
5Another way to describe equation (4.1) is as the linear combination
of the linear response functions of every pairwise correlation to a
change in the corresponding coupling, also known as the
susceptibility.
6Examples of blocs that are predictive of outcome but not pivotal
include Bloc 3 (I3 = 0.96 bits but ~l3 ¼ 0:02) and A.K. and S.O. on
SCOTUS [21].
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