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ABSTRACT

Insertional mutagenesis screens in mice are used to
identify individual genes that drive tumor formation.
In these screens, candidate cancer genes are
identified if their genomic location is proximal to a
common insertion site (CIS) defined by high rates of
transposon or retroviral insertions in a given
genomic window. In this article, we describe a new
method for defining CISs based on a Poisson distri-
bution, the Poisson Regression Insertion Model, and
show that this new method is an improvement over
previously described methods. We also describe a
modification of the method that can identify pairs
and higher orders of co-occurring common insertion
sites. We apply these methods to two data sets, one
generated in a transposon-based screen for gastro-
intestinal tract cancer genes and another based on
the set of retroviral insertions in the Retroviral
Tagged Cancer Gene Database. We show that the
new methods identify more relevant candidate
genes and candidate gene pairs than found using
previous methods. Identification of the biologically
relevant set of mutations that occur in a single cell
and cause tumor progression will aid in the rational
design of single and combinatorial therapies in the
upcoming age of personalized cancer therapy.

INTRODUCTION

Forty years ago, cancer researchers hypothesized, based
on epidemiological analysis of cancer rates that tumors
develop after the stochastic acquisition of multiple
somatic mutations (1). Although there are a few cancers
whose etiology can be assigned to one or two mutations,
such as chronic myeloid leukemia and retinoblastoma, the
majority of cancers are likely the result of many mutations
(2,3). Furthermore, a series of tumorigenesis stages have
been described with the suggestion that each stage follows
from the acquisition of one or more new driver mutations
and that disease severity may be linked with the number of
driver mutations (4,5). To better understand the genetic
basis of tumorigenesis in order to develop improved
therapies, biological and mathematical models must be
developed that can adequately describe the complex
interaction of multiple genetic events that cause a cancer
phenotype.

To address this need, we have developed a powerful
system to model multi-hit tumorigenesis in mice using
a sleeping beauty (SB) transposon-based forward genetic
screen (6–10). This method is similar to retroviral muta-
genesis screens that have been used to successfully identify
cancer genes in hematopoietic, mammary and brain
tumors (11). Both methods rely on gain- and loss-of-
function mutations generated by random transposon or
provirus insertions. When a single cell accumulates the
correct combination of mutations, it proliferates and
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becomes a tumor. The hypothesis is that the transposon or
provirus provides several key mutations, although not ne-
cessarily all of the mutations required for tumor initiation
and progression. Finding the genomic location of the in-
sertions in the tumor DNA is relatively easy
using specialized PCR techniques combined with high-
throughput sequencing and BLAST analysis. In this
manner, it is possible to map several hundred insertions
in a single tumor. The majority of these mapped inser-
tions, however, does not contribute to the tumor pheno-
type and are referred to as passenger mutations, while
only a small subset of insertions generated the driver
mutations that caused the cancer. To identify these
driver mutations, a statistical approach is used to find
common insertion sites (CISs), defined as genomic loci
experiencing insertions at a rate higher than expected by
chance. The idea being that it would be a rare occurrence
for multiple tumors to harbor an insertion in the same
locus by chance unless that insertion contributed to
tumor formation. The genes within these CISs are then
considered candidate cancer genes based on the assump-
tion that the transposon or provirus created a mutation
in these genes that contributed to tumor growth.

Previous statistical approaches used to identify CISs
have been based on the Poisson distribution (12), Monte
Carlo simulations (9,10) and kernel convolution (13).
It has become increasingly evident that modifications to
these approaches are necessary as the size of the screens
increase and the biology of transposon and provirus
insertion site preferences are better understood. For
example, Monte Carlo simulations become computation-
ally expensive as the size of the screen increases. Thus,
larger data sets will require a model-based approach that
provides the same inference as Monte Carlo simulations.
Additionally, none of the methods, when applied evenly
across the genome, are able to account for the uneven
distribution of site preferences, such as the distribution
of TA dinucleotides, which are the required insertion
sites for some transposons, or the distribution of tran-
scriptional start sites (TSSs), which are the preferred
sites of viral integration. Appropriate models for tumori-
genesis will also require a statistical method that can
identify pairs or higher orders of co-occurring mutations
in a single tumor in order to find cooperating mutations
that cause cancer. These higher orders of insertions in
a single tumor are called common co-occurring insertions
(CCIs) to distinguish them from CISs. In an attempt to
solve some of these problems, de Ridder et al. (13,14)
introduced the Gaussian kernel convolution framework
as a method to identify CISs and CCIs. The framework
can be scaled to adjust for genomic window size and can
adjust for TSS bias. Unfortunately, similar to Monte–
Carlo simulations, the CCI detection method becomes
unwieldy when analyzing larger data sets because it
relies on a permutation strategy for inference that current-
ly requires hundreds to thousands of CPU hours. We also
find that their CCI detection is seriously affected by the
subjective choice of permutation strategy. Further, the
Gaussian kernel convolution, which smoothes both the
insertion counts and the distribution of TSSs, assumes
a continuous process to approximate underlying count

data which can lead to bias in the sensitivity and specificity
of detection.
In this article, we present a new model to define CISs

and CCIs, which we refer to as the PRIM method.
Because the Poisson distribution describes count data,
this model-based approach accurately reflects Monte–
Carlo simulations of the same insertion process. We
describe how to directly incorporate important variables
that affect the insertion process, such as the regional
variation of TA dinucleotide densities in the genome,
and then adapt the method to find higher order combin-
ations of mutations (CCIs) with improved stringency.
The method is easily scalable and currently requires
only a few minutes of CPU time. We use this model to
analyze two insertional mutagenesis data sets, one from
a transposon-based screen for gastrointestinal tract (GI)
cancer genes and the other from the collection of retro-
virus insertion data sets mainly in hematopoietic and brain
tumors cataloged in the RTCGD. Finally, to gauge the
superiority of the PRIM we compare the CIS gene sets
from previous methods to the PRIM CISs by analyzing
their overlap with human tumor data. Using three differ-
ent human tumor data sets, we show that the PRIM
method selects CISs with greater biological relevance
compared to previous methods.

METHODS

Data preparation steps

The transposon insertion data set we analyzed was
generated in an SB transposon-based forward genetic
screen for mutations that cause GI tract cancer in mice
(10). This study analyzed 16 690 non-redundant trans-
poson insertions found in 135 GI tract tumors. We
eliminated 100 insertions because of clonal duplications
or their appearance in a common insertion site from
a control data set of mouse tail insertions, leaving a set
of 16 590 insertions. We also eliminated the 733 insertions
on the sex chromosomes in order to simplify our presen-
tation of the method, although the method can easily be
adjusted for gender to include these insertions. The final
data set contained 15 857 non-redundant transposon
insertions in the autosomal chromosomes (see
Supplementary Data set S1).
The mouse genome was divided into equally sized

windows of fixed width and then the number of insertions
counted within each window. The insertion counts can be
recorded for various window sizes. The analysis in this
article will use window sizes in 10 kb increments in the
range from 10 to 150 kb with particular focus on the
sizes 20, 50, 70 and 100 kb. These window sizes were
chosen in order to compare our proposed CIS detection
methods with those described previously (9,10). An
analysis of each individual window size indicates that
no single window identifies >50% of the union list of
CISs (Supplementary Figure S1). In addition, although
the majority of CISs in the union list are identified by
multiple window sizes, 30% of CISs in the union list are
only found with a single window size (Supplementary
Figure S2). Because of these findings we believe it is
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important to perform the PRIM at multiple window sizes
and generate a union list from these analyses. Table 1
summarizes the insertion count and statistically significant
CIS count for 4 of 15 different window sizes.
The retroviral insertion data set we analyzed comes

from the publicly available RTCGD (described at
http://variation.osu.edu/rtcgd). In order to compare our
method to the Gaussian kernel convolution method, we
used the same set of insertions that were used in the study
by de Ridder et al. (14), which was kindly provided by the
authors. This data set was generated from over 20 differ-
ent studies and consists of 5473 insertions from 1361
tumors. Most of the tumors were hematopoietic (81%)
and brain (8%) tumors.

Description of the PRIM method for detecting CISs

The number of times that insertions appear within a
defined interval follows a Poisson process. Support
for this assumption is provided in Section 2.1 in
Supplementary Data. The Poisson probability distribution
function is P(X= x)= e�llx/x! where the parameter l is
the rate of insertion and x is the number of insertions
residing within a given window. The methods in this
section assume that all windows within a single model
are of the same size. The rate of insertion can account
for other important variables, such as the number of TA
sites, using a Poisson regression. For individual regions Ri,
i=1, 2, . . . , nw, where nw is the number of windows of size
w, the Poisson regression calculates the expected rate of
insertion li for region Ri using information about the size
of the region, the chromosome it resides on, the number of
TA sites within the window and the number of potential
recoverable insertions. This last variable, the number
of potential recoverable insertions, depends upon the
restriction enzymes used during linker-mediated PCR
(LM-PCR). A transposon insertion in a TA dinucleotide
will not be recoverable if the nearest restriction enzyme cut
site is too close to or too distant from the TA dinucleotide.
The details for determining the TA dinucleotides and
potential recoverable insertions (PRIs) in each window

are provided in Section 1 of Supplementary Data.
Figure 1 demonstrates that as window size increases, the
insertion rate by chromosome varies increasingly. These
chromosomal differences are accounted for by the coeffi-
cient �c. The effect of the number of potential recoverable
insertions is estimated with �1. The TA sites are accounted
for with an offset such that �̂ is roughly the number
of insertions divided by the number of TA sites. The
PRIM is

logð�iÞ ¼ �+�cIðRi 2 Chromosome cÞ+�1

�PRI count+logðTA sites inRiÞ

where c=1,2, . . . ,19. The resulting fit from this regression
will provide the expected rate of insertion for a given
chromosome, a given number of PRIs and a given
number of TA sites within each window. The Poisson
regression above can be extended to account for other
important variables such as mouse gender, donor
concatemer site, or, when analyzing retroviral insertion
data, transcription start site.

The expected rates of insertion l1, l2, . . . lnw are
compared to the actual number of insertions within each
window. Using the probability density function for the
Poisson distribution given above, we can calculate the
probability of the actual number of insertions given the
expected rate from the Poisson regression P(X� xijli).
To control the genome-wide false discovery rate (FDR)
at 0.05, the resulting vector of probabilities needs to be
adjusted for multiple comparisons. The Bonferroni correc-
tion of 0.05/nw will select any window where the probabil-
ity of observing at least xi insertions is less than the
Bonferroni corrected probability. For 20 kb windows,
this threshold is 4.17� 10�7 and for 100 kb windows,
this threshold is 2.08� 10�6. The Bonferroni correction
to select the threshold for significance is the most conser-
vative choice to control the genome-wide FDR. If instead
we employ a more liberal strategy to control the
genome-wide FDR, such as the method of Benjamini
and Hochberg (15,16), this will increase the detection of
regions with a significant number of insertions.

Table 1. Number of windows containing the indicated number of transposon insertions and the subset identified as statistically significant CISsa

in the GI tumor data set

Window
size (kb)

Total number
of windowsb Number of windows with indicated number of insertions (number of statistically significant CIS windows)

0 1 2 3 4 5 6 7 8 9

20 120 774 106 582 (0) 12 782 (0) 1235 (0) 145 (0) 21 (0) 2 (2) 0 (–) 1 (1) 2 (2) 0 (–)

50 48 313 35 910 (0) 9773 (0) 2080 (0) 400 (0) 98 (0) 33 (8) 11 (11) 3 (3) 1 (1) 0 (–)

70 34 516 23 034 (0) 8319 (0) 2364 (0) 565 (0) 156 (0) 45 (2) 20 (18) 8 (8) 0 (–) 1 (1)

100 24 161 13 703 (0) 6859 (0) 2458 (0) 764 (0) 247 (0) 75 (0) 28 (7) 13 (11) 9 (9) 1 (1)

10 11 12 13 14 15 16 17 28 43

20 0 (–) 1 (1) 0 (–) 1 (1) 1 (1) 1 (1) 0 (–) 0 (–) 0 (–) 0 (–)

50 0 (–) 0 (–) 0 (–) 1 (1) 0 (–) 1 (1) 1 (1) 0 (–) 1 (1) 0 (–)

70 1 (1) 0 (–) 0 (–) 0 (–) 0 (–) 1 (1) 0 (–) 0 (–) 2 (2) 0 (–)

100 0 (–) 1 (1) 0 (–) 0 (–) 0 (–) 0 (–) 1 (1) 1 (1) 0 (–) 1 (1)

aNumber of statistically significant CISs based on the PRIM are in parentheses.
bTotal number of windows in genome based on window size.
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Description of the PRIM method for detecting CCIs

Using the same definition as de Ridder et al. (14),
a co-occurrence is a unique combination of insertions
within a single tumor. To determine the observed
rate of common co-occurrence, one counts the
number of times a unique combination of insertions
is observed in a set of tissue samples. If inser-
tions occur within the same pair of windows within
two or more tissue samples, this is an observed co-
occurrence.

The PRIM method introduced above can easily be
extended to model the expected rate of co-occurrence
for any two pairs of windows. Recall that, in the
previous section, we defined the rate li as the rate of
insertion into a chromosome for a given number of TA
dinucleotides and given window size. If we observe
insertions along one axis, representing the first inser-
tion in the pair, with a rate of li, and then observe in-
sertions along another axis, representing the second
insertion in the pair, with a rate of lj, then
the expected rate of co-occurrence is approximately lilj.
The derivation of this rate is given in Section 2.2
of Supplementary Data.

With an expected rate of co-occurrence, we can deter-
mine the probability of observing the actual number of
co-occurrences for a given pair.

P X � xij �i�j
��� �

¼
X1

X¼xij
e��i�j �i�j

� �X
=X!

This probability is only calculated for window pairs
where there is a co-occurrence in at least two tumors.
This means that the number of tests will vary depending
on the window size and the insertion data set. Suppose
there are pw total window pairs in the data set of
interest. Using a Bonferroni correction of 0.05/pw, we
select any window pair where the probability of observing
at least xi co-occurrences is less than the Bonferroni cor-
rected probability. If instead we employ a more liberal
strategy to control the genome-wide FDR, such as the
method of Benjamini and Hochberg, we may observe
more window pairs with significant CCIs. Therefore,
different strategies for FDR calculation will yield
somewhat different results.

Description of the 2DGKC model for detecting CCIs

To date, there has been one published method to detect
CCIs (14). The method fits a two-dimensional Gaussian
Kernel Convolution (2DGKC) to estimate a bivariate
density function. This obtains a smooth estimate of the
number of insertion co-occurrences for a given kernel
width. The smoothed estimate is a continuous function
of count data. To determine statistical significance of
a CCI, the approach performs multiple permutations at
multiple kernel widths to generate a null distribution.
At each permutation, a new density function is con-
structed and the calculated peak heights are summarized.
The primary advantage of this method is the agnostic
and non-parametric approach.

Figure 1. For various window sizes, a plot of the average rate of insertion for each mouse chromosome using the 15 857 insertions from the Starr
et al. (10) data set. Conceptually, the rate parameter reflects the number of insertions per window, adjusting for the TA count. Chromosome 1 was
dropped from the plot because for many mice this was where the donor transposon concatamer resided. All insertions that appeared on the same
chromosome as their donor concatamer were removed in order to eliminate local-hopping artifacts. The local-hopping phenomenon is explained
in more detail in Starr et al. (10).
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It was not possible, however, to use the 2DGKC
method as published on the larger data set generated in
our SB transposon screen because the computational re-
quirements exceeded the capacity of our supercomputers.
To overcome this limitation, we made two primary alter-
ations to the 2DGKC approach. First, in addition to using
the original permutation approach provided by the
method’s authors, we also introduce a modified permuta-
tion approach that more closely resembles the spirit of the
permutation strategy suggested in de Ridder et al. (14).
The modifications of this permutation strategy are more
fully explained in the Section 5 of Supplementary Data.
Second, in the original article, a co-occurring insertion
was called significant if the actual peak height exceeded
a threshold determined by a quantile of the peak heights
averaged over 1000 permutations. In this article, we will
more conservatively call a CCI significant if the actual
peak height exceeds the maximum out of all peak
heights generated in 1000 permutations.
We modified the MATLAB code that calculates CCIs

using 2GKDC (kindly provided by de Ridder et al.) to
improve its computational efficiency, and then used it to
determine CCIs in the GI tumor data. To compute a null
distribution, 1000 random runs were performed for each
of the eight kernel widths used in their original study.
These runs took �8000 CPU hours on a Sun Fire
X4600 Linux cluster which has 192 cores and 768GB of
memory. Using a modest level of parallelism (�20 CPUs),
this computation can be completed in a couple of weeks
on the machine just described. This is approximately the
level of parallelism we used.
The data set of 16 590 insertions and 135 tumors trans-

lates into �1.6 million two-dimensional points, one for
each possible pair of insertions in a tumor. Optimization
techniques are used to find the peaks in the density
generated by these points as described in de Ridder
et al. (14). Our modifications to the code preserved this
approach, but reduced the time and/or memory require-
ments of (i) the use of the MATLAB optimization
package, (ii) the grouping of points into bins and the
identification of points in neighboring bins and (iii) the
filtering of redundant peaks. Section 4 of Supplementary
Data provides further details about these modifications.
While the original code could not calculate peaks on our
data set in a finite amount of time, due to memory
allocation problems, modifications to the code fixed this
issue. Further simple modifications reduced computation
time by 90%. More extensive improvements resulted in an
additional speed up of roughly two orders of magnitude.
Likewise, for the creation of random data for generating
the null distribution, we followed the original approach,
but significantly improved computational efficiency.
The modified code was tested on the RTCGD data set
to ensure that it yielded results that were the same as
the original code. Despite improvements in computational
efficiency, simulations to estimate the empirical FDR for
the 2DGKC methods were not feasible. The computation
time for this approach is compared to PRIM for the GI
tumor data in Supplementary Table S1. This table indi-
cates that PRIM requires �0.01% of the CPU time on the

same machine that the 2DGKC method with permuta-
tions requires.

Simulation methods

In order to obtain an empirical estimate of the FDR or
specificity of the PRIM methods, we conducted simulation
exercises. Monte–Carlo simulations were performed to
generate null distributions, where insertions are scattered
completely at random. To create these simulation data
sets, a set of insertions is first randomly allocated to a
set of tumors. The number of insertions per tumor will
vary empirically. Then the insertions are randomly
linked with 1 of over 150million TA dinucleotides
across the genome. After creating the set of insertions,
the insertion sites and co-occurrences are counted and
PRIM tests for significance. All simulations assume
window sizes of 100 kb. The process is repeated 1000
times to obtain an empirical estimate of the FDR.

Simulations were initially run for nine distinct scen-
arios. The samples had a size of 7500, 15 000 or 30 000
insertions. These insertions were randomly assigned to
either 50, 100 or 150 tumors. In addition, a tenth simula-
tion scenario mimicked the insertion set from Starr et al.
(10). Thus, for each random sample, 16 000 insertions
were randomly allocated to 135 tumors. The entire set of
simulations can be generated and analyzed in <1week
using three Linux servers with 2GHz processors.

RESULTS

The PRIM detects CISs in GI tumors

To compare the PRIM method to Monte–Carlo simula-
tions previously used to identify CISs, we re-analyzed a
data set of SB transposon insertions in GI tract tumors in
mice (10). Analysis was done using genomic window sizes
from 10 to 150 kb in steps of 10 kb. The number of
genomic windows and the number of transposon inser-
tions within those windows is listed in Table 1 for 4 of
the 15 window sizes analyzed. The subset of these
windows that were statistically significant CISs (adjusted
P< 0.05) is indicated in parenthesis. From the table, it
is apparent that any window harboring eight or more
insertions, independent of window size, is a CIS.

In addition to window size, the analysis also factored in
the number of TA dinucleotides present in each genomic
window based on the most recent mouse genome build
(NCBIM37). This was done because the SB transposon
only inserts into TA dinucleotides (17). We found that
the number of TA dinucleotides in a window can vary
substantially. For example, in 100 kb windows the
minimum TA dinucleotide count within a window was
31 and the maximum was 9376 sites. This demonstrates
that the expected rate of insertion can be 300 times as large
for one window compared to another. Accounting for TA
dinucleotides in PRIM led to changes in the composition
of the CIS lists by up to 18 different regions, while
accounting for PRIs only changed the composition by
2 regions (see Supplementary Tables S2 and S3). By iden-
tifying the union of all CISs defined by PRIM, which
accounts for both TA density and number of PRIs,
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using the 15 different window sizes there were either 28 or
88 CISs depending upon whether the Bonferroni or the
Benjamini and Hochberg adjustment for multiple com-
parisons was used (Supplementary Tables S2 and S3)
(15,16). In the original study, using the same data set,
there were 61 CISs defined by Monte–Carlo simulations
using a threshold E-value <1 (Supplementary Table S4).
We analyzed the overlap between CISs found by Monte–
Carlo simulations versus PRIM with the Benjamini and
Hochberg adjustment and found that 59 of the 61 CISs
identified by Monte–Carlo simulations were also identified
by PRIM.

The PRIM method discovers more relevant cancer
genes. It is difficult to compare the benefits of using
different methods for detecting CISs because the role of
the majority of genes in the genome is still not well
characterized (18). To gauge which method may be
producing more relevant results, we used three tests to
compare the biological relevance of the different CIS
sets to data sets analyzing human tumors. First, we
tested the gene sets identified by the CIS lists using the
Globaltest methods proposed in Goeman et al. (19) to see
if there was differential expression based on cDNA micro-
array data published in Ki et al. (20). Using matched
primary human colon tumors and normal mucosa for 23
of the patients with expression data, we can examine
differential expression on pre-specified sets. Employing
the ‘self-contained hypothesis’ for testing, the Q statistic
used in the Globaltest methods determines if there is
differential expression in the gene set under inquiry. The
greater the differential expression in the set, the larger the
Q statistic is. All of the sets of CIS genes queried were
statistically significant. The set of 59 CISs determined by
PRIM that overlapped with the previously published
list had the largest Q statistic, suggesting the largest
effect size and the most differential expression. The
second method we used to compare the biological rele-
vance of the different gene sets was to calculate the
overlap between the CIS lists and the cancer gene
census, which is a census of known, bona fide cancer
genes (21). In this comparison, all sets of CIS genes were
statistically significant and the PRIM CIS lists had the
highest percentage of overlap. Finally, we also explored
the overlap between the CIS lists and a set of genes
identified as CRC cancer genes based on re-sequencing
of �18 000 genes in 11 human CRCs (22). In that study,
the authors identified 140 genes that were mutated in
human CRC and likely contributed to the tumor
growth. The CIS lists found by PRIM showed a statistic-
ally significant overlap with these genes (P=0.012) while
the CIS list generated using Monte–Carlo simulations (10)
did not (P=0.132) (see Section 3 of Supplementary
Data). In addition, the CIS found by PRIM that are not
found in the Monte–Carlo simulations also show a statis-
tically significant overlap with the CRC cancer genes
(P=0.003). These three lines of evidence suggest that
the PRIM method may identify more relevant cancer
genes than previous methods based on Monte–Carlo
simulations.

The PRIM detects CCIs in GI tumors

The CIS analysis presented above identifies single muta-
tions that contribute to tumor formation. We now expand
this analysis to identify pairs of mutations that cooperate
in tumorigenesis. The PRIM for CCIs detects pairs of
regions containing insertions at a rate higher than
expected by chance. Table 2 shows the number of these
pairs of insertions appearing together in two or more
tumors in this data set for each of four window sizes.
For example, pairs of 20 kb windows both containing a
transposon insertion were found 605 times in two tumors,
while one pair was found in three tumors. The majority of
co-occurrences are found in two tumors and, as would be
expected, the number increases as window size increases.
Regardless of window size, a small number of
co-occurrences are found in three or more tumors. The
largest number of co-occurrences observed is 9137 pairs
when the window size is 100 kb. To filter out CCIs that
occur by random chance, we use a Bonferroni correction
of 0.05/9137=5.5� 10�6 and select any 100 kb window
where the probability of the observed CCI is less than
the threshold. This identified three significant CCI pairs
with a greater number of tumors than expected by chance
(Table 3). The genome-wide FDR correction of Benjamini
and Hochberg detects the same three CCIs.
In order to compare our method of CCI detection to

the method developed by de Ridder et al. (14), we fit
a two-dimensional Gaussian Kernel Convolution
(2DGKC) to the set of GI tumor insertions to derive a
list of CCI candidates based on this approach. At each
bandwidth, the threshold for significance was chosen as
the maximum peak height found in 1000 permutations of
the insertion set. This threshold choice is slightly more
conservative than the threshold advocated in the original
article (14), where they used a quantile of peak heights
that were averaged over 1000 permutations. For each of
the eight bandwidths employed, an increasing number of
statistically significant CCIs were found as the bandwidth
size increased (Supplementary Table S5). For the smallest
bandwidth of size 10 kb, the method detects 56 CCIs.
For the largest bandwidth of size 500 kb, the method
detects 1176 CCIs. Since the 2DGKC method smoothes
over count data to construct a continuous function, some
of the significant CCIs in the resulting list do not contain
any co-occurring insertions. These instances are shown in
Supplementary Table S5 where the tumor count is zero
or one.

Table 2. Number of CCIs in a given genomic window in 2, 3, 4, 5

or 7 tumors from the GI tumor data set

Window size (kb) Number of tumors

2 3 4 5 7

20 605 1 0 0 0
50 2972 26 2 0 0
70 5235 55 1 1 0
100 9009 121 6 1 1
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The originally published permutation strategy for the
2DGKC method samples random pairs of insertions
from locations in the genome. Alternatively, we tested a
new permutation strategy where we preserved the number
and location of the original insertions, and the number
and size of the original tumors, but merely permuted the
tumor labels on the insertions. This permutation strategy
preserves the structure of the original tumor data, but
eliminates the relationship between pairs of insertions
(See Section 4 of Supplementary Data). Interestingly,
when using our modified version of the permutation
strategy, instead of the original, there were no CCIs
detected at any bandwidth. This demonstrates that the
choice of permutation strategy greatly affects CCI
detection.
The list of three statistically significant CCIs found via

PRIM was cross-referenced with ranked lists of 2D peaks
at each bandwidth based on the original permutation
strategy. The CCI in Table 3, where both pairs occur
within the Apc gene, is the most significant CCI in the
list of 10 kb bandwidth peaks. The CCI between Rspo2
and Ppm1h lies in the bottom 25% of significant CCIs
found using a bandwidth of either 17.5 or 30.6 kb.
The CCI between Pan3/Flt1 and Cltc falls in the top
10% of significant CCIs found by 286 or 500 kb band-
widths. The differences between the methods under
investigation reflect (i) the differing choice in assuming a
count variable versus a continuous variable to model
insertions and (ii) the differing choice of null distribution
assumptions.

The PRIM detects CCIs in RTCGD tumors

Next, we applied our method to a data set of retroviral
insertions in mouse tumors. Using the 2DGKC method,

de Ridder et al. (14) reported 86 statistically significant
CCIs. Analysis of the same data set using PRIM
detected only 20 statistically significant CCIs out of 116
total co-occurrences using window sizes of 20, 50, 70 and
100 kb (Table 4 and Supplementary Table S6), indicating
PRIM is four times more conservative than the 2DGKC
method. Nineteen of the 20 CCIs detected by PRIM were
also detected by the 2DGKC method. Based on the
ranking of the 86 CCIs detected by 2DGKC, PRIM
detects only highly ranked CCIs as all 19 CCIs were
ranked in the top 36% of the original 86 reported CCIs
(P< 0.001) (Supplementary Table S6).

FDR of PRIM using simulated data

To obtain an empirical estimate of the FDR or specificity
of PRIM, we generated data sets of random insertions
throughout the mouse genome. By definition, any signifi-
cant CCIs in these simulated data sets are false discoveries.
We analyzed 1000 simulations within each of 10 different
combinations of tumor and insertion counts. We included
the combination of 135 tumors and 16 000 insertions
because it is the equivalent size of the GI tract data set
analyzed in ‘The PRIM detects CCIs in GI tumors’
section. Since PRIM is calibrated to control the FDR at
0.05, corresponding to 50 simulations out of 1000 with a
significant CCI, this is the ideal rate in our simulations.
When using the Benjamini and Hochberg method for
multiple comparisons adjustment, the FDRs were <0.05
(Table 5).

Any statistical technique will inevitably have a certain
level of false discoveries. These false discoveries should
occur, however, when the characteristics of the CCIs in
the random data match most closely with genuine CCIs in
the real data. Specifically, the more tumors in which the

Table 3. Three CCIs occurring in GI tumor data set

Window sizeb (kb) Locus A of CCIa Locus B of CCIa Number of tumors

Chr Start addressc Gene named Chr Start addressc Gene named

70 10 122 140 001 Ppm1h 15 42 970 001 Rspo2 4
100 5 148 300 001 Pan3 11 86 500 001 Cltc 4
100 18 34 300 001 Apc 18 34 400 001 Apc 7

aLocus A and Locus B are the pair of loci composing the CCI.
bWhen multiple window sizes find the same CCI, the largest window size is reported.
cPhysical address of start of CCI based on NCBIM37 genome build.
dCandidate gene in locus.
Chr=Chromosome.

Table 4. Number of co-occurring insertions and the subset identified as statistically significant CCIsa in the RTCGD

Window size (kb) Number of tumors with a co-occurring pair of insertions

2 3 4 5 6 7 8 9

20 49 (2) 4 (4) 1 (1) 1 (1) 0 (–) 0 (–) 0 (–) 0 (–)

50 64 (0) 10 (10) 2 (2) 1 (1) 0 (–) 0 (–) 1 (1) 0 (–)

70 82 (0) 7 (7) 2 (2) 2 (2) 1 (1) 0 (–) 0 (–) 1 (1)

100 98 (0) 10 (10) 4 (4) 3 (3) 0 (–) 0 (–) 0 (–) 1 (1)

aNumber of statistically significant CISs based on the PRIM are in parenthesis.

3828 Nucleic Acids Research, 2012, Vol. 40, No. 9

http://nar.oxfordjournals.org/cgi/content/full/gkr1295/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1295/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1295/DC1


pair of insertions comprising the CCI occur together, the
more likely it is that the CCI is not due to random chance.
Thus, we investigated whether the false discoveries
generated by our approach tended to be those CCIs in
the random data that occur in the largest number of
tumors. To this end, Table 6 shows the distribution of
tumor counts with insertion pairs from each simulation
scenario. The tumor count is the maximum number of
tumors in which a pair occurs. For instance, for the
scenario with 50 tumors and 7500 insertions, 681 of the
1000 simulations have pairs in at most two tumors, while
319 of the simulations have pairs in at most three tumors.

In all scenarios, the simulations with significant CCIs
come from simulations that have the maximum tumor
count for their scenario. Indeed, in 4 of the 10 scenarios,
the false discovery simulations are exactly those simula-
tions with the maximum number of CCI tumor pairs.
To illustrate, in the simulation scenario where 16 000
insertions are distributed among 135 tumors, the
maximum CCI count is 4 tumors with the same CCI
pair, which occurs in only 2 of the 1000 simulations.
These same two simulations are also the only two

simulations that result in a significant CCI call for this
scenario. Meanwhile, a maximum CCI count of three
tumors occurs in 868 of the 1000 simulations and two
tumors in the remaining 130 simulations. Therefore, for
this particular simulation scenario, an FDR of 2 out of
1000 is reasonable.
When comparing the simulation scenario to the actual

data this scenario mimics, i.e. the GI tumor insertions, the
simulations support the notion that CCI pairs within
100 kb windows appearing in four tumors or less are to
be expected by chance. PRIM detects two significant
CCIs in 100 kb windows, one appearing in five tumors
(Apc/Apc) and one appearing in four tumors (Pan3/
Cltc). The remaining five CCIs detected in four tumors
in the 100 kb window analysis have a more typical TA
count compared to the significant Pan3/Cltc pair and
did not cross the threshold for significance.
Although the simulation FDRs are all <0.05, this does

not imply that our methods are too conservative or too
specific. On the contrary, our simulations show that rare
events are detected when they occur, just as Poisson
models are designed to do. Table 6 indicates that these
rare events of occurrence appear under the null distribu-
tion at a rate <0.05 and thus the simulation FDRs are
also <0.05. This suggests that the proposed methods ap-
propriately control the genome-wide FDR and detect the
correct number of CCIs.

DISCUSSION

We have developed a new method to identify CISs and
CCIs that play a role in tumorigenesis. This approach uses
a two-dimensional extension of rate parameter estimates
found with a Poisson regression model. The assumptions
of PRIM were verified with simple Monte–Carlo
simulations.
Several of the genes identified by PRIM, but not

by the Monte–Carlo method, are known to be involved
in the pathogenesis of human colorectal cancer
(CRC). For example, PIK3CA, the catalytic unit of
phosphatidylinositol-3 kinase (PI3K), is mutated in 32%
of human colon cancers (23), and up to 40% of CRCs
have mutations in PI3K pathway genes (24). Mutant
PIK3CA promotes cell growth and tumor invasion and
enhances metastatic CRC resistance to treatment by
monoclonal antibodies targeting EGFR (25,26). PRIM
with the TA site offset, but not the null model, identified
the ephrin receptor, EPHB2, which is initially upregulated
in early colon lesions but is subsequently downregulated
as the tumor progresses and this silencing correlates with
poor patient survival (27). The tumor suppressor function
of EPHB2 may be responsible for hereditary CRC due
to a germline mutation in rare cases (28). Several of the
CISs identified by PRIM exhibit altered expression in
colorectal cancer, such as MUC5AC (29). These findings
support the validity of the PRIM method to find candi-
date cancer genes using transposon insertional data sets,
where these genes may be missed using the previously
employed Monte–Carlo method.

Table 6. Number of simulations with pairs of insertions in the

indicated number of tumorsa

Number of tumors Number of insertions

7500 15 000 16 000 30 000

50 681 (2) 944 (3) NDb 935 (4)
319 (3) 56 (4) 65 (5)

135 NDb NDb 130 (2) NDb

868 (3)
2 (4)

150 984 (2) 374 (2) NDb 380 (3)
16 (3) 624 (3) 168 (4)

2 (4) 2 (5)
300 998 (2) 899 (2) NDb 992 (3)

2 (3) 101 (3) 8 (4)

aFor example, in 1000 simulations using 50 tumors and 7500 insertions
there are 681 simulations with a pair of insertions occurring in 2 tumors
and 319 simulations with a pair of insertions occurring in 3 tumors.
bND indicates simulations were not done.

Table 5. Empirical FDR of PRIM using various sized simulated data

setsa

Number of tumors Number of insertions

7500 15 000 16 000 30 000

50 0.036 0.011 NDb 0
135 NDb NDb 0.002 NDb

150 0.016 0.002 NDb 0.001
300 0.002 0 NDb 0

aFDR is based on 1000 simulations and is calculated as (number of
simulations that produced a CCI)/(number of total simulations). In all
individual simulations that identified a CCI, only one CCI was found,
except in one of the simulations with 50 tumors and 7500 insertions,
where one of the simulations yielded two CCIs.
bND indicates simulations were not done.
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We then extended PRIM to allow detection of CCIs.
The PRIM method to detect CCIs was tested in simula-
tions of the null hypothesis, a set of gastrointestinal
tumors, and a set of tumors from the RTCGD. We
demonstrated in simulations that the PRIM method for
CCI detection properly controls the FDR. The empirical
FDRs in 10 different simulation scenarios were always
<0.05. The simulated data also showed the number of
CCIs that are expected by chance. Given that PRIM did
not select pairs in the GI tumor set with a smaller number
of counts than observed in simulations, this shows that the
model appropriately controls false discoveries. On the
other hand, PRIM did select CCIs in the GI tumors
with a larger number of counts than observed in simula-
tions, showing that the model is not overly conservative.
After verification with simulations, we then used our

methods to determine CCIs in a set of GI tumors from
mice and found three statistically significant CCI regions.
The basic hypothesis for doing a CCI analysis is that
cooperating mutations can be identified. An analysis of
the function of the CCI pairs identified supports this
hypothesis.
The first CCI identified cooperating mutations within

the Apc gene. The biology of Apc mutations has been
extensively studied in colon cancer and the current
hypothesis is that an initial truncating mutation resulting
in a hypomorphic protein product is normally followed by

loss of heterozygosity of the remaining wild-type allele
(30). This hypothesis fits well with the Apc-Apc CCI
identified in the set of intestinal tumors analyzed in this
article. The seven tumors that constitute this CCI show
multiple mutations in the first intron and 30 upstream
region of Apc accompanied by paired mutations in down-
stream introns (Figure 2A). It is possible that the first
mutation creates a null product because it occurs in the
first intron or promoter region of Apc, while the second
mutation creates a truncated product in the second allele.

The second CCI identified Rspo2 and Ppm1h as
interacting mutations. This could be explained by the
hypothesis that overexpression of Rspo2 and inactivation
of Ppm1h cooperate in CRC progression by fulfilling two
of the functions associated with mutant Apc, namely
uncontrolled proliferation and chromosomal instability.
In addition to activation of Wnt signaling, mutations in
the C-terminus of Apc contribute to chromosomal
instability (31). This second function may explain why
Apc mutations are found more frequently in CRC than
other genes capable of activating Wnt signaling. The four
tumors constituting the Rspo2-Ppm1h CCI do not have
any identified transposon insertions in Apc, so the Rspo2
and Ppm1h mutations could be providing the phenotypes
usually caused by mutant Apc. The transposon insertions
in Rspo2 in the four tumors are likely causing
overexpression because the insertions are all located

Figure 2. Location of transposon insertions in CCIs. (A) Seven tumors had insertions in both the 30 and 50 regions of Apc. (B) Four tumors had
insertions in both the upstream promoter of Rspo2 and in intron 1 of Ppmh1. All four insertions in the Rspo2 promoter inserted with the transposon
viral promoter in the same orientation as the gene. (C) Four tumors had insertions in Cltc, two of which had insertions in Flt1 and the other two in
Pan3. Insertions are depicted by a bent arrow, which points in the direction of the transposon promoter. Insertion numbers indicate tumors. Red
arrow indicates direction of transcription. Solid black lines depict introns while dashed black lines depict intergenic DNA. Black boxes depict exons
(A and B) while blue boxes depict genes (C). Arrow on bottom indicates length of DNA.
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immediately upstream of Rspo2 and the viral promoter
within the transposon is in the correct orientation to
cause overexpression (Figure 2B). These insertions are
probably causing aberrant activation of Wnt signaling
because Rspo2 normally functions as a secreted activator
of the Wnt signaling pathway that is important for limb,
lung and craniofacial development (32–35). Furthermore,
Rspo1, a close homolog of Rspo2 causes hyperproli-
feration in intestinal crypt cells along with an increase in
b-catenin levels when the human protein is overexpressed
in mice (36). The transposon insertions in Ppm1h, on the
other hand, are likely causing disruption of this gene
because they are spread throughout the gene and the
direction of the viral promoter is not consistent
(Figure 2B). Inactivation of Ppm1h could be cooperating
with overexpression of Rspo2 by interfering with p53 tran-
scription leading to chromosomal instability. Ppm1h
is a protein phosphatase that can dephosphorylate and
potentially inactivate CSE1L (37). CSE1L was recently
shown to be associated with chromatin and to regulate
transcription of p53 target genes (38). Furthermore,
CSE1L intracellular localization is controlled by phos-
phorylation and CSE1L will accumulate in the nucleus
when phosphorylation is blocked (39). Based on these
observations we predict that overexpression of Rspo2
and inactivation of Ppm1h cooperate in the etiology
of CRC.

The third CCI, designated Pan3-Cltc, contains three
affected genes. All four tumors had transposon insertions
in Clatherin heavy chain (Cltc) while two of the tumors
had insertions in FMS-like tyrosine kinase 1 (Flt1, alias
Vegfr1), one had an insertion in the neighboring gene
PAN3 polyA specific ribonuclease subunit homolog
(Saccharomyces cerevisiae) (Pan3), and one had an inser-
tion in the intergenic region between Pan3 and Flt1
(Figure 2C). From the insertion pattern, we predict that
Cltc is inactivated in all four tumors, while it is difficult to
predict the effect of the insertions on Pan3 and Flt1. It is
possible that the Flt1 mutations create a truncated
product, as the insertions are located toward the 50 end
of the Flt1 gene. This might result in a protein product
similar to the shortened, soluble isoform sFlt1. Although
there is evidence that delivery of sFlt1 using gene therapy
can block tumor development in mouse models (40),
increased levels of sFlt1 are found in the sera of colorectal
and breast cancer patients (41) and elevated sFlt1 levels in
renal cancer are associated with a poorer outcome (42).
These findings suggest there may be an oncogenic compo-
nent to sFlt1. Inactivation of Cltc might be contributing to
tumor development due to increased Egfr signaling.
Activated Egfr is normally targeted for destruction after
ubiquitination and subsequent transport from the plasma
membrane to lysosomes. Cltc controls Egfr signaling by
acting as a chaperone transporting activated Egfr to the
lysosome (43). Loss of Cltc may result in prolonged Egfr
signaling leading to uncontrolled proliferation, which
could cooperate with dysregulation of Vegf signaling due
to the mutations in Flt1.

The three significant CCI regions found by PRIM
potentially explain part of the tumorigenesis stages of as
many as 11 tumors in the data set, out of 135 tumors total.

The 88 CIS regions found by the Poisson model involve
insertions from 117 of the tumors. Most, though not all, of
the tumors in the data set may in part be explained by one
or two disruptions due to SB insertions. It is likely that
a complete picture of tumorigenesis will require a model
with more than two hits.
Comparing PRIM to the existing 2DGKC method, we

found that PRIM is far more discerning. The 2DGKC
method found 1176 CCIs in the GI tumors. In the
RTCGD insertion set, <25% of the CCI regions
detected by de Ridder et al. (14) were found to be signifi-
cant by our model. Modifying the permutation strategy
that generates peaks under a null distribution greatly
reduces the number of CCIs detected (see the Section 4
of Supplementary Data for more description of the per-
mutation strategies). This suggests that inference under
the 2DGKC method could be more similar to PRIM
when using improved permutation strategies.
The PRIM framework provides for more flexibility in

the estimation of transposon insertion rates. This means
that as the process of transposon-based screens are better
understood with time, we will be able to easily include new
variables that affect the rate of insertion. We are currently
expanding the methods proposed in this article to accom-
modate mouse gender and donor concatemer site in the
model and therefore we will be able to analyze insertions
on sex chromosomes and account for the local-hopping
phenomenon without bias. The new methods for CCI de-
tection are also far faster to compute than previous
methods. The more efficient computations allow us to
verify our approach with simulations, whereas the
previously published approaches do not. The code in R
to calculate the rate of insertion and co-occurrence
and identify CISs and CCIs is available upon request
(http://www.r-project.org). The ease of computation also
provides future opportunities to expand our approach to
higher order combinations of insertions beyond a two-hit
model.
In conclusion, we have presented a new method for

determining CISs and CCIs from data sets of transposon
or proviral insertions in forward genetic screens for cancer
genes. The new method, termed PRIM, is able to identify
the biologically relevant mutations in these screens and
can be tailored to screen-specific behaviors such as the
requirement of TA dinucleotides for SB transposons or
the preference of proviruses to insert into TSSs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S7, Supplementary Figures
S1–S5, Supplementary Methods, Supplementary Data
set S1 and Supplementary Reference [44].
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and Bara,J. (2007) Abnormal expression of M1/MUC5AC mucin
in distal colon of patients with diverticulitis, ulcerative colitis and
cancer. Int. J. Cancer, 121, 1543–1549.

30. Nieuwenhuis,M.H., Mathus-Vliegen,L.M., Slors,F.J., Griffioen,G.,
Nagengast,F.M., Schouten,W.R., Kleibeuker,J.H. and Vasen,H.F.
(2007) Genotype-phenotype correlations as a guide in the
management of familial adenomatous polyposis. Clin.
Gastroenterol. Hepatol., 5, 374–378.

31. Fodde,R. (2002) The APC gene in colorectal cancer.
Eur. J. Cancer, 38, 867–871.

32. Bell,S.M., Schreiner,C.M., Wert,S.E., Mucenski,M.L., Scott,W.J.
and Whitsett,J.A. (2008) R-spondin 2 is required for normal
laryngeal-tracheal, lung and limb morphogenesis. Development,
135, 1049–1058.

33. Kazanskaya,O., Glinka,A., del Barco Barrantes,I., Stannek,P.,
Niehrs,C. and Wu,W. (2004) R-Spondin2 is a secreted activator
of Wnt/beta-catenin signaling and is required for Xenopus
myogenesis. Dev. Cell, 7, 525–534.

34. Nam,J.S., Park,E., Turcotte,T.J., Palencia,S., Zhan,X., Lee,J.,
Yun,K., Funk,W.D. and Yoon,J.K. (2007) Mouse R-spondin2 is
required for apical ectodermal ridge maintenance in the hindlimb.
Dev. Biol., 311, 124–135.

3832 Nucleic Acids Research, 2012, Vol. 40, No. 9



35. Yamada,W., Nagao,K., Horikoshi,K., Fujikura,A., Ikeda,E.,
Inagaki,Y., Kakitani,M., Tomizuka,K., Miyazaki,H., Suda,T.
et al. (2009) Craniofacial malformation in R-spondin2 knockout
mice. Biochem. Biophys. Res. Commun., 381, 453–458.

36. Kim,K.A., Kakitani,M., Zhao,J., Oshima,T., Tang,T.,
Binnerts,M., Liu,Y., Boyle,B., Park,E., Emtage,P. et al. (2005)
Mitogenic influence of human R-spondin1 on the intestinal
epithelium. Science, 309, 1256–1259.

37. Sugiura,T., Noguchi,Y., Sakurai,K. and Hattori,C. (2008) Protein
phosphatase 1H, overexpressed in colon adenocarcinoma, is
associated with CSE1L. Cancer Biol. Ther., 7, 285–292.

38. Tanaka,T., Ohkubo,S., Tatsuno,I. and Prives,C. (2007)
hCAS/CSE1L associates with chromatin and regulates expression
of select p53 target genes. Cell, 130, 638–650.

39. Scherf,U., Kalab,P., Dasso,M., Pastan,I. and Brinkmann,U.
(1998) The hCSE1/CAS protein is phosphorylated by HeLa
extracts and MEK-1: MEK-1 phosphorylation may modulate the
intracellular localization of CAS. Biochem. Biophys. Res.
Commun., 250, 623–628.

40. Hu,M., Yang,J.L., Teng,H., Jia,Y.Q., Wang,R., Zhang,X.W.,
Wu,Y., Luo,Y., Chen,X.C., Zhang,R. et al. (2008)
Anti-angiogenesis therapy based on the bone marrow-derived
stromal cells genetically engineered to express sFlt-1 in mouse
tumor model. BMC Cancer, 8, 306.

41. Kumar,H., Heer,K., Greenman,J., Kerin,M.J. and Monson,J.R.
(2002) Soluble FLT-1 is detectable in the sera of colorectal and
breast cancer patients. Anticancer Res., 22, 1877–1880.

42. Harris,A.L., Reusch,P., Barleon,B., Hang,C., Dobbs,N. and
Marme,D. (2001) Soluble Tie2 and Flt1 extracellular domains in
serum of patients with renal cancer and response to
antiangiogenic therapy. Clin. Cancer Res., 7, 1992–1997.

43. Moran,A.E., Hunt,D.H., Javid,S.H., Redston,M., Carothers,A.M.
and Bertagnolli,M.M. (2004) Apc deficiency is associated with
increased Egfr activity in the intestinal enterocytes and adenomas
of C57BL/6J-Min/+ mice. J. Biol. Chem., 279, 43261–43272.

44. Flicek,P., Aken,B.L., Beal,K., Ballester,B., Caccamo,M., Chen,Y.,
Clarke,L., Coates,G., Cunningham,F., Cutts,T. et al. (2008)
Ensembl 2008. Nucleic Acids Res., 36, D707–D714.

Nucleic Acids Research, 2012, Vol. 40, No. 9 3833


