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Abstract Core gene phylogenies provide a window into early evolution, but different gene sets 
and analytical methods have yielded substantially different views of the tree of life. Trees inferred 
from a small set of universal core genes have typically supported a long branch separating the 
archaeal and bacterial domains. By contrast, recent analyses of a broader set of non- ribosomal 
genes have suggested that Archaea may be less divergent from Bacteria, and that estimates of 
inter- domain distance are inflated due to accelerated evolution of ribosomal proteins along the 
inter- domain branch. Resolving this debate is key to determining the diversity of the archaeal and 
bacterial domains, the shape of the tree of life, and our understanding of the early course of cellular 
evolution. Here, we investigate the evolutionary history of the marker genes key to the debate. We 
show that estimates of a reduced Archaea- Bacteria (AB) branch length result from inter- domain gene 
transfers and hidden paralogy in the expanded marker gene set. By contrast, analysis of a broad 
range of manually curated marker gene datasets from an evenly sampled set of 700 Archaea and 
Bacteria reveals that current methods likely underestimate the AB branch length due to substitu-
tional saturation and poor model fit; that the best- performing phylogenetic markers tend to support 
longer inter- domain branch lengths; and that the AB branch lengths of ribosomal and non- ribosomal 
marker genes are statistically indistinguishable. Furthermore, our phylogeny inferred from the 27 
highest- ranked marker genes recovers a clade of DPANN at the base of the Archaea and places the 
bacterial Candidate Phyla Radiation (CPR) within Bacteria as the sister group to the Chloroflexota.

Editor's evaluation
This contribution is of interest to molecular phylogeny scientists, in particular, and to a broad public 
interested in early evolution, in general, as it elegantly supports the long- standing (but recently chal-
lenged) hypothesis that bacteria and archaea are separated by a long branch.

Introduction
Much remains unknown about the earliest period of cellular evolution and the deepest divergences 
in the tree of life. Phylogenies encompassing both Archaea and Bacteria have been inferred from a 
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‘universal core’ set of 16–56 genes encoding proteins involved in translation and other aspects of the 
genetic information processing machinery (Ciccarelli et al., 2006; Fournier and Gogarten, 2010; 
Harris et al., 2003; Hug et al., 2016; Koonin, 2003; Mukherjee et al., 2017; Petitjean et al., 2014; 
Ramulu et al., 2014; Raymann et al., 2015; Theobald, 2010; Williams et al., 2020). While repre-
senting a small fraction of the total genome of any organism (Dagan and Martin, 2006), these genes 
are thought to predominantly evolve vertically and are thus best suited for reconstructing the tree of 
life (Ciccarelli et al., 2006; Creevey et al., 2011; Puigbò et al., 2009; Ramulu et al., 2014; Theo-
bald, 2010). In these analyses, the branch separating Archaea from Bacteria (hereafter, the AB branch) 
is often the longest internal branch in the tree (Cox et al., 2008; Gogarten et al., 1989; Hug et al., 
2016; Iwabe et al., 1989; Pühler et al., 1989; Williams et al., 2020). In molecular phylogenetics, 
branch lengths are usually measured in expected numbers of substitutions per site, with a long branch 
corresponding to a greater degree of genetic change. Long branches can therefore result from high 
evolutionary rates, long periods of absolute time, or a combination of the two. If a sufficient number 
of fossils are available for calibration, molecular clock models can, in principle, disentangle the contri-
butions of these effects. However, limited fossil data (Sugitani et al., 2015) is currently available to 
calibrate early divergences in the tree of life (Betts et al., 2018; Horita and Berndt, 1999; Lepland 
et al., 2002; van Zuilen et al., 2002), and as a result, the ages and evolutionary rates of the deepest 
branches of the tree remain highly uncertain.

Recently, Zhu et al., 2019 inferred a phylogeny from 381 genes distributed across Archaea and 
Bacteria using the supertree method ASTRAL (Mirarab et al., 2014). These markers increase the total 
number of genes compared to other universal marker sets and comprise not only proteins involved 
in information processing but also proteins affiliated with most other functional COG categories, 
including metabolic processes (Supplementary file 1). The genetic distance (AB branch length) 
between the domains (Zhu et al., 2019) was estimated from a concatenation of the same marker 
genes, resulting in a much shorter AB branch length than observed with the core universal markers 
(Hug et al., 2016; Williams et al., 2020). These analyses were consistent with the hypothesis (Petit-
jean et al., 2014; Zhu et al., 2019) that the apparent deep divergence of Archaea and Bacteria might 
be the result of an accelerated evolutionary rate of genes encoding translational and in particular ribo-
somal proteins along the AB branch as compared to other genes. Interestingly, the same observation 
was made previously using a smaller set of 38 non- ribosomal marker proteins (Petitjean et al., 2014), 
although the difference in AB branch length between ribosomal and non- ribosomal markers in that 
analysis was reported to be substantially lower (roughly twofold, compared to roughly 10- fold for the 
381 protein set [Petitjean et al., 2014; Zhu et al., 2019]).

A higher evolutionary rate of ribosomal genes might result from the accumulation of compensa-
tory substitutions at the interaction surfaces among the protein subunits of the ribosome (Petitjean 
et al., 2014; Valas and Bourne, 2011) or as a compensatory response to the addition or removal of 
ribosomal subunits early in evolution (Petitjean et al., 2014). Alternatively, differences in the inferred 
AB branch length might result from varying rates or patterns of evolution between the traditional core 
genes (Spang et al., 2015; Williams et al., 2020) and the expanded set (Zhu et al., 2019). Substitu-
tional saturation (multiple substitutions at the same site) (Jeffroy et al., 2006) and across- site compo-
sitional heterogeneity can both impact the inference of tree topologies and branch lengths (Foster, 
2004; Lartillot et al., 2007; Lartillot and Philippe, 2004; Quang et al., 2008; Wang et al., 2008; 
Williams et  al., 2021). These difficulties are particularly significant for ancient divergences (Gouy 
et al., 2015). Failure to model site- specific amino acid preferences has previously been shown to lead 
to underestimation of the AB branch length due to a failure to detect convergent changes (Tourasse 
and Gouy, 1999; Williams et al., 2020), although the published analysis of the 381 marker set did not 
find evidence of a substantial impact of these features on the tree as a whole (Zhu et al., 2019). Those 
analyses also identified phylogenetic incongruence among the 381 markers, but did not determine 
the underlying cause (Zhu et al., 2019).

This recent work (Zhu et  al., 2019) raises two important issues regarding the inference of the 
universal tree: first, that estimates of the genetic distance between Archaea and Bacteria from classic 
‘core genes’ may not be representative of ancient genomes as a whole, and second, that there may 
be many more suitable genes to investigate early evolutionary history than generally recognized, 
providing an opportunity to improve the precision and accuracy of deep phylogenies. Here, we investi-
gate these issues in order to determine how different methodologies and marker sets affect estimates 
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of the evolutionary distance between Archaea and Bacteria. First, we examine the evolutionary history 
of the 381- gene marker set (hereafter, the expanded marker gene set) and identify several features 
of these genes, including instances of inter- domain gene transfers and mixed paralogy, that may 
contribute to the inference of a shorter AB branch length in concatenation analyses. Then, we re- eval-
uate the marker gene sets used in a range of previous analyses to determine how these and other 
factors, including substitutional saturation and model fit, contribute to inter- domain branch length 
estimations and the shape of the universal tree. Finally, we identify a subset of marker genes least 
affected by these issues and use these to estimate an updated tree of the primary domains of life and 
the length of the branch that separates Archaea and Bacteria.

Results and discussion
Genes from the expanded marker set are not widely distributed in 
Archaea
The 381- gene set was derived from a larger set of 400 genes used to estimate the phylogenetic place-
ment of new lineages as part of the PhyloPhlAn method (Segata et al., 2013) and applied to a taxo-
nomic selection that included 669 Archaea and 9906 Bacteria (Zhu et al., 2019). Perhaps reflecting 
the focus on Bacteria in the original application, the phylogenetic distribution of the 381 marker 
genes in the expanded set varies substantially (Supplementary file 1), with many being poorly repre-
sented in Archaea. Specifically, 41% of the published gene trees (https://biocore.github.io/wol/; Zhu 
et al., 2019) contain less than 25% of the sampled archaea, with 14 and 68 of these trees including 0 
or ≤10 archaeal homologues, respectively. Across all of the gene trees, archaeal homologues comprise 
0–14.8% of the dataset (Supplementary file 1). Manual inspection of subsampled versions of these 
gene trees suggested that 317/381 did not possess an unambiguous branch separating the archaeal 
and bacterial domains (Supplementary file 1). These distributions suggest that many of these genes 
are not broadly present in both domains, and that some might be specific to Bacteria.

Conflicting evolutionary histories of individual marker genes and the 
inferred species tree
In the published analysis of the 381- gene set (Zhu et  al., 2019), the tree topology was inferred 
using the supertree method ASTRAL (Mirarab et  al., 2014), with branch lengths inferred on this 
fixed tree from a marker gene concatenation (Zhu et  al., 2019). The topology inferred from this 
expanded marker set (Zhu et al., 2019) is similar to previous trees (Castelle and Banfield, 2018; Hug 
et al., 2016) and recovers Archaea and Bacteria as reciprocally monophyletic domains, albeit with 
a shorter AB branch than in earlier analyses. However, the individual gene trees (Zhu et al., 2019) 
differ regarding domain monophyly: Archaea and Bacteria are recovered as reciprocally monophyletic 
groups in only 22 of the 381 published (Zhu et al., 2019) maximum likelihood (ML) gene trees of the 
expanded marker set (Supplementary file 1).

Since single- gene trees often fail to strongly resolve ancient relationships, we used approximately 
unbiased (AU) tests (Shimodaira, 2002) to evaluate whether the failure to recover domain monophyly 
in the published ML trees is statistically supported. For computational tractability, we performed these 
analyses on a 1000- species subsample of the full 10,575- species dataset that was compiled in the 
original study (Zhu et al., 2019). For 79 of the 381 genes, we could not perform the test because 
the gene family did not contain any archaeal homologues (56 genes) or contained only one archaeal 
homologue (23 genes); in total, the 1000- species sample included 74 archaeal genomes. For the 
remaining 302 genes, domain monophyly was rejected at the 5% significance level (with Bonferroni 
correction, p<0.0001656) for 151 out of 302 (50%) genes. As a comparison, we performed the same 
test on several smaller marker sets used previously to infer a tree of life (Coleman et  al., 2021; 
Petitjean et al., 2014; Williams et al., 2020); none of the markers in those sets rejected reciprocal 
domain monophyly (p<0.05 for all genes, with Bonferroni correction: Coleman: >0.001724; Petitjean: 
>0.001316; Williams: >0.00102: Figure 1A). In what follows, we refer to four published marker gene 
sets as (i) the expanded set (381 genes; Zhu et al., 2019); (ii) the core set (49 genes; Williams et al., 
2020), encoding ribosomal proteins and other conserved information- processing functions; itself a 
consensus set of several earlier studies (Da Cunha et al., 2017; Spang et al., 2015; Williams et al., 
2012); (iii) the non- ribosomal set (38 genes, broadly distributed and explicitly selected to avoid genes 
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R = 0.7426
p < 2.2×10-16

R = -0.2319
p = 0.009013

R = -0.2213
p = 0.0001051

R = -0.2668
p = 2.572×10-6

R = -0.3044
p = 0.0005304

R = 0.8367
p < 2.2×10-16

Figure 1. Vertically evolving marker genes support a greater evolutionary distance between Archaea and Bacteria. (A) Expanded set genes that reject 
domain monophyly (p<0.05, approximately unbiased [AU] test, with Bonferroni correction [see main text]) support significantly shorter Archaea- Bacteria 
(AB) branch lengths when constrained to follow a domain monophyletic tree (p=3.653 × 10–6, Wilcoxon rank- sum test). None of the marker genes 
from several other published analyses significantly reject domain monophyly (Bonferroni- corrected p<0.05, AU test) for all genes tested, consistent 

Figure 1 continued on next page
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encoding ribosomal proteins; Petitjean et al., 2014); and (iv) the bacterial set (29 genes used in a 
recent analysis of bacterial phylogeny; Coleman et al., 2021).

To investigate why 151 of the marker genes rejected the reciprocal monophyly of Archaea and 
Bacteria, we returned to the full dataset (Zhu et al., 2019), annotated each sequence in each marker 
gene family by assigning proteins to KOs, PFAMs and Interpro domains, among others (Supple-
mentary file 1, see Materials and methods for details), and manually inspected the tree topologies 
(Supplementary file 1). This revealed that the major cause of domain polyphyly observed in gene 
trees was inter- domain gene transfer (in 359 out of 381 gene trees [94.2%]) and mixing of sequences 
from distinct paralogous families (in 246 out of 381 gene trees [64.6%]). For instance, marker genes 
encoding ABC- type transporters (p0131, p0151, p0159, p0174, p0181, p0287, p0306, p0364), 
tRNA synthetases (i.e., p0000, p0011, p0020, p0091, p0094, p0202), and aminotransferases and 

with vertical inheritance from the LUCA (last universal common ancestor) to the last common ancestors of Archaea and Bacteria, respectively. (B) Two 
measures of evolutionary proximity (Zhu et al., 2019), AB branch length and relative AB distance, are positively correlated (R = 0.7426499, p< 2.2 × 
10–16). We considered two complementary proxies of marker gene verticality: ∆LL (C: against AB branch length; D: against relative AB length), which 
reflects the degree to which marker genes reject domain monophyly (C: p=0.009013 and R = –0.2317894; D: p=0.0001051 and R = –0.2213292); and 
the between- domain split score (E: against AB branch length; F: against relative AB length), which quantifies the extent to which marker genes recover 
monophyletic Archaea and Bacteria; a higher split score (see Materials and methods) indicates the splitting of domains into multiple gene tree clades 
due to gene transfer, reciprocal sorting out of paralogs, or lack of phylogenetic resolution (E: p=0.0005304 and R = –0.3043537; F: p=2.572 × 10–6 and 
R = –0.2667739). We also considered a split score based on within- domain relationships (G); between- and within- domain split scores are positively 
correlated: R = 0.836679, p<2.2 × 10–16, Pearson’s correlation, indicating that markers that recover Archaea and Bacteria as monophyletic also tend to 
recover established within- domain relationships. (H) Inferred AB length decreases as marker genes of lower verticality (larger ∆LL) are added to the 
concatenate. Marker genes were sorted by ∆LL, the difference in log- likelihood between the maximum likelihood gene family tree under a free topology 
search and the log- likelihood of the best tree constrained to obey domain monophyly. Note that 79/381 expanded set markers had zero or one archaea 
in the 1000- species subsample and so could not be included in these analyses; of the remaining 302 markers, 176 have AB branch lengths very close 
to 0 in the constraint tree (as seen in panel A). In these plots, we removed all markers with an AB branch length of <0.00001; see Figure 1—figure 
supplements 1–13 for all plots. Nonlinear trendlines were estimated using LOESS regression.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. No evidence for a relationship between Archaea- Bacteria (AB) branch length and gene evolutionary rate (average MAD root- to- 
tip distance).

Figure supplement 2. No evidence for a relationship between Archaea- Bacteria (AB) branch length and gene evolutionary rate (average MAD root- to- 
tip distance).

Figure supplement 3. A significant positive relationship between relative Archaea- Bacteria (AB) distance and evolutionary rate (MAD root- to- tip 
distance).

Figure supplement 4. Two proxies for marker gene verticality, ∆LL and between- domain split score, are highly correlated.

Figure supplement 5. Low- verticality genes (as measured by ∆LL) have a higher evolutionary rate (as measured by the mean root- to- tip distance on 
MAD- rooted gene trees).

Figure supplement 6. Low- verticality genes (measured by between- domain split score) have a higher evolutionary rate (MAD root- to- tip distance).

Figure supplement 7. High- verticality marker genes have longer Archaea- Bacteria (AB) branch lengths.

Figure supplement 8. Archaea- Bacteria (AB) branch length and relative AB distance are positively correlated.

Figure supplement 9. Archaea- Bacteria (AB) branch length is negatively correlated with between- domain split score.

Figure supplement 10. Within- domain split score and ∆LL are strongly correlated, suggesting that both proxies capture a common signal of marker 
gene verticality.

Figure supplement 11. Low- verticality marker genes (measured as within- domain split score) have shorter relative Archaea- Bacteria (AB) distances.

Figure supplement 12. Low- verticality marker genes (measured as within- domain split score) have shorter Archaea- Bacteria (AB) branch lengths.

Figure supplement 13. Low- verticality marker genes (measured as within- domain split score) have shorter Archaea- Bacteria (AB) branch lengths.

Figure supplement 14. Raw count and percentage distribution of the Genome Taxonomy Database (GTDB)- defined classes for 10,575 archaeal and 
bacterial genomes in the expanded marker set analysis.

Figure supplement 15. Raw count and percentage distribution of the Genome Taxonomy Database (GTDB)- defined phyla for 10,575 archaeal and 
bacterial genomes in the expanded marker set analysis.

Figure supplement 16. Raw count and percentage distribution of domains for 10,575 archaeal and bacterial genomes in the expanded marker set 
analysis.

Figure 1 continued
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dehydratases (i.e., p0073/4- aminobutyrate aminotransferase; p0093/3- isopropylmalate dehydratase) 
often comprised a mixture of paralogs.

Together, these analyses indicate that the evolutionary histories of the individual markers of the 
expanded set differ from each other and from the species tree. The original study investigated and 
acknowledged (Zhu et  al., 2019) the varying levels of congruence between the marker phyloge-
nies and the species tree, but did not investigate the underlying causes. Our analyses establish the 
basis for these disagreements in terms of gene transfers and the mixing of orthologs and paralogs 
within and between domains. The estimation of genetic distance based on concatenation relies on the 
assumption that all of the genes in the supermatrix evolve on the same underlying tree; genes with 
different gene tree topologies violate this assumption and should not be concatenated because the 
topological differences among sites are not modeled, and so the impact on inferred branch lengths is 
difficult to predict. In practice, it is often difficult to be certain that all of the markers in a concatenate 
share the same gene tree topology, and the analysis proceeds on the hypothesis that a small propor-
tion of discordant genes are not expected to seriously impact the inferred tree. However, the concat-
enated tree inferred from the expanded marker set differs from previous trees in that the genetic 
distance between Bacteria and Archaea is greatly reduced, such that the AB branch length appears 
comparable to distances among bacterial phyla (Zhu et al., 2019). Since an accurate estimate of the 
AB branch length has a major bearing on unanswered questions regarding the root of the universal 
tree (Gouy et al., 2015), we next evaluated the impact of the conflicting gene histories within the 
expanded marker set on inferred AB branch length.

The inferred branch length between Archaea and Bacteria is shortened 
by inter-domain gene transfer and hidden paralogy
To investigate the impact of gene transfers and mixed paralogy on the AB branch length inferred by 
gene concatenations (Zhu et al., 2019), we compared branch lengths estimated from markers on the 
basis of whether or not they rejected domain monophyly in the expanded marker set (Figure 1A). 
To estimate AB branch lengths for genes in which the domains were not monophyletic in the ML 
tree, we first performed a constrained ML search to find the best gene tree that was consistent with 
domain monophyly for each family under the LG + G4 + F model in IQ- TREE 2 (Minh et al., 2020). 
While it may seem strained to estimate the length of a branch that does not appear in the ML tree, 
we reasoned that this approach would provide insight into the contribution of these genes to the AB 
branch length in the concatenation, in which they conflict with the overall topology. AB branch lengths 
were significantly (p=3.653 × 10–6, Wilcoxon rank- sum test) shorter for markers that rejected domain 
monophyly (Bonferroni- corrected p<0.0001656; Figure 1A): the mean AB branch length was 0.00668 
substitutions/site for markers that significantly rejected domain monophyly and 0.287 substitutions/
site for markers that did not reject domain monophyly. This behavior might result from marker gene 
transfers reducing the number of fixed differences between the domains, so that the AB branch length 
in a tree in which Archaea and Bacteria are constrained to be reciprocally monophyletic will tend 
towards 0 as the number of transfers increases.

To test the hypothesis that phylogenetic incongruence among markers might reduce the inferred 
AB distance, we evaluated the relationship between AB distance and two complementary metrics of 
marker gene verticality: ∆LL, the difference in log- likelihood between the constrained ML tree and 
the ML gene tree (a proxy for the extent to which a marker gene rejects the reciprocal monophyly of 
Bacteria and Archaea), and the ‘split score’ (Dombrowski et al., 2020), which measures the extent 
to which marker genes recover established relationships for defined taxonomic levels of interest 
(e.g., at the level of domain, phylum, or order), averaging over bootstrap distributions of gene trees 
to account for phylogenetic uncertainty (see Materials and methods). We evaluated split scores at 
both the between- domain and within- domain (Figure 1—figure supplements 1–13) levels. ∆LL and 
between- domain split score were positively correlated with each other (Figure 1—figure supplement 
4) and negatively correlated with both AB stem length (Figure 1C and E) and relative AB distance 
(Figure 1D and F), an alternative metric (Zhu et al., 2019) that compares average tip- to- tip distances 
within and between domains. Interestingly, between- domain and within- domain split scores were 
strongly positively correlated (Figure 1G), and the same relationships between within- domain split 
score, AB branch length, and relative AB distance were observed (Figure 1—figure supplements 11 
and 12). Overall, these results suggest that genes that recover the reciprocal monophyly of Archaea 
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and Bacteria also evolve more vertically within each domain, and that these vertically evolving marker 
genes support a longer AB branch and a greater AB distance. Indeed, Zhu et al., 2019 also recovered 
a significant positive relationship between gene verticality and relative AB distance (see their Fig. 
5E). Consistent with these inferences, AB branch lengths estimated using concatenation decreased 
as increasing numbers of low- verticality markers (i.e., markers with higher ∆LL) were added to the 
concatenate (Figure 1). These results suggest that inter- domain gene transfers reduce the overall AB 
branch length when included in a concatenation.

An alternative explanation for the positive relationship between marker gene verticality and AB 
branch length could be that vertically evolving genes experience higher rates of sequence evolution. 
For a set of genes that originate at the same point on the species tree, the mean root- to- tip distance 
(measured in substitutions per site, for gene trees rooted using the MAD (minimal ancestor devi-
ation) method; Tria et al., 2017) provides a proxy of evolutionary rate. Mean root- to- tip distances 
were significantly positively correlated with ∆LL and between- domain split score (∆LL: R = 0.1397803, 
p=0.01506, split score: R = 0.1705415, p=0.002947; Figure 1—figure supplements 5 and 6), indi-
cating that vertically evolving genes evolve relatively slowly (note that large values of ∆LL and split 
score denote low verticality). Thus, the longer AB branches of vertically evolving genes do not appear 
to result from a faster evolutionary rate for these genes. Taken together, these results indicate that 
the inclusion of genes that do not support the reciprocal monophyly of Archaea and Bacteria, or their 
constituent taxonomic ranks, in the universal concatenate explains the reduced estimated AB branch 
length.

Finding ancient vertically evolving genes
To estimate the AB branch length and the phylogeny of prokaryotes using a dataset that resolves 
some of the issues identified above, we performed a meta- analysis of several previous studies to 
identify a consensus set of vertically evolving marker genes. We identified unique markers from these 
analyses by reference to the COG ontology (Supplementary file 2, Dombrowski et al., 2020; Galp-
erin et al., 2019), extracted homologous sequences from a representative sample of 350 archaeal and 
350 bacterial genomes (Supplementary file 3), and performed iterative phylogenetics and manual 
curation to obtain a set of 54 markers that recovered archaeal and bacterial monophyly (see Materials 
and methods). Prior to manual curation, non- ribosomal markers had a greater number of HGTs (hori-
zontal gene transfer) and cases of mixed paralogy. In particular, for the original set of 95 unique COG 
families (see ‘Phylogenetic analyses’ in Materials and methods), we rejected 41 families based on the 
inferred ML trees either due to a large degree of HGT, paralogous gene families, or LBA (long branch 
attraction). For the remaining 54 markers, the ML trees contained evidence of occasional recent HGT 
events. Strict monophyly was violated in 69% of the non- ribosomal and 29% of the ribosomal fami-
lies. We manually removed the individual sequences that violated domain monophyly before realign-
ment, trimming, and subsequent tree inference (see Materials and methods). These results imply that 
manual curation of marker genes is important for deep phylogenetic analyses, particularly when using 
non- ribosomal markers. Comparison of within- domain split scores for these 54 markers (Supplemen-
tary file 4) indicated that markers that better resolved established relationships within each domain 
also supported a longer AB branch length (Figure 2A). Further, the AB branch length inferred from a 
concatenation of the 54 marker genes increased moderately following pruning of recent HGTs, from 
1.734 substitutions/site (non- pruned) to 1.945 substitutions/site after manual pruning, consistent with 
the hypothesis that non- modeled inter- domain HGTs reduce the overall estimate of AB branch length 
when included in concatenations.

Distributions of AB branch lengths for ribosomal and non-ribosomal 
marker genes are similar
Traditional universal marker sets include many ribosomal proteins (Ciccarelli et al., 2006; Fournier 
and Gogarten, 2010; Harris et al., 2003; Hug et al., 2016; Liu et al., 2021; Williams et al., 2020). If 
ribosomal proteins experienced accelerated evolution during the divergence of Archaea and Bacteria, 
this might lead to the inference of an artifactually long AB branch length (Petitjean et al., 2014; 
Zhu et al., 2019). To investigate this, we plotted the inter- domain branch lengths for the 38 and 16 
ribosomal and non- ribosomal genes, respectively, comprising the 54 marker genes set. We found 
no evidence that there was a longer AB branch associated with ribosomal markers than for other 
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Figure 2. The relationship between marker gene verticality, Archaea- Bacteria (AB) branch length, and functional category. (A) Vertically evolving 
phylogenetic markers have longer AB branches. The plot shows the relationship between a proxy for marker gene verticality, within- domain split 
score (a lower split score denotes better recovery of established within- domain relationships, see Materials and methods), and AB branch length (in 
expected number of substitutions/site) for the 54 marker genes. Marker genes with higher split scores (that split established monophyletic groups 

Figure 2 continued on next page
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vertically evolving ‘core’ genes (Figure 2B; mean AB branch length for ribosomal proteins 1.35 substi-
tutions/site, mean for non- ribosomal 2.25 substitutions/site). To investigate further, we compared AB 
branch lengths inferred from concatenates of the ribosomal and non- ribosomal subsets of the 54 
ancient, vertically evolving genes (Table 1). AB branch lengths from the ribosomal and non- ribosomal 
concatenates were similar overall, with some support for a longer AB branch length from vertically 
evolving non- ribosomal genes. Thus, these data do not support an accelerated evolutionary rate for 
ribosomal genes compared to other kinds of genes on the AB branch.

Substitutional saturation and poor model fit contribute to 
underestimation of AB branch length
For the 27 most vertically evolving genes as ranked by within- domain split score, we performed an 
additional round of single- gene tree inference and manual review to identify and remove the remaining 
sequences that had evidence of HGT or represented distant paralogs. The resulting single- gene trees 
are provided in the Data Supplement (10.6084/m9.figshare.13395470). To evaluate the relationship 
between site evolutionary rate and AB branch length, we created two concatenations: fastest sites 
(comprising sites with the highest probability of being in the fastest gamma rate category; 868 sites) 
and slowest sites (sites with the highest probability of being in the slowest gamma rate category, 1604 
sites) and compared relative branch lengths inferred from the entire concatenate using IQ- TREE 2 to 
infer site- specific rates (Figure 3).

Notably, the proportion of inferred substitutions that occur along the AB branch differs between 
the slow- evolving and fast- evolving sites. As would be expected, the total tree length measured in 
substitutions per site is shorter from the slow- evolving sites, but the relative AB branch length is 
longer (1.2 substitutions/site, or ~2% of all inferred substitutions, compared to 2.6 substitutions/site, 
or ~0.04% of all inferred substitutions for the fastest- evolving sites; see Figure 3—figure supplement 
1 for absolute tree size comparisons). Since we would not expect the distribution of substitutions over 
the tree to differ between slow- evolving and fast- evolving sites, this result suggests that some ancient 
changes along the AB branch at fast- evolving sites have been overwritten by more recent events in 
evolution – that is, that substitutional saturation leads to an underestimate of the AB branch length 
(this is the case for both the expanded marker set and the 27 marker set; Figure 3—figure supple-
ment 2).

Another factor that has been shown to lead to underestimation of genetic distance on deep 
branches is a failure to adequately model the site- specific features of sequence evolution (Lartillot 
and Philippe, 2004; Schrempf et al., 2020; Wang et al., 2018; Williams et al., 2020; Zhu et al., 

Table 1. Archaea- Bacteria (AB) branch lengths and AB branch lengths as a proportion of total tree 
length inferred from ribosomal and non- ribosomal concatenates are similar.
The data do not support a faster evolutionary rate for ribosomal proteins on the AB branch 
compared to other kinds of ancient proteins.

AB branch length Total tree length

AB branch length as a 
proportion of total tree 
length

Ribosomal Non- ribosomal Ribosomal Non- ribosomal Ribosomal Non- ribosomal

27 marker set 1.9541 3.7723 250.7255 239.8203 0.0078 0.0157

54 marker set 1.8647 2.5414 271.3327 288.8470 0.0069 0.0088

into multiple subclades) have shorter AB branch lengths (p=0.0311, R = 0.294). Split scores of ribosomal and non- ribosomal markers were statistically 
indistinguishable (p=0.828, Figure 2—figure supplement 1). (B) Among vertically evolving marker genes, ribosomal genes do not have a longer AB 
branch length. The plot shows functional classification of markers against AB branch length using 54 vertically evolving markers. We did not obtain a 
significant difference between AB branch lengths for ribosomal and non- ribosomal genes (p=0.6191, Wilcoxon rank- sum test).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Among vertically evolving marker genes, the split scores of ribosomal and non- ribosomal proteins are statistically 
indistinguishable.

Figure 2 continued
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Figure 3. Slow- and fast- evolving sites support different shapes for the universal tree. (A) Tree of Archaea (blue) 
and Bacteria (red) inferred from a concatenation of 27 core genes using the best- fitting model (LG + C60 + G4 + 
F). (B) Tree inferred from the fastest- evolving sites. (C) Tree inferred from the slowest- evolving sites. To facilitate 
comparison of relative diversity, scale bars are provided separately for each panel; for a version of this figure 

Figure 3 continued on next page
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2019). Amino acid preferences vary across the sites of a sequence alignment due to variation in the 
underlying functional constraints (Lartillot and Philippe, 2004; Quang et al., 2008; Wang et al., 
2008). The consequence is that, at many alignment sites, only a subset of the 20 possible amino acids 
are tolerated by selection. Standard substitution models such as LG + G4 + F are site- homogeneous 
and approximate the composition of all sites using the average composition across the entire align-
ment. Such models underestimate the rate of evolution at highly constrained sites because they do 
not account for the high number of multiple substitutions that occur at such sites. The effect is that 
site- homogeneous models underestimate branch lengths when fit to site- heterogeneous data. Site- 
heterogeneous models have been developed that account for site- specific amino acid preferences, 
and these generally show improved fit to real protein sequence data (reviewed in Williams et al., 
2021). To evaluate the impact of substitution models on estimates of AB branch length, we assessed 
the fit of a range of models to the full concatenation using the Bayesian information criterion (BIC) in 
IQ- TREE 2. The AB branch length inferred under the best- fit model, the site- heterogeneous LG + C60 
+ G4 + F model, was 2.52 substitutions/site, ~1.7- fold greater than the branch length inferred from 
the site- homogeneous LG + G4 + F model (1.45 substitutions/site). Thus, substitution model fit has a 
major effect on the estimated length of the AB branch, with better- fitting models supporting a longer 
branch length (Table 2). The same trends are evident when better- fitting site- heterogeneous models 
are used to analyze the expanded marker set: considering only the top 5% of genes by ∆LL score, the 
AB branch length is 1.2 under LG + G4 + F, but increases to 2.4 under the best- fitting LG + C60 + G4 
+ F model (Figure 3—figure supplement 3). These results are consistent with Zhu et al., 2019, who 
also noted that AB branch length increases as model fit improves for the expanded marker dataset.

Overall, these results indicate that difficulties with modeling sequence evolution, either due to 
substitutional saturation or failure to model variation in site compositions, lead to an underestima-
tion of the AB branch length, both in published analyses and for the analyses of the new dataset 

presented here. As substitution models improve, 
we would therefore expect estimates of the AB 
branch length to increase further.

A phylogeny of Archaea and 
Bacteria inferred from 27 vertically 
evolving marker genes
The phylogeny of the primary domains of life 
inferred from the 27 most vertically evolving genes 
as inferred based on our ranking of markers and 
using the best- fitting LG + C60 + G4 + F model 
(Figure 4) is consistent with recent single- domain 
trees inferred for Archaea and Bacteria inde-
pendently (Coleman et  al., 2021; Dombrowski 
et  al., 2020; Williams et  al., 2017), although 
the deep relationships within Bacteria are poorly 
resolved, with the exception of the monophyly 
of Gracilicutes (Figure 4). Our results are also in 

with a common scale bar for all three panels, see Figure 3—figure supplement 1. Slow- evolving sites support a 
relatively long inter- domain branch and less diversity within the domains (i.e., shorter between- taxa branch lengths 
within domains). This suggests that substitution saturation (overwriting of earlier changes) may reduce the relative 
length of the AB branch at fast- evolving sites and genes.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Slow- and fast- evolving sites support different shapes for the universal tree.

Figure supplement 2. Vertically evolving genes and slow- evolving sites support a longer relative Archaea- Bacteria 
(AB) branch length.

Figure supplement 3. The effect of modeling site compositional heterogeneity on Archaea- Bacteria (AB) branch 
length.

Figure 3 continued

Table 2. The inferred Archaea- Bacteria (AB) 
branch length from a concatenation of the top 
27 markers using a simple model compared 
to models that account for site compositional 
heterogeneity.
Models that account for across- site 
compositional heterogeneity fit the data better 
(as assessed by lower Bayesian information 
criterion [BIC] scores) and infer a longer AB 
branch length.

Substitution model BIC (∆BIC)
AB branch 
length

LG + G4 + F 5935950.053 1.4491

LG + C20 + G4 + F (152046.1) 2.1394

LG + C40 + G4 + F (179126.7) 2.4697

LG + C60 + G4 + F (189063.8) 2.5178

https://doi.org/10.7554/eLife.66695
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Figure 4. A phylogeny of Archaea and Bacteria inferred from a concatenation of 27 marker genes. Consistent 
with some recent studies (Dombrowski et al., 2020; Guy and Ettema, 2011; Raymann et al., 2015; Williams 
et al., 2017), we recovered the DPANN, TACK, and Asgard Archaea as monophyletic groups. Although the 
deep branches within Bacteria are poorly resolved, we recovered a sister group relationship between candidate 

Figure 4 continued on next page
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good agreement with a recent estimate of the universal tree based on a different marker gene selec-
tion approach (Martinez- Gutierrez and Aylward, 2021). In that study, marker genes were selected 
based on Tree Certainty, a metric that quantifies phylogenetic signal based on the extent to which 
markers distinguish between different resolutions of conflicting relationships (Salichos and Rokas, 
2013).

In particular, our analysis placed the candidate phyla radiation (CPR) (Brown et al., 2015) as a sister 
lineage to Chloroflexi (Chloroflexota) rather than as a deep- branching bacterial superphylum. While 
this contrasts with initial trees suggesting that CPR may represent an early diverging sister lineage of 
all other Bacteria (Brown et al., 2015; Castelle and Banfield, 2018; Hug et al., 2016), our finding is 
consistent with recent analyses that have instead recovered CPR within the Terrabacteria (Coleman 
et al., 2021; Martinez- Gutierrez and Aylward, 2021; Taib et al., 2020). Together, these analyses 
suggest that the deep- branching position of CPR in some trees may be a result of long branch attrac-
tion, a possibility that has been raised previously (Hug et al., 2016; Méheust et al., 2019).

The deep branches of the archaeal subtree are generally well- resolved and recover DPANN (51% 
bootstrap support), Asgards (100% bootstrap support), and TACK Archaea (75% bootstrap support) 
as monophyletic clades in agreement with a range of previous studies (Guy and Ettema, 2011; 
Dombrowski et al., 2020; Guy and Ettema, 2011; Raymann et al., 2015; Williams et al., 2017). 
We also find support for the placement of Methanonatronarchaeia (Sorokin et  al., 2017) distant 
to Halobacteria as one of the earliest branches of the Methanotecta (Figure  4, Figure  4—figure 
supplement 3) in agreement with recent analyses, suggesting that their initial placement with Halo-
bacteria (Sorokin et al., 2017) may be an artifact of compositional attraction (Aouad et al., 2019; 
Dombrowski et al., 2020; Feng et al., 2021; Martijn et al., 2020).

We obtained moderate (92%) bootstrap support for the branching of some Euryarchaeota with 
the TACK + Asgard clade: the Hadesarchaea + Persephonarchaea were resolved as the sister group 
to TACK + Asgards with moderate (92%) support, with this entire lineage branching sister to a 
strongly supported (100%) clade comprising Theionarchaea, Methanofastidiosa, and Thermococcales. 
However, the position of these lineages was sensitive to the marker gene set used. As part of a robust-
ness test, we also inferred an additional tree from a 25- gene subset, excluding two genes that have 
complex evolutionary histories in Archaea (Narrowe et al., 2018; Figure 4—figure supplement 3). 
In this analysis, these Archaea instead branched with Methanomada with high support (98%), high-
lighting the difficulty of placing these lineages in the archaeal tree. Euryarchaeotal paraphyly has been 
previously reported (Adam et al., 2017; Raymann et al., 2015; Williams et al., 2017; Aouad et al., 
2022), though the extent of the observed paraphyly and the lineages involved has varied among 
analyses.

A basal placement of DPANN within Archaea is sometimes viewed with suspicion (Aouad et al., 
2018) because DPANN genomes are reduced and appear to be fast- evolving, properties that may 
cause LBA artifacts (Dombrowski et al., 2019) when analyses include Bacteria. However, in contrast 
to CPR, with which DPANN share certain ecological and genomic similarities (e.g., host dependency, 
small genomes, limited metabolic potential), the early divergence of DPANN from the archaeal 
branch has received support from a number of recent studies (Baker et al., 2020; Beam et al., 2020; 
Dombrowski et al., 2020; Rinke et al., 2021; Williams et al., 2017; Zaremba- Niedzwiedzka et al., 

phyla radiation (CPR) and Chloroflexota, consistent with recent reports (Taib et al., 2020; Coleman et al., 2021). 
The tree was inferred using the best- fitting LG + C60 + G4 + F model in IQ- TREE 2 (Minh et al., 2020). Branch 
lengths are proportional to the expected number of substitutions per site. Support values are ultrafast (UFBoot2) 
bootstraps (Hoang et al., 2018). Numbers in parenthesis refer to the number of taxa within each collapsed clade. 
Please note that the collapsed taxa in the Archaea and Bacteria roughly correspond to order- and phylum- level 
lineages, respectively.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Raw count and percentage distribution of the Genome Taxonomy Database (GTDB)- 
defined classes of 350 archaea and 350 bacteria used in the 27 marker gene set analysis.

Figure supplement 2. Raw count and percentage distribution of the Genome Taxonomy Database (GTDB)- 
defined phyla of 350 archaea and 350 bacteria used in the 27 marker gene set analysis.

Figure supplement 3. A phylogeny of Archaea and Bacteria inferred from a concatenation of 25 marker genes.

Figure 4 continued
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2017; Aouad et  al., 2022), though the inclusion of certain lineages within this radiation remains 
controversial (Aouad et  al., 2018; Feng et  al., 2021) and the placement of the root is uncertain 
(Dombrowski et al., 2020; Aouad et al., 2022). While more in- depth analyses will be needed to 
further illuminate the evolutionary history of DPANN and establish whether the group as a whole is 
monophyletic, our work is in agreement with current literature and a recently established phylogeny- 
informed archaeal taxonomy (Rinke et al., 2021).

A broader observation from our analysis is that the phylogenetic diversity of the archaeal and 
bacterial domains, measured as substitutions per site in this consensus set of vertically evolving marker 
genes, appears to be similar (Figure 3A; the mean root- to- tip distance for archaea: 2.38, for bacteria: 
2.41; the range of root- to- tip distances for archaea: 1.79–3.01, for bacteria: 1.70–3.17). Considering 
only the slowest- evolving category of sites, branch lengths within Archaea are actually longer than 
within Bacteria (Figure 3C). This result differs from some published trees (Hug et al., 2016; Zhu et al., 
2019) in which the phylogenetic diversity of Bacteria has appeared to be significantly greater than 
that of Archaea. By contrast to those earlier studies, we analyzed a set of 350 genomes from each 
domain, an approach that may tend to reduce the differences between them. While we had to signifi-
cantly downsample the sequenced diversity of Bacteria, our sampling nonetheless included represen-
tatives from all known major lineages of both domains (Figure 4—figure supplements 1 and 2, see 
Figure 1—figure supplements 14–16 for a comparison with the expanded marker set), and so might 
be expected to recover a difference in diversity, if present. Our analyses and a number of previous 
studies (Hug et al., 2016; Parks et al., 2018; Petitjean et al., 2014; Zhu et al., 2019) indicate that 
the choice of marker genes has a profound impact on the apparent phylogenetic diversity of certain 
prokaryotic groups; for instance, in the proportion of bacterial diversity composed of CPR (Hug et al., 
2016; Parks et al., 2017). Our results demonstrate that slow- and fast- evolving sites from the same 
set of marker genes support different tree shapes and branch lengths; it therefore seems possible 
that between- dataset differences are due, at least in part, to evolutionary rate variation within and 
between marker genes.

Difficulties in estimating the age of the last universal common ancestor
While a consensus may be emerging on the topology of the universal tree, estimates of the ages of 
the deepest branches, and their lengths in geological time, remain highly uncertain. The fossil record 
of early life is incomplete and difficult to interpret (Wacey, 2009), and in this context molecular clock 
methods provide a means of combining the abundant genetic data available for modern organisms 
with the limited fossil record to improve our understanding of early evolution (Betts et al., 2018). 
The 381- gene dataset was suggested to be (Zhu et al., 2019) useful for inferring deep divergence 
times because age estimates of LUCA (last universal common ancestor) from this dataset using a strict 
molecular clock were in agreement with the geological record: a root (LUCA) age of 3.6–4.2 Ga was 
inferred from the entire 381- gene dataset, consistent with the earliest fossil evidence for life (Betts 
et al., 2018; Sugitani et al., 2015). By contrast, analysis of ribosomal markers alone (Zhu et al., 2019) 
supported a root age of ~7 Ga, which might be considered implausible because it is older than the 
age of the Earth and Solar System (with the moon- forming impact occurring ~4.52 Ga; Barboni et al., 
2017; Hanan and Tilton, 1987).

The published molecular clock analyses (Zhu et al., 2019) made use of concatenation- based branch 
lengths in which topological disagreement among sites is not modeled and are likely to be affected 
by the impact of nonvertical marker genes and substitutional saturation on branch length estimation 
discussed above. Consistent with this hypothesis, divergence time inference using the same method 
on the 5% most- vertical subset of the expanded marker set (as determined by ∆LL; this set of 20 
genes includes only one ribosomal protein, see Supplementary file 5a) resulted in age estimates for 
LUCA that exceed the age of the Earth, 5.6–6.15 Ga (Figure 5), approaching the age inferred from 
the ribosomal genes (7.46–8.03 Ga). These results (Figure 5) suggest that the apparent agreement 
between the fossil record and divergence times estimated from the expanded gene set may be due, 
at least in part, to the shortening of the AB branch due to phylogenetic incongruence among marker 
genes.

In the original analyses, the age of LUCA was estimated using a strict clock with a single calibra-
tion constraining the split between Cyanobacteria and Melainabacteria derived from estimates of 
the Great Oxidation Event and a secondary estimate of the age of cyanobacteria derived from an 
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Figure 5. Molecular clock estimates of the LUCA and LACA age are uncertain due to a lack of deep calibrations and maximum ages for microbial 
clades. (A) Posterior node age estimates from Bayesian molecular clock analyses of (1) conserved sites as estimated previously (Zhu et al., 2019); (2) 
random sites (Zhu et al., 2019); (3) ribosomal genes (Zhu et al., 2019); (4) the top 5% of marker gene families according to their ∆LL score (including 
only one ribosomal protein); and (5) the same top 5% of marker genes trimmed using BMGE (Criscuolo and Gribaldo, 2010) to remove poorly aligned 

Figure 5 continued on next page
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independent analysis (Shih et al., 2017). The combination of a strict clock and only two calibrations 
is not sufficient to capture the variation in evolutionary rate over deep timescales (Drummond et al., 
2006). To investigate whether additional calibrations might help to improve age estimates for deep 
nodes in the universal tree, we performed analyses on our new 27 marker gene dataset using two 
different relaxed clock models (with branchwise independent and autocorrelated rates) and seven 
additional calibrations (Supplementary file 5b). Unfortunately, all of these were minimum age cali-
brations with the exception of the root (for which the moon- forming impact 4.52 Ga [Kleine et al., 
2005] provides a reasonable maximum) due to the difficulty of establishing uncontroversial maximum 
ages for microbial clades. Maximum age constraints are essential to inform faster rates of evolu-
tion because, in combination with more abundant minimum age constraints, they imply that a given 
number of substitutions must have accumulated in at most a certain interval of time. In the absence of 
other maximum age constraints, the only lower bound on the rate of molecular evolution is provided 
by the maximum age constraint on the root (LUCA).

These new analyses indicated that even with additional minimum age calibrations the age of LUCA 
inferred from the 27- gene dataset was unrealistically old, falling close to the maximum age constraint 
in all analyses even when the maximum was set to the age of the known universe (13.7 Ga; Aghanim, 
2018; Figure 5). Inspection of the inferred rates of molecular evolution across the tree (Figure 5B) 
provides some insight into these results: the mean rate is low (mean = 0.21, 95% credibility interval = 
0.19–0.22 subs. site–1 Ga–1), so that long branches (such as the AB stem), in the absence of other infor-
mation, are interpreted as evidence of a long period of geological time. These low rates likely result 
both from the limited number of calibrations and, in particular, the lack of maximum age constraints.

An interesting outlier among inferred rates is the LUCA to LACA (last archaeal common ancestor) 
branch, which has a rate 10- fold greater than the average (mean = 2.51, 95% HPD (highest posterior 
density) = 1.6–3.5 subs. site–1 Ga–1). The reason is that calibrations within Bacteria imply that LBCA 
(last bacterial common ancestor) cannot be younger than 3.225 Ga (Manzimnyama Banded Ironstone 
Formation provides evidence of cyanobacterial oxygenation; Satkoski et al., 2015, Supplementary 
file 5b); as a result, with a 4.52 Ga maximum, the LUCA to LBCA branch cannot be longer than 1.295 
Ga. By contrast, the early branches of the archaeal tree are poorly constrained by fossil evidence. Anal-
ysis without the 3.225 Ga constraint resulted in overlapping age estimates for LBCA (4.47–3.53 Ga) 
and LACA (4.37–3.44 Ga). Finally, analysis of the archaeal and bacterial subtrees independently (i.e., 
without the AB branch, rooted on LACA and LBCA, respectively) resulted in LBCA and LACA ages that 
abut the maximum root age (LBCA: 4.52–4.38 Ga; LACA: 4.52–4.14 Ga). This analysis demonstrates 
that, under these analysis conditions, the inferred age of the root (whether corresponding to LUCA, 
LACA, or LBCA) is strongly influenced by the prior assumptions about the maximum age of the root.

In sum, the agreement between fossils and age estimates from the expanded gene set appears to 
result from the impact of phylogenetic incongruence on branch length estimates. Under more flex-
ible modeling assumptions, the limitations of current clock methods for estimating the age of LUCA 
become manifest: the sequence data only contain limited information about the age of the root, 
with posterior estimates driven by the prior assumptions about the maximum age of the root. This 
analysis implies several possible ways to improve age estimates of deep branches in future analyses. 
More calibrations, particularly maximum age constraints and calibrations within Archaea, are essential 
to refine the current estimates. Given the difficulties in establishing maximum ages for archaeal and 
bacterial clades, constraints from other sources such as donor- recipient age constraints inferred from 
HGTs (Davín et al., 2018; Fournier et al., 2021; Szöllősi et al., 2021; Wolfe and Fournier, 2018), or 
clock models that capture biological opinion about rate shifts in early evolution, may be particularly 
valuable.

sites. In each case, a strict molecular clock was applied, with the age of the Cyanobacteria- Melainabacteria split constrained between 2.5 and 2.6 Ga. 
In (6) all annotations for the top 20 genes and (7) an expanded set of fossil calibrations was implemented with a relaxed (lognormal) molecular clock. In 
(6), a soft maximum age of 4.520 Ga was applied, representing the age of the moon- forming impact (Kleine et al., 2005). In (7), a soft maximum age 
corresponding to the estimated age of the universe (Aghanim, 2018) was applied. (B)Inferred rates of molecular evolution along the phylogeny in a 
relaxed clock analysis where the maximum age was set to 4.520 Ga. We plotted per- branch rates (site–1 Ga–1) against distance to the root. The rate of 
evolution along the archaea stem lineage was a clear outlier (mean = 2.51, 95% HPD = 1.6–3.5subs. site–1 Ga–1). The phylogeny used was that depicted 
in Figure 4.

Figure 5 continued

https://doi.org/10.7554/eLife.66695
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Conclusion
Our analysis of a range of published marker gene datasets (Petitjean et al., 2014; Spang et al., 2015; 
Williams et al., 2020; Zhu et al., 2019) indicates that the choice of markers and the fit of the substi-
tution model are both important for inference of deep phylogeny from concatenations, in agreement 
with an existing body of literature (reviewed in Kapli et al., 2021; Kapli et al., 2020; Williams et al., 
2021). We established a set of 27 vertically evolving marker gene families and found no evidence 
that ribosomal genes overestimate stem length; since they appear to be transferred less frequently 
than other genes, our analysis affirms that ribosomal proteins are useful markers for deep phylogeny. 
In general, high- verticality markers, regardless of functional category, supported a longer AB branch 

Figure 6. The impact of marker gene choice, phylogenetic congruence, alignment trimming, and substitution model fit on estimates of the Archaea- 
Bacteria (AB) branch length. (A) Analysis using a site- homogeneous model (LG + G4 + F) on the complete 381- gene expanded set (i) results in an AB 
branch substantially shorter than previous estimates. Removing the genes most seriously affected by inter- domain gene transfer (ii), trimming poorly 
aligned sites (iii) using BMGE (Criscuolo and Gribaldo, 2010) in the original alignments (see below), and using the best- fitting site- heterogeneous 
model (iv) (LG + C60 + G4 + F) substantially increase the estimated AB length, such that it is comparable with published estimates from the ‘core’ set: 
3.3 (Williams et al., 2020) and the consensus set of 27 markers identified in the present study: 2.5. Branch lengths measured in expected number of 
substitutions/site. (B) Workflow for iterative manual curation of marker gene families for concatenation analysis. After inference and inspection of initial 
ortholog trees, several rounds of manual inspection and removal of HGTs and distant paralogs were carried out. These sequences were removed from 
the initial set of orthologs before alignment and trimming. For a detailed discussion of some of these issues, and practical guidelines on phylogenomic 
analysis of multi- gene datasets, see Kapli et al., 2020 for a useful review.

https://doi.org/10.7554/eLife.66695
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length. Furthermore, our phylogeny was consistent with recent work on early prokaryotic evolution, 
resolving the major clades within Archaea and nesting the CPR within Terrabacteria. Notably, our 
analyses suggested that both the true AB branch length (Figure 6A) and the phylogenetic diversity 
of Archaea may be underestimated by even the best current models, a finding that is consistent with 
a root for the tree of life between the two prokaryotic domains. Taken together with fossil evidence 
for crown- group Bacteria ~3.2  Ga (Betts et  al., 2018), the long AB branch length inferred from 
vertically evolving genes is consistent with the hypothesis that rates of molecular evolution may have 
been higher early in life’s history than more recently (Lopez et al., 1999), although the inferred rates 
are uncertain and contingent on limited fossil evidence and the assumptions of the molecular clock 
model.

Phylogenies inferred from ‘core’ genes involved in translation and other conserved cellular 
processes have provided one of the few available windows into the earliest period of archaeal and 
bacterial evolution. However, core genes comprise only a small proportion of prokaryotic genomes 
and have sometimes been viewed as outliers (Zhu et al., 2019) in the sense that they are unusu-
ally vertical among prokaryotic gene families. This means that they are among the few prokaryotic 
gene families amenable to concatenation methods, which are useful for pooling signal from indi-
vidual weakly resolved gene trees but which make the assumption that all sites evolve on the same 
underlying tree. If other gene families are included in concatenations, the results can be difficult to 
predict because differences in topology across sites are not modeled. Our analyses of the 381- gene 
expanded set suggest that this incongruence can lead to underestimation of the evolutionary distance 
between Archaea and Bacteria, in the sense of the branch length separating the archaeal and bacterial 
domains. We note that alternative conceptions of evolutionary distance are possible; for example, 
in a phenetic sense of overall genome similarity, extensive HGT will increase the evolutionary prox-
imity (Zhu et al., 2019) of the domains so that Archaea and Bacteria may become intermixed at the 
single- gene level. While such data can encode an important evolutionary signal, it is not amenable to 
concatenation analysis. At the same time, it is clearly unsatisfactory to base our view of early evolution 
on a relatively small set of genes that appear to experience selective pressures rather distinct from 
the forces at play more broadly in prokaryotic genome evolution. These limitations are particularly 
unfortunate given the wealth of genome data now available to test hypotheses about early evolu-
tion. Exploring the evolutionary signal in more of the genome than hitherto is clearly a worthwhile 
endeavor. New methods, including more realistic models of gene duplication, transfer and loss (Morel 
et al., 2021; Szöllõsi et al., 2013), and extensions to supertree methods to model paralogy (Zhang 
et al., 2020) and gene transfer, promise to enable genome- wide inference of prokaryotic history and 
evolutionary processes using methods that can account for the varying evolutionary histories of indi-
vidual gene families.

Materials and methods
Data
We downloaded the individual alignments from Zhu et al., 2019 (https://github.com/biocore/wol/ 
tree/master/data/, Zhu, 2022), along with the genome metadata and the individual Newick files. We 
checked each published tree for domain monophyly and also performed AU (Shimodaira, 2002) tests 
to assess support for domain monophyly on the underlying sequence alignments using IQ- TREE 2.0.6 
(Minh et al., 2020). The phylogenetic analyses were carried out using the ‘reduced’ subset of 1000 taxa 
outlined by the authors (Zhu et al., 2019) for computational tractability. These markers were trimmed 
according to the protocol in the original paper (Zhu et al., 2019), that is, sites with >90% gaps were 
removed, followed by removal of sequences with >66% gaps.

We also downloaded the Williams et al., 2020 (‘core’), Petitjean et al., 2014 (‘non- ribosomal’), 
and Coleman et al., 2021 (‘bacterial’) datasets from their original publications.

Annotations
Proteins used for phylogenetic analyses by Zhu et al., 2019 were annotated to investigate the selection 
of sequences comprising each of the marker gene families. To this end, we downloaded the protein 
sequences provided by the authors from the following repository: https://github.com/biocore/wol/ 
tree/master/data/alignments/genes. To obtain reliable annotations, we analyzed all sequences per 
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gene family using several published databases, including the arCOGs (version from 2014) (Seemann, 
2014), KOs from the KEGG Automatic Annotation Server (KAAS; downloaded April 2019) (Aramaki 
et  al., 2020), the PFAM database (release 31.0) (Bateman et  al., 2004), the TIGRFAM database 
(release 15.0) (Haft et al., 2003), the Carbohydrate- Active enZymes (CAZy) database (downloaded 
from dbCAN2 in September 2019) (Cantarel et al., 2009), the MEROPs database (release 12.0) (Rawl-
ings et al., 2016; Saier et al., 2006), the hydrogenase database (HydDB; downloaded in November 
2018) (Sondergaard et al., 2016), the NCBI_ non- redundant (nr) database (downloaded in November 
2018), and the NCBI COGs database (version from 2020). Additionally, all proteins were scanned for 
protein domains using InterProScan (v5.29–68.0; settings: --iprlookup --goterms) (Jones et al., 
2014).

Individual database searches were conducted as follows: arCOGs were assigned using PSI- BLAST 
v2.7.1+ (settings: -evalue 1e- 4 -show_gis -outfmt 6 -max_target_seqs 1000 -dbsize 100000000 
-comp_based_stats F -seg no) (Altschul et  al., 1997). KOs (settings: -E 1e- 5), PFAMs (settings: 
-E 1e- 10), TIGRFAMs (settings: -E 1e- 20), and CAZymes (settings: -E 1e- 20) were identified in all 
archaeal genomes using hmmsearch v3.1b2 (Finn et  al., 2011). The MEROPs and HydDB data-
bases were searched using BLASTp v2.7.1 (settings: -outfmt 6, -evalue 1e- 20). Protein sequences 
were searched against the NCBI_nr database using DIAMOND v0.9.22.123 (settings: –more- sensitive 
–e- value 1e- 5 –seq 100 –no- self- hits –taxonmap  prot. accession2taxid. gz) (Buchfink et al., 2015). For 
all database searches, the best hit for each protein was selected based on the highest e- value and 
bitscore and all results are summarized in Supplementary file 1 and full results are given in the Data 
Supplement: Expanded_Bacterial_Core_Nonribosomal_analyses/ Annotation_Tables/0_Annotation_
tables_full/ All_ Zhu_ marker_ annotations_ 16-  12-  2020. tsv. zip. For InterProScan, we report multiple 
hits corresponding to the individual domains of a protein using a custom script ( parse_ IPRdomains_ 
vs2_ GO_ 2. py).

Assigned sequence annotations were summarized, and all distinct KOs and PFAMs were collected 
and counted for each marker gene. KOs and PFAMs with their corresponding descriptions were 
mapped to the marker gene file downloaded from the repository here and used in summarization of 
the 381 marker gene protein trees (Supplementary file 1).

For manual inspection of single marker gene trees, KO and PFAM annotations were mapped to the 
tips of the published marker protein trees, downloaded from the repository here. Briefly, the Genome 
ID, PFAM, PFAM description, KO, KO description, and NCBI Taxonomy string were collected from 
each marker gene annotation table and were used to generate mapping files unique to each marker 
gene phylogeny, which links the Genome ID to the annotation information (GenomeID|Domain|P-
fam|Pfam Description|KO|KO Description). An in- house Perl script  replace_ tree_ names. pl ( available 
here; Dombrowski, 2022 copy archived at swh:1:rev:59ce418ec42160a15e82610120220b611b6e
96db) was used to append the summarized protein annotations to the corresponding tips in each 
marker gene tree. Annotated marker gene phylogenies were manually inspected using the following 
criteria, including (1) retention of reciprocal domain monophyly (Archaea and Bacteria) and (2) for the 
presence or absence of potential paralogous families. Paralogous groups and misannotated families 
present in the gene trees were highlighted and violations of search criteria were recorded in Supple-
mentary file 1.

Phylogenetic analyses
COG assignment for the core, non-ribosomal, and bacterial marker genes
First, all gene sequences in the three published marker sets (core, non- ribosomal, and bacterial) were 
annotated using the NCBI COGs database (version from 2020). Sequences were assigned a COG 
family using hmmsearch v3.3.2 (Finn et al., 2011) (settings: -E 1e- 5) and the best hit for each protein 
sequence was selected based on the highest e- value and bit score. To assign the appropriate COG 
family for each marker gene, we quantified the percentage distribution of all unique COGs per gene 
and selected the family representing the majority of sequences in each marker gene.

Accounting for overlap, this resulted in 95 unique COG families from the original 119 total marker 
genes across all three published datasets (Supplementary file 2). Orthologs corresponding to these 
95 COG families were identified in the 700 genomes (350 Archaea, 350 Bacteria, Supplementary file 
3) using hmmsearch v3.3.2 (settings: -E 1e- 5). The reported BinID and protein accession were used to 
extract the sequences from the 700 genomes, which were used for subsequent phylogenetic analyses.
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Marker gene inspection and analysis
We aligned these 95 marker gene sequence sets using MAFFT- L- INS- i 7.475 (Katoh and Toh, 2008) 
and removed poorly aligned positions with BMGE 1.12 (Criscuolo and Gribaldo, 2010). We inferred 
initial ML trees (LG + G4 + F) for all 95 markers and mapped the KO and PFAM domains and descrip-
tions, inferred from annotation of the 700 genomes, to the corresponding tips (see above). Manual 
inspection took into consideration monophyly of Archaea and Bacteria and the presence of paralogs, 
and other signs of contamination (HGT, LBA). Accordingly, single- gene trees that failed to meet recip-
rocal domain monophyly were excluded, and any instances of HGT, paralogous sequences, and LBA 
artifacts were manually removed from the remaining trees, resulting in 54 markers across the three 
published datasets that were subject to subsequent phylogenetic analysis (LG + C20 + G4 + F) and 
further refinement (see below).

Ranking markers based on split score
We applied an automated marker gene ranking procedure devised previously (the split score, 
Dombrowski et al., 2020) to rank each of the 54 markers that satisfied reciprocal monophyly based 
on the extent to which they recovered established phylum-, class-, or order- level relationships within 
the archaeal and bacterial domains (Supplementary file 4).

The script quantifies the number of splits, or occurrences where a taxon fails to cluster within its 
expected taxonomic lineage, across all gene phylogenies. Briefly, we assessed monophyletic clus-
tering using phylum-, class-, and order- level clades within Archaea (Cluster1) in combination with 
Cluster0 (phylum) or Cluster3 (i.e., on class- level if defined and otherwise on phylum- level; Supple-
mentary file 4) for Bacteria. We then ranked the marker genes using the following split score criteria: 
the number of splits per taxon and the splits normalized to the species count. The percentage of split 
phylogenetic groups was used to determine the highest ranking (top 50%) markers.

Concatenation
Based on the split score ranking of the 54 marker genes (above), the top 50% (27 markers, Supplemen-
tary file 4) marker genes were manually inspected using criteria as defined above, and contaminating 
sequences were manually removed from the individual sequence files. Following inspection, marker 
protein sequences were aligned using MAFFT- L- INS- i 7.475 (Katoh and Standley, 2013) and trimmed 
using BMGE (version 1.12, under default settings) (Criscuolo and Gribaldo, 2010). We concatenated 
the 27 markers into a supermatrix, which was used to infer an ML tree (Figure 4, under LG + C60 + 
G4 + F), evolutionary rates (see below), and rate category supermatrices, as well as to perform model 
performance tests (see below). We also concatenated the non- ribosomal and ribosomal markers from 
the 27 and 54 marker sets into four more supermatrices and inferred ML trees under (LG + C60 + G4 + 
F) (Table 1). Two additional supermatrices were constructed from the 54 markers, one before manual 
removal of apparent HGTs and one after the removal, with both sets of markers aligned and trimmed 
in the same way as the other datasets (see above). We also inferred an ML tree under LG + C60+ G4 
+ F from a supermatrix consisting of a concatenation of 25 marker genes after removing COG0480 
and COG5257.

Constraint analysis
We performed an ML free topology search using IQ- TREE 2.0.6 (Minh et al., 2020) under the LG + 
G4 + F model, with 1000 ultrafast bootstrap replicates (Hoang et al., 2018) on each of the markers 
from the expanded, bacterial, core, and non- ribosomal sets. We also performed a constrained anal-
ysis with the same model in order to find the ML tree in which Archaea and Bacteria were reciprocally 
monophyletic. For the expanded set, we plotted branch lengths from the maximum likelihood trees 
constrained to recover domain monophyly; for the other datasets, we plotted branch lengths from 
the maximum likelihood trees. We then compared both trees using the AU (Shimodaira, 2002) test 
in IQ- TREE 2.0.6 (Minh et al., 2020) with 10,000 RELL (Shimodaira, 2002) bootstrap replicates. To 
evaluate the relationship between marker gene verticality and AB branch length, we calculated the 
difference in log- likelihood between the constrained and unconstrained trees in order to rank the 
genes from the expanded marker set. We then concatenated the top 20 markers (with the lowest 
difference in log- likelihood between the constrained and unconstrained trees) and iteratively added 
five markers with the next smallest difference in log- likelihood to the concatenate; this was repeated 
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until we had concatenates up to 100 markers (with the lowest difference in log- likelihood) we inferred 
trees under LG + C10 + G4 + F in IQ- TREE 2.0.6, with 1000 ultrafast bootstrap replicates and calcu-
lated AB length.

Site and gene evolutionary rates
We inferred rates using the --rate option in IQ- TREE 2.0.6 (Minh et al., 2020) for both the 381 
marker concatenation from Zhu et al., 2019 and the top 5% of marker genes based on the results 
of difference in log- likelihood between the constrained tree and free- tree search in the constraint 
analysis (above). We also used this method to explore the differences in rates for the 27 marker set. 
We built concatenates for sites in the slowest and fastest rate categories, and inferred branch lengths 
from each of these concatenates using the tree inferred from the corresponding dataset as a fixed 
topology.

Substitution model fit
Model fit tests were undertaken using the top 5% concatenate described above, with the alignment 
being trimmed with BMGE 1.12 (Criscuolo and Gribaldo, 2010) with default settings (BLOSUM62, 
entropy 0.5) for all of the analyses except the ‘untrimmed’ LG + G4 + F run; other models on the 
trimmed alignment were LG + G4 + F, LG + R4 + F and LG + C10,20,30,40,50,60 + G4 + F, with 
1000 ultrafast (Hoang et al., 2018) bootstrap replicates. Model fitting was done using ModelFinder 
(Kalyaanamoorthy et al., 2017) in IQ- TREE 2.0.6 (Minh et al., 2020). For the 27 marker concatena-
tion, we performed a model finder analysis (- m MFP) including additional complex models of evolu-
tion (i.e., LG + C60 + G4 + F, LG + C50 + G4 + F, LG + C40 + G4 + F, LG + C30 + G4 + F, LG + C20 
+ G4 + F, LG + C10 + G4 + F, LG + G4 + F, LG + R4+ F) to the default, to find the best- fitting model 
for the analysis. This revealed that, according to AIC (Akaike information criterion), BIC (Bayesian 
information criterion), and cAIC (corrected Akaike information criterion), LG + C60 + G4 + F was the 
best- fitting model. For comparison, we also performed analyses using the following models: LG + G4 
+ F, LG + C20 + G4 + F, LG + C40 + G4 + F (Table 1).

Molecular clock analyses
Molecular clock analyses were devised to test the effect of genetic distance on the inferred age of 
LUCA. Following the approach of Zhu et al., 2019, we subsampled the alignment to 100 species. 
Five alternative alignments were analyzed, representing conserved sites across the entire alignment, 
randomly selected sites across the entire alignment, only ribosomal marker genes, the top 5% of 
marker genes according to ∆LL, and the top 5% of marker genes further trimmed under default 
settings in BMGE 1.12 (Criscuolo and Gribaldo, 2010). Divergence time analyses were performed in 
MCMCTree (Yang, 2007) under a strict clock model. We used the normal approximation approach, 
with branch lengths estimated in codeml under the LG + G4 model. In each case, a fixed tree topology 
was used alongside a single calibration on the Cyanobacteria- Melainabacteria split. The calibration 
was modeled as a uniform prior distribution between 2.5 and 2.6 Ga, with a 2.5% probability that 
either bound could be exceeded. For each alignment, four independent MCMC chains were run for 
2,000,000 generations to achieve convergence.

We repeated clock analyses under a relaxed (independent rates drawn from a lognormal distri-
bution) clock model with an expanded sampling of fossil calibration (Supplementary file 5b). We 
repeated the analyses with two approaches to define the maximum age calibration. The first used the 
moon- forming impact (4.52 Ga) under the provision that no forms of life are likely to have survived this 
event. The second relaxed this assumption, instead using the estimated age of the universe (13.7 Ga) 
as a maximum. Analyses were performed as above.

Split score analysis for expanded set markers
We used the previously described split score ranking procedure to quantify the number of taxonomic 
splits in the 381 marker gene phylogenies generated using the 1000- taxa subsample defined by Zhu 
et al., 2019. Taxonomic clusters were assigned using the Genome Taxonomy Database (GTDB) taxo-
nomic ranks downloaded from the repository (https://github.com/biocore/wol/tree/master/data/ 
taxonomy/gtdb). Lineage- level monophyly was defined at the class level for all archaea (Arc1) and the 
phylum level for all bacteria (Bac0) (Supplementary file 1).
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Of the original 10,575 genomes, 843 lacked corresponding GTDB assignments. For complete 
taxonomic coverage of the dataset, we used the GTDB Toolkit (GTDB- Tk) v0.3.2 (Chaumeil et al., 
2019) to classify these genomes based on GTDB release 202. One of the 843 unclassified taxa (gid: 
G000715975) failed the GTDB- Tk quality control check, resulting in no assignment; therefore, we 
manually assigned this taxon to the Actinobacteriota based on the corresponding affiliation to the 
Actinobacteria in the NCBI taxonomic ranks provided in the genomic metadata downloaded from the 
repository (https://github.com/biocore/wol/tree/master/data/genomes). Additionally, two archaeal 
taxa within the Poseidoniia_A (gids: G001629155, G001629165) were manually assigned to the 
archaeal class MGII (Supplementary file 1).

Plotting
Split score statistical analyses were performed using R 3.6.3 (R Core Team, 2020). All other statistical 
analyses were performed using R 4.0.4 (R Development Core Team, 2021), and data were plotted 
with ggplot2 (Wickham, 2009).
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