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Millions of children are exposed to tuberculosis (TB) each year, many of which become

infected with Mycobacterium tuberculosis. Most children can immunologically contain

or eradicate the organism without pathology developing. However, in a minority, the

organism overcomes the immunological constraints, proliferates and causes TB disease.

Each year a million children develop TB disease, with a quarter dying. While it is

known that young children and those with immunodeficiencies are at increased risk of

progression from TB infection to TB disease, our understanding of risk factors for this

transition is limited. The most immunologically disruptive process that can happen during

childhood is infection with another pathogen and yet the impact of co-infections on TB

risk is poorly investigated. Many diseases have overlapping geographical distributions to

TB and affect similar patient populations. It is therefore likely that infection with viruses,

bacteria, fungi and protozoa may impact on the risk of developing TB disease following

exposure and infection, although disentangling correlation and causation is challenging.

As vaccinations also disrupt immunological pathways, these may also impact on TB risk.

In this article we describe the pediatric immune response to M. tuberculosis and then

review the existing evidence of the impact of co-infection with other pathogens, as well

as vaccination, on the host response toM. tuberculosis.We focus on the impact of other

organisms on the risk of TB disease in children, in particularly evaluating if co-infections

drive host immune responses in an age-dependent way. We finally propose priorities for

future research in this field. An improved understanding of the impact of co-infections

on TB could assist in TB control strategies, vaccine development (for TB vaccines or

vaccines for other organisms), TB treatment approaches and TB diagnostics.
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INTRODUCTION

Each year millions of children are exposed to infectious cases of
tuberculosis (TB) and estimates suggest that around 70 million
children currently have TB infection globally (1). TB infection is
a clinical state in which the child exhibits no symptoms or signs
of disease, but, if tested, would have evidence of immunological
sensitization to Mycobacterium tuberculosis (M. tuberculosis),
as detected through a tuberculin skin test (TST) or interferon
(IFN) gamma release assay (IGRA). Each year about a million
children develop TB disease (2) a clinical state characterized by
symptoms, signs, radiological changes, and in some children,
microbiological isolation ofM. tuberculosis. Of these one million
children, modeling studies suggest that 250,000 children die each
year (3).

The majority of children with TB infection do not progress
to TB disease. Most children are either able to eradicate the
mycobacteria or contain them immunologically so that they do
not cause pathology. Understanding which children are at high
risk of disease progression, following infection, would be useful
to better understand host-mycobacterial interactions which in
turn could help with vaccine design, host directed therapies, as
well as diagnostics that might assist in predicting which TB-
infected children are at high risk of future disease. It would also
be important to understand if there are factors that drive disease
progression, as it may be possible to modify or eliminate these
drivers if they are found to impact. Currently our understanding
of why some children progress to disease while others do not is
limited. Age, however, is crucially important.

The risk of having a positive test of infection with M.
tuberculosis increases in a fairly linear way with age, reflecting
cumulative exposure (4). However, the risk of progressing
from infection to disease is heavily age-dependent, with very
young children at high risk of disease progression, the risk
falling to a nadir in the pre-pubertal years, followed by a
rise in risk as children enter adolescence (5). In addition the
type of TB disease that children develop is age-dependent.
The youngest children typically develop either intrathoracic
lymph node disease (in which the mycobacteria are generally
confined) or widely disseminated disease, including miliary TB
and TB meningitis (reflecting poorly contained mycobacteria
and unchecked proliferation). As children enter adolescence,
the typical adult-type disease begins to manifest, with apical
cavities and parenchymal breakdown, reflecting pathology largely
caused by the host immune response. Although some societal
and behavioral elements may influence these age-related changes
in risk of disease progression and resulting disease phenotype,
it is likely that to a large extent these result from age-related
changes in the host immune system. These changes may be
driven by a variety of environmental factors, including co-
infection (Figure 1).

Through childhood, the events that have the most profound

impact on a child’s immune system are infections with pathogens,

and to a lesser extent, vaccinations. Therefore, infection with
a variety of pathogens could have a profound influence on the

interaction between host immune system and M. tuberculosis.
Concurrent infection prior to M. tuberculosis exposure could

modify the host immune system so that followingM. tuberculosis
exposure there is an increased risk of subsequent TB infection
or disease. Alternatively, a child may have well-contained TB
infection and subsequent co-infection may then disrupt the
carefully controlled immunological equilibrium, allowing M.
tuberculosis to proliferate with TB disease progression resulting.
Finally, a child may develop TB disease and then become co-
infected with another organism. This may have an impact on
the outcome of disease, in respect to resolution or severity
(Figure 2). However, the relationship between infections with
other organisms and M. tuberculosis have not been well-
described. In this article we aim to bring together all the available
evidence into one review. Where evidence is available, we have
focused on evidence from co-infection with TB in children. If
there are no data specifically in children, we present data on co-
infection in adults, recognizing this is imperfect, but preferable to
excluding those co-infections. Where appropriate, we have also
considered the impact of other infections on a child’s immune
system and then discussed how this might impact on TB risk. We
further acknowledge that for many organisms there is significant
epidemiological overlap with TB in children, with challenges
therefore in disentangling correlation and causation. We outline
the geographical distribution of TB, HIV, helminth infections and
malaria in Figure 3 as an example of this. For simplicity, where
available, we provide specific evidence for pathogens that have
been studied in greater detail, and for others, we group them
together according to system, for example, respiratory viruses.
Finally we suggest some key research priorities and possible study
designs that might address them.

OVERVIEW OF TB IMMUNOLOGY IN
CHILDREN

The host immune response to M. tuberculosis involves both the
innate and adaptive immune system, starting with antimicrobial
peptides and neutrophils, followed by the interaction between
the antigen presenting cells and the bacteria and granuloma
formation, followed by a more targeted approach by CD4+ and
CD8+ T cells (10–12).

Should the bacilli be successful in traversing the physical
and anatomical barriers encountered, M. tuberculosis bacilli
are inhaled into the terminal alveoli where they are readily
phagocytosed by resident alveolar macrophages and dendritic
cells. This process results in activation of antimicrobial
mechanisms, which serve to limit the growth of M. tuberculosis
and recruit additional immune cells. Bacilli are processed and
presented on the cell surface by antigen presenting cells that
migrate to regional lymph nodes and present M. tuberculosis
antigens to T cells. Secretion of a variety of cytokines, including
IL-12 and IL-23, cause CD4+ T cells to proliferate and secrete
cytokines, including IL-2, IFN-γ and tumor necrosis factor
alpha (TNF-α), which further activate macrophages to become
microbicidal if the encounter is successful. TNF-α increases the
ability of macrophages to phagocytose and kill mycobacteria,
stimulating apoptosis; this leads to increased presentation of
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FIGURE 1 | Times in disease spectrum and progression when co-infections may have an influence.

FIGURE 2 | Incidence of childhood tuberculosis is greatest in infants and adolescents; a number of factors increase the risk in these age groups, including

co-infections, hormones, behavior, and epidemiological risk factors.

mycobacterial antigens by dendritic cells (13). TNF-α also co-
ordinates the inflammatory response through induction of IL-1,
IL-6, and recruitment of macrophages, Natural Killer (NK), γδ

and CD8+ T cells promoting their activation (14). Absence of
TNF-α is associated with progression to severe TB disease, as seen
following treatment with anti-TNF monoclonal antibodies for

Frontiers in Pediatrics | www.frontiersin.org 3 June 2019 | Volume 7 | Article 233

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Whittaker et al. TB Co-infections in Children

FIGURE 3 | Global incidence of tuberculosis (A), HIV (B), Helminths (C), and malaria (D)—demonstrating geographical overlap between these 4 infections,

supporting a role for interplay between them. Panel (A) was reproduced from © World Health Organization (2). Panel (B) was reproduced from © World Bank -WDI (6).

Panel (C) was reproduced from © World Health Organization 2015 (7). Panel (D) was reproduced from © World Bank -WDI (8). Data from WHO Malaria Report (9).

autoimmune conditions (15, 16). Yet, excessive TNF-α promotes
immunopathology by interfering with cell death processes and
induction of a hyper-inflammatory milieu. As with so many
factors in the immune response to TB, balance is critical. A
neutrophil-driven, IFN-inducible transcript signature in adult
whole blood was recently identified that correlated with clinical
severity, (17) and neutrophilia has been associated with poorer
prognosis. Additionally, T cell activation, as measured by HLA
DR+ expression and production of cytokines such as IFN-γ, IL-
1β, and TNF-α has been shown to be associated with TB disease
(Figure 4) (14, 16, 18, 19).

A variety of age-related immune differences have previously
been described in the host response to mycobacteria (11, 12).
Most notably, young children have fewer antigen presenting
cells, with reduced functional responses, including phagocytosis
and recruitment capacity, compared to older children and
adults. These functional impairments lead to poor T-cell priming
and consequently impaired immunity to M. tuberculosis. The
role of non-conventional T cells, such as γδ T cells, NK
T cells, Th17 and regulatory T cells, which link or modify
the innate-adaptive T cell interaction have recently been

explored (20, 21) they are noted to be increased in younger
children with TB disease compared to similarly aged healthy
controls (20).

Other components of the innate immune response which are
likely to be affected by co-infection, and are recognized to be
different in neonates and early infancy, include levels of innate
defense molecules such as collectins; maturation of Toll-like-
receptors (TLRs) and neutrophils.

The immune mechanisms involved in these processes
are poorly defined and the dynamic balance that exists
between bacterial persistence and host defense, which in
children tips in favor of the mycobacteria more than in
adults, can be influenced by several factors, including,
we hypothesize, age and co-infection with various
pathogens (Figure 4).

In longitudinal studies, many acquired immuno-suppressive
conditions are known to disrupt this balance and increase the
risk of TB disease, includingHIV infection,malnutrition, vitamin
D deficiency, diabetes, and anti-TNF-α therapy. Here we aim to
explore the evidence that co-infections play a role in disrupting
this balance (Table 1).
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FIGURE 4 | Although a “protective immune response” to tuberculosis remains elusive, a Th1 predominant response is associated with protection, while a Th2 and

regulatory T cell predominance has been described in association with severe disease and dissemination. We propose that the balance of these immune responses is

influenced by co-infections including helminths, CMV, hepatitis viral infections, malaria, measles, etc. IFN, interferon; IgG, Immunoglobulin G; TNF, tumor necrosis

factor; T reg, regulatory T cell; IL, interleukin; TGF, tumor growth factor; HIV, human immunodeficiency virus; CMV, cytomegalovirus.

TB-HIV CO-INFECTION

The “deadly duet” of TB-HIV co-infection has been extensively
studied and World Health Organization (WHO) guidelines

recommend all children diagnosed with TB should be screened
for HIV and conversely, children newly diagnosed with HIV

should be screened for TB (22). Dodd et al. in a systematic review

of the impact of HIV on TB in children, reported that HIV

infection increases the incidence of TB in children by a factor of
around eight, increasing with degree of immunosuppression (22).
Combination antiretroviral therapy (cART) can restore immune
function and has enormously reduced morbidity and mortality
among HIV-infected children and is strongly protective against
TB, reducing the risk by 70%. However, it takes 2 years for
the full potential of protection against TB to be realized. The
impact of age on efficacy of antiretroviral therapy is complex,
as early treatment initiation, at a better baseline immune
status, leads to better immune reconstitution (23). Initiation of
cART in children and adults can be complicated by immune
reconstitution inflammatory syndrome (IRIS), thought to be a
dysregulated immune response to a pathogen, most commonly
TB. There is a paucity of data on the epidemiology, risk factors,
management, and outcome of TB-IRIS in children (24).

Studies in adults have demonstrated that HIV infection
increases susceptibility to TB primarily through decreased
numbers of CD4+ T cells and impaired function of CD4+ T

cells, in particular in their response to phagocytes (25). As the
increased risk of TB is present in HIV-infected individuals prior
to significant T cell depletion, this suggests that HIV may alter
cellular responses toM. tuberculosis infection. Studies in TB-HIV
co-infected adults to characterize functional defects in CD4+ T-
cells has increased our understanding of the role of these cells
in the immune response to M. tuberculosis. HIV preferentially
infects and depletes mycobacterial specific T-cells, most likely
due to their activated, CD27 expressing, IL-2 producing state
(26). HIV infects other cells including macrophages, dendritic
cells and neutrophils, influencing cytokine production, and T
cell interactions, which may impact on susceptibility to TB
infection, progression to and severity of disease. HIV-infected
macrophages act as a reservoir for the virus, leading to TNF-
α-induced suppression of apoptosis, thus avoiding immune-
mediated clearance by the host (27). HIV1 nef and M.
tuberculosis antigen Rv3416 synergistically contributes to anti-
apoptotic signaling in macrophages (28, 29). Furthermore, IL-10,
produced by macrophages and regulatory T cells, also decreases
apoptosis. Plasma IL-10 levels are higher in TB-HIV co-infected
adults with pulmonary disease compared to those with HIV
infection alone, or those with HIV and TB infection (30). These
findings have not been explored in children, although HIV-
uninfected children with TB disease have been found to have
higher levels of regulatory T cells and IL-10 than healthy controls
or children with TB infection (20). Myeloid derived suppressor
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TABLE 1 | A summary of (1) the predominant immune response associated with a variety of pathogens in children and (2) the known impact of that pathogen on

tuberculosis pathogenesis.

Pathogen Impact on pediatric immune system Potential impact on TB pathogenesis

TB Th1, IFNγ, IFNα, TNFα, IL12, IL23, IL17, IL2 Severe disease- increased regulatory T cells, suppressed Th1,

excessive neutrophils

HIV Decreased Th1, Low IFNγ, increased apoptosis due to IL10 and

XS TNFα. Specific depletion of CD27 activated mycobacterial

specific CD4+ T cells

Increased pathogenesis, increased risk of infection, disease, and

severe disseminated disease

CMV Adults—clonal expansion CMV specific CD4+ and CD8+ T cells

Children—suppressed IFNγ producing CD4+ T cells compared

to adults

Strong type I IFN response

CMV IFNγ ELISpot response associated with T cell

activation (HLA-DR)

CMV specific IFNγ producing T cells and T cell activation

associated with increased risk of TB disease progression.

Both CMV and TB induce Type I IFN signature

EBV CD8+ T cell response predominates, strong type I IFN response Unknown

HHV6/HHV7/HSV Increased NK cells, CD4, and CD8 clonal expansion Unknown in humans

Herpes virus latency in mice protective against bacterial infection

due to persistent IFN signature

Hepatitis B and C Hep B—CD8+ cytotoxic T cells, Type I interferon, NK cells.

Chronic infection—increased regulatory T cells, raised IL10,

suppressed IFNα, IFNγ

Hep C—virus infected T cells lose cytotoxicity and ability to

produce IL2, TNFα, IFNγ, increased regulatory T cells, and IL10

Unexplored, but chronic infection with either Hepatitis B or C is

associated with higher regulatory T cells and IL10, lower IFNγ,

IFNα which may increase susceptibility to TB in children

Microbiome and gut-lung axis Modulates innate immune responses through TLR

stimulation—Helicobacter pylori associated with increased TB

specific Th1 responses

Hypothesized to be protective through persistent Th1 stimulation

Unknown if different bacteria cause differential stimulation of Th1

leading to changes in susceptibility

Adenovirus Primary Adenovirus infection suppresses IFNγ, while secondary

reactivation leads to increased IFNγ, as well as HLADR+ and

Ki67+ T cells

Adenovirus primary infection may result in immunosuppression,

while secondary infection may result in T cell activation (as

measured by HLA-DR), both associated with increased risk of TB

disease progression

Respiratory viruses Influenza—induces type I IFN signaling pathway

Downregulates TLR stimulation, decreased neutrophil recruitment.

Other respiratory viruses—RSV, Metapneumovirus, Adenovirus,

corona virus, etc., all induce type I IFN, so likely

similar pathogenesis

Influenza—seasonal association with TB disease possibly due to

local lung damage

Type I IFN associated with progression to TB disease, also

suppressed TLR responses and neutrophils

In mice influenza is associated with increased

mycobacterial growth

Measles Increased IL6, IL1b, TNFα, IL8, decreased IL12, IFNα. Th2

responses and increased regulatory T cells predominate for

several weeks the acute infection

Measles infection associated with transient immunosuppression

for weeks/months—recorded increased incidence TB disease in

children, in particular TB meningitis

Fungi Similar immune responses—Th1, poor TLR stimulation,

granuloma formation

Co-infection, or concurrent infection likely due to lung damage

rather than immune impact on susceptibility

Respiratory bacteria TLR and NLR stimulation by bacteria stimulates phagocytes and a

subsequent innate immune response including natural killer cells,

pro-inflammatory cytokines, and adaptive immunity via T and

B cells

TB often complicated by bacterial co-infection, or TB follows

bacterial damaged lungs. Co-infection associated with increased

mortality

Immune response to bacteria likely to be protective against TB

Other non-TB bacteria Intracellular bacterial infections elicit similar cell mediated response

(CD4+ CD8+ and T cell activation)

Similar immune responses may represent protection. Co-infection

not commonly reported

NTMs Th1 immunity including CD4+ T cells responses and neutrophils

all essential for protection against NTM infections

TB disease and lung damage likely to predispose to NTM, rather

than the other way around. Concurrent infection seen

Helminths IgE, IgG4, Th2 cytokines (IL4, IL9, IL13), Regulatory T cells and

cytokines (TGFβ, IL10)

Shift away from Th1 likely to contribute to immune susceptibility

and progression to disease. Mixed evidence to date

Malaria Pro-inflammatory cytokines (IL1β, IL6, IL12, TNFα, IFNγ)

stimulated by infection. Severe disease associated with decreased

levels of CD4+ cells and associated immunosuppression

In vitro, malarial parasites decrease the humoral and cellular

response to TB

Severe malaria disease associated with Th2, IL10, and low

CD4/immunosuppression which may increase susceptibility to TB

disease

Co-infection associated with increased Th2 responses and IL10.

Both TB and malaria associated with MMP9 induction

Other protozoa Suppressed Th1 responses (low IL12) Likely to impact TB immune responses, limited evidence

Routine vaccinations Increased total IgG levels Protective against TB infection

IFN, interferon; IgG, Immunoglobulin G; TNF, tumor necrosis factor; IL, interleukin; TGF, tumor growth factor; HIV, human immunodeficiency virus; CMV, cytomegalovirus; EBV, Epstein

Barr Virus; HLA-DR, human leukocyte antigen-DR; HHV, human herpes virus; NK, natural killer; TLR, Toll like receptors; RSV, respiratory syncytiovirus; NLR, nod- like receptor.

Frontiers in Pediatrics | www.frontiersin.org 6 June 2019 | Volume 7 | Article 233

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Whittaker et al. TB Co-infections in Children

cells (MDSC), an innate immune cell population known to
downregulate T cell proliferation, are increased in adults and
children with TB infection and disease. Recently, high levels have
also been identified in HIV exposed uninfected infants (HEU),
who are known to have increased susceptibility to TB, suggesting
a potential mechanism for TB susceptibility. Interestingly HIV
infected children on HAART did not have increased levels of
MDSC, suggesting that HIV viraemia triggers these regulatory
innate immune cells (31). Understanding how HIV increases TB
risk in children presents a key research priority.

HERPES VIRUSES

The herpes viruses that cause pathology in humans include
herpes simplex (HSV) 1 and 2, Epstein-Barr virus (EBV),
cytomegalovirus (CMV), varicella zoster virus (VZV), and the
human herpes viruses (HHV)6-8. Viruses from this family have
sophisticated mechanisms for evading the host immune system
and consequently establish long-term infections, fluctuating
between periods of active disease and periods of inactivity
or latency. This is particularly pertinent in children infected
in infancy.

CMV infection of the mother during pregnancy can be
associated with congenital infection of the fetus, leading to
fetal loss and, in surviving infants, neurodevelopmental delay
and hearing loss (32). CMV infection has also been well-
studied in individuals with various forms of immunosuppression,
such as HIV infection, primary immunodeficiencies or post
bone marrow transplant (33–35). In these populations it
can cause a variety of pathologies, including pneumonitis,
retinitis, gastroenteritis and central nervous system dysfunction,
among others. CMV infection has also been well-studied in
older individuals, causing increased cardiovascular risk and
immunosenescence (36, 37). The impact of CMV infection in
immunocompetent children, however, is poorly understood.

This is a significant gap in our understanding, as CMV is
one of the most prevalent and immunogenic viruses that infect
children. In low resource settings, the vast majority acquire
CMV in early childhood (38, 39). CMV is acquired from
secretions and, in immunocompetent children, usually causes
either an asymptomatic viraemia, or viraemia associated with
infectious mononucleosis-like symptoms (40). IgG seropositivity
usually develops as a consequence of infection. Reactivation, with
viraemia and/or symptoms can occur at any point later in life.
CMV infection can lead to clonal expansion of differentiated
CMV-specific CD4+ and CD8+ T cells, an effect that can last
for years (41). Children with asymptomatic CMV infection have
been shown to have markedly fewer CMV-specific CD4+ T cells
that produced IFN-γ, compared to adults with asymptomatic
CMV infection, an effect that lasted for over a year (42).
Regarding the relationship with TB, CMV elicits a strong type
I IFN response, (43) a response demonstrated to be associated
with TB disease (44). In a trial of the MVA85A TB vaccine in
infants, Fletcher and colleagues found a significant correlation
between CMV IFN-γ ELISpot response at baseline and T-cell
activation, in turn associated with future TB disease progression
(18). Further analysis of this cohort has demonstrated that a
CMV-specific IFN-γ response was associated with increased risk

of developing TB disease (45). Groups have also postulated that
there is significant overlap in epidemiology between CMV and
TB, with new infections of CMV common in early childhood and
again in adolescence—potentially impacting on the changes in
incidence seen with the TB epidemic (46).

EBV is also a ubiquitous virus, with estimates suggesting that
nearly 90% of the global population is infected (47). In resource
limited settings, the majority of primary infection is in early
childhood, likely as a result of exposure to saliva and resulting
in asymptomatic infection (48). Infection in adolescence results
in extensive expansion of activated EBV-specific CD8+ T-
cells, (49) with an expression profile that suggests uncontrolled
inflammation and a strong type I IFN response. Primary infection
in young children, however, seems to elicit a virus-specific CD8+
T-cell response that is able to contain the virus without over-
expansion (50). Given the overlapping age profiles and the
immunological effects of EBV infection, a relationship with TB
is very possible.

The other herpes viruses are also very common. Most
individuals have serological evidence of exposure to both herpes
simplex viruses by adulthood, with more rapid acquisition in
resource limited settings (51). Prior to vaccination strategies
for varicella, most children had developed chicken pox during
childhood (52). Most children are infected with HHV6 by
the time they are 2 years of age, many developing a
symptomatic illness at the time of primary infection (53). Positive
HHV7 serology is almost universal by adulthood (54) and
HHV8 is common in low resource settings, mainly acquired
during childhood (55). No studies have directly evaluated the
relationship between these other herpes viruses and TB.However,
the herpes viruses have a marked effect on the host immune
system and, dependent on the stage of herpes infection (acute
infection, latency, or reactivation) and the timing in relation
to TB pathogenesis, could impact on TB risk. Herpes viruses
can “arm” NK cells (56) and even during periods of latency,
herpes viruses maintain large populations of functional CD4+
and CD8+ T cells. In mouse models herpes virus latency leads
to persistent production of IFN-γ and systemic activation of
macrophages protects mice from infection with the bacterial
pathogens Listeria monocytogenes and Yersinia pestis (57). It is
likely that herpes virus infection impacts on the human response
to multiple other pathogens, including M. tuberculosis, however
whether this leads to disease or is protective requires further
research (58–61).

HEPATITIS B AND C

Hepatitis B and C viruses (HBV, HCV) are important infective
causes of chronic hepatitis and cirrhosis. Up to 30% of the world’s
population show serological evidence of past or current HBV
infection and an estimated 257 million people are living with
HBV infection (HBV surface antigen positive). Prevalence is
highest in theWHOAfrica region (6.1%) and theWHOWestern
Pacific region (6.2%). In highly endemic areas, HBV is acquired
perinatally through vertical transmission from the mother to
neonate, or during early childhood. In lower endemic settings,
typically older susceptible children may become infected through
exposure to contaminated blood, through sexual transmission
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or intravenous drug use. The outcome of acute HBV infection
is largely age-dependent with 80–90% of infants and 30–50%
of children aged 1–6 years old developing chronic infection,
compared to just 5% of adults. Since the introduction of the
HBV vaccine, the estimated global prevalence of chronic HBV
in children aged 5 years and under has fallen from 4.7 to 1.3%
in 2015, though it remains 3% in Africa where TB co-infection is
likely to be common (62). Studies have found the prevalence of
HBV infection to be higher amongst TB patients than the general
population (63–67).

The immune mechanisms of viral clearance are unknown,
but both humoral and cellular immune responses are involved.
Clearance occurs following the generation of antibodies against
viral envelope antigens that clear virus particles, with CD4+
T helper cell interaction playing a vital role. CD8+ cytotoxic
T cells eliminate infected cells directly (68). Chronic infection
is characterized by a relative immunosuppressive state, perhaps
induced directly by the virus. This relative immunosuppressed
state in chronic infection in adults is characterized by higher
numbers of CD4+CD25+ FOXP3+ regulatory T cell, increased
levels of IL-10, and impaired IFN-α and IFN-γ production.
Healthy uninfected infants are known to have diminished IFN-
γ responses and increased numbers of regulatory T cells—an
immune state implicated both in susceptibility to TB infection,
TB disease progression and chronicity of hepatitis B infection
(69). Further work to determine whether chronic hepatitis B
infection in infancy in association with this described immune
phenotype is implicated in TB disease progression is required.

Approximately 1% of the global population (71 million) is
HCV-infected with an estimated 1.75 million new infections
occurring in 2015. An estimated 5 million children under
15 years have chronic viraemic infection. Mother-to-child
vertical transmission occurs in 6% of HCV-affected pregnancies,
and accounts for up to 60% of pediatric cases of HCV.
Among vertically-infected children, up to 80% develop chronic
infection (70). Several studies report on the prevalence of
anti-HCV antibodies in TB patients, but very few report
the prevalence of detectable HCV RNA and thus active
infection (63, 67, 71, 72).

Similarly to hepatitis B, the mechanisms of viral clearance are
not fully understood, but CD4+ and CD8+ T cell responses
seem to be crucial. Those who clear the virus have better
T cell proliferation and IL-2, IFN-γ, and TNF-α production
than those who develop chronic infection (73). Neutralizing
antibodies are not required to clear HCV as demonstrated
in hypogammaglobulinaemic patients (74). Like chronic HBV
infection, a downregulation of virus-specific T cell responses is
observed in chronic HCV infection, with progressive depletion
and functional exhaustion of virus-specific CD4+ and CD8+
T cells. Virus-specific T cells lose their cytotoxicity and their
ability to produce IL-2, TNF-α and IFN, though production is
less impaired than seen in chronic HBV (74). Increased numbers
of FOXP3+ regulatory T cells are observed in the blood and the
liver (75) and levels of the immunosuppressive cytokine IL-10
are also increased (76). NK cells are activated in chronic HCV
infection, though IL-10 and IFN-α suppress NK-production of
IFN-γ and TNF-α (74).

Little is known about the effects of HBV andHCV co-infection
on TB in children, but given the effects of these viruses on
immune responses and their widespread distributions globally,
an interaction seems plausible.

MEASLES

The global burden of measles remains high with an estimated 7
million cases and 89,780 measles-related deaths in 2016, most
of which occurred in children under five and in low income
countries with poor health systems. Severe disease is most
common in poorly nourished young children, particularly those
with immunosuppression, or vitamin A deficiency (77).

Young infants are protected against measles by passively
acquired maternal anti-measles virus IgG. Maternal antibodies
are generally higher in women who had natural measles infection
rather than those with vaccine-induced immunity, so children
of vaccinated women tend to become susceptible at a younger
age (78). The average age of measles cases is dependent on
the rate of decline of protective maternal antibodies, the age
at which children are vaccinated against measles, and the rate
of contact between susceptible and infectious individuals. In
densely populated urban centers with poor vaccination coverage,
measles is a disease of infants and young children. As measles
vaccine coverage increases, the incidence of measles reduces and
there is a shift toward cases being in adolescents and adults (79).
This may be of relevance in pediatric TB-measles co-infection as
it means that measles is increasingly likely to affect older children
with TB infection rather than very young children at risk of
primary TB.

Measles virus initially infects lymphocytes, dendritic cells,
and alveolar macrophages in the respiratory tract, stimulating
production of pro-inflammatory cytokines IL6 and IL8, and
suppression of IL12 in vitro (80–84). In vivo studies of
children with measles demonstrate increased production of pro-
inflammatory cytokines IL-1β, TNFα, IL8 (85). The role of
type I IFN is less clear with in vitro measles infection leading
to variable IFN responses, depending on cell type (86–88). In
vivo, expression of IFN-stimulated genes is not increased in the
peripheral blood mononuclear cells (PBMCs) of children with
measles, though these samples tend to be taken at the time of the
rash, when measles is recognized, and therefore may miss IFN
production if it occurs earlier in infection (85, 89).

CD8+ T cells are important for viraemic clearance which
occurs within a few days of the onset of the rash (90). After
viraemic clearance, numbers of circulating activated CD8+ T
cells and plasma levels of IFN-γ fall rapidly. Circulating activated
CD4+ T cells reduce in number much more slowly, possibly
due to the continued presence of measles virus-infected cells
(91). Early in the immune response, CD4+ Th1 responses
predominate, with IL-2 and IFN-γ production. As the virus is
cleared and CD8+ cells and IFN-γ levels decline, there is a switch
to CD4+ Th2 cell responses with production of IL-4, IL-10, and
IL-13 which lasts for several weeks. Regulatory T cells are also
prominent (92). This is thought to promote B cell maturation and
establishment of humoral memory.
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Measles infection is associated with transient
immunosuppression lasting weeks to months, though the
underlying mechanisms are incompletely understood (90).
Secondary infections, particularly in the respiratory and
gastrointestinal tracts, are important causes of measles-
associated mortality (93, 94). Transient lymphopenia, (95)
disappearance of tuberculin skin reactivity, (96) impaired
lymphocyte proliferative responses (97), and impaired dendritic
functions (98–100) have all been described. The Th2 and
regulatory T cell predominance also depresses macrophage
activation and suppresses lymphoproliferation and induction
of Th1 responses in response to other pathogens, including
M. tuberculosis.

The clinical effect of measles co-infection on TB has been
studied since at least the early 20th century with the observation
that the TST becomes transiently negative during measles
infection, (101, 102) returning to previous levels of reactivity
2–4 weeks later. Several reports from measles epidemics have
suggested that measles co-infection has a deleterious effect
on TB containment in both children and adults. (103, 104)
TB typically appears 2 months after measles infection and an
American hospital noted that almost 10% of their pediatric TB
meningitis cases experienced their first symptoms while they
were convalescing from measles (105). In the 1960s, increased
TB relapses in those with wild measles compared to those with
vaccine measles or no measles, were reported. The relapses were
observed 2 weeks to 3 months after the measles, at a similar time
to their regaining tuberculin skin reactivity (105). However, a
later review by Flick reported deficiencies with many of these
studies, concluding there was inadequate data to support a
significant interaction (106). More recently, a study of the 2000–
2001 measles outbreak in Korea estimated the overall incidence
of TB cases following measles to be lower than the general
population (107). An Iraqi study reported increased anti-measles
IgG antibody titres in adults with TB compared to controls, the
authors suggesting that immunosuppression induced by recent
measles infection or reactivation may have triggered reactivation
of TB infection (108). The impact of measles on TB in children,
is therefore far from clear and further well-designed studies,
both of the impact of measles infection and measles vaccination,
are warranted.

HUMAN ADENOVIRUS

Human adenoviruses are a common cause of childhood
infections worldwide. Their ability to infect many cell types
makes them useful vectors for gene delivery (109) and their
immunogenic properties mean they are also used as vaccine
vectors (110). The majority of primary infections occur during
the first 5 years of life. In children, adenoviral infections
account for up to 15% of upper respiratory tract infections and
about 5% of lower respiratory tract infections (LRTI) (111).
Latent infection may follow primary infection with latency
described in tonsillar tissue, T lymphocytes and lung epithelial
cells. (112–115). Reactivation is important in the severely
immunosuppressed (116, 117).

The immunological effects of adenovirus infection are
complex (118) and may vary depending on past exposures.
Different adenovirus species share a common hexon protein
which is a key T cell target (119). Exposure to one human
adenovirus therefore generates cytotoxic CD4+ and CD8+ T
cells which cross-react with multiple adenovirus species. This is
thought to contribute toward broad immunity in adults (120).
In rhesus macaques, T cell and cytokine responses to human
adenoviruses have been shown to vary with repeated exposures,
with increased IFN-γmRNA expression in PBMCs and increased
frequencies of Ki67+, HLADR+, and CD95+/CCR5+ CD4+
T cells in blood recorded after the secondary, but not the
primary exposure, mRNA expression of CCL20, TNF-α, and IL-
1β in PBMCs was reduced after primary exposure and further
suppressed on repeat exposures (121). Given the frequency of
adenovirus exposure in young children, cross-reactivity between
different virus types, and potential for latency and reactivation,
an interaction between TB and adenovirus could be important
and further studies are warranted.

RESPIRATORY VIRUSES

Influenza
The global burden of influenza disease in young children is
high, with an estimated 90 million new cases of influenza and
20 million cases of influenza-associated acute LRTI in children
<5 years old each year. Of the estimated annual 28,000-111,500
pediatric deaths attributable to influenza LRTIs, 99% occur in
developing countries (122).

Epidemiological and modeling studies of previous influenza
pandemics suggest an interaction between influenza and TB.
An analysis of Swiss historical data found that TB-associated
mortality increased during the 1889 and 1918 influenza
pandemics and declined thereafter (123). This selective mortality
of TB patients is suggested to have contributed to the
subsequent decline in TB mortality observed in USA, Japan
and the Netherlands, by killing people with TB and reducing
transmission (124–126). Studies of more recent influenza
outbreaks have found that patients co-infected with TB are at
greater risk of dying from influenza than those without TB,
even when adjusted for HIV status (127, 128). Amongst patients
with TB, those with influenza co-infection have an increased risk
of death compared to those without. However, the evidence is
mixed (129) and these studies cannot ascertain the mechanisms
underlying these observations. It has been hypothesized that
lung pathology due to respiratory viral infections predisposes to
TB pathogenesis.

Evidence suggests that TB-influenza interactions in children
may be complex. In South Africa, where there is seasonal
variability in pediatric TB hospitalisations, a temporal association
has been observed in hospitalized children between cases of
influenza, pulmonary TB, and invasive pneumococcal disease
(IPD) (130). A seasonal pattern of influenza activity is followed
by a peak in pulmonary TB cases 2–3 months later and IPD 3
months later. This 2–3-month window between influenza and TB
peaks corresponds to the time it takes for a young TB-exposed
child to develop primary TB, and for TB infection to progress
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to TB disease. The authors speculated that during influenza
outbreaks, young children living with adults with infectious
pulmonary TB could be at enhanced risk of TB exposure (from
increased aerosolization of TB by an influenza-co-infected adult)
and enhanced risk of developing primary TB infection (due
to influenza-induced immunomodulation). In older children,
this immunomodulation could precipitate reactivation of TB
infection (130). However, results from a single study comparing
anti-influenza antibody titres in adults without and without
pulmonary TB were inconclusive, and further studies, including
in children, are warranted (131).

Mouse studies support the hypothesis that influenza virus
induces immunological changes which may reduce the host’s
ability to contain TB infection, as has been observed for
secondary bacterial infections (132). More rapid proliferation
of mycobacteria and impaired mycobacterial-specific T cell
responses are observed in mice co-infected with BCG and
influenza compared to mice infected with BCG alone (133). In
mouse models ofM. tuberculosis infection, influenza co-infection
enhances mycobacterial growth, (134, 135) through a type I
IFN-signaling pathway. Prior exposure of mice to influenza type
A before infection with M. tuberculosis also leads to enhanced
mycobacterial growth and decreased survival. Influenza, like
many viruses, induces a strong type I IFN response in humans.
Influenza infection also downregulates certain TLRs, resulting in
reduced neutrophil recruitment (136).

Other Respiratory Viruses
Non-influenza respiratory viruses account for an even greater
burden of morbidity and mortality in children than influenza.
Respiratory syncytial virus is the most important, causing an
estimated 33 million new episodes of acute LRTI per year
in children age 5 years and under, 3.2 million of which
necessitate hospital admission (137). The literature on non-
influenza respiratory viral co-infection and TB is very limited.
An Tanzanian study reported no difference in the frequency
of observed influenza and non-influenza respiratory viral
infections in adults with and without pulmonary TB (138).
A South African study comparing children with “definite,”
“unconfirmed,” and “unlikely TB” found no clear association
between TB categorization and detection of specific respiratory
pathogens (139).

RESPIRATORY BACTERIA

Although less frequent than viral infections, childhood bacterial
respiratory infections are common, particularly in the developing
world. Streptococcus pneumoniae is themost common respiratory
pathogen,Haemophilus influenzae and Staphylococcus aureus are
also important causes of pneumonia. There were an estimated
3.7 million episodes of severe pneumococcal disease and 340,000
episodes of severe Haemophilus influenza type b (Hib) infection
globally in children in 2015, with the highest incidences observed
in Africa, South East Asia and Western Pacific (140).

Innate immune responses play a pivotal role in early host
defense against extracellular bacteria including S. pneumoniae
and H. influenzae. Bacteria are initially recognized by pattern

recognition receptors consisting of TLRs, the cytosolic NOD-
like receptors and DNA sensors. Recognition by these pattern
recognition receptors triggers the release of pro-inflammatory
mediators and stimulates the recruitment and activation
of phagocytic cells. The resulting innate immune response
involves complement (particularly C3), acute phase proteins
(e.g., C-reactive protein, serum amyloid protein), neutrophils,
macrophages, NK cells, and pro-inflammatory cytokines (TNF-
α, IL-1, -6, -12, -17, -18) (141). Type I IFNs also appear to
have an immunoregulatory role (142). Adaptive immunity is
also important, particularly the synthesis of IgM, IgA, and IgG
antibodies by B cells activated by bacterial antigens (143).

Several studies report on pneumonia and TB in children. In
studies of pediatric pneumonia in TB-endemic countries, TB
was diagnosed in 1.8–23% of cases and HIV co-infection was
common (144–147). It is often challenging to determine what
proportion of these cases represent TB pneumonia and what
proportion are TB cases complicated by bacterial co-infection.
A study of South African children aged 5 years and under with
severe LRTI, found that 10% of HIV-infected and uninfected
children with culture-proven TB had concurrent bacteraemia
(148). Autopsy studies in children suggest that bacterial co-
infections are important causes of death in children with TB
(149–151). A recent study by Shimazaki et al. in the Philippines
found that 29% of HIV-uninfected adults with pulmonary TB had
purulent sputum with detectable bacterial DNA, most commonly
H. influenzae (21.2%) and S. pneumonia (7.9%) (152). Bacterial
co-infection was associated with an increased risk of 2 week
mortality among confirmed TB cases.

These studies suggest that TB-bacterial pneumonia co-
infection may be common in TB-endemic areas but there are
few studies which investigate a possible interaction between them
and the evidence is mixed. A systematic review of pneumonia
in children from TB endemic countries suggested that TB might
increase the risk of secondary bacterial pneumonia (149). On the
other hand, a Tanzanian study which compared smear positive
adult TB patients and household contact uninfected controls,
found that respiratory bacteria were less frequently detected in
the nasopharyngeal swabs of TB patients compared to controls.
TB disease severity was higher only in those in whom both viruses
and bacteria were detected (138). Evidence from vaccination
studies is also mixed as described below.

OTHER IMPORTANT BACTERIA

Most of the existing literature on TB-bacterial co-infection
focuses on pneumonia-related bacteria. However, bacterial
bloodstream infection (particularly Salmonella enterica serovar
Typhi, Staphylcoccus aureus, and enterobacteriaceae), as well
as bacterial zoonosis (brucellosis, leptospirosis, Q fever, and
rickettsiosis) have also been reported as a common cause
of febrile illness in children, particularly among hospitalized
patients (153). Immunity to intracellular bacterial infections
(ICBIs) such as salmonella, listeria or chlamydia, is mediated
by host responses similar to those observed in M. tuberculosis
infection. ICBIs are characterized by their ability to survive
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within macrophages and elicit a cell mediated response,
stimulating CD4+ and CD8+ T cells through expression of the
antigen epitope associated to either MHC class II or MHC class
I, respectively. Activation of CD4+ T helper cells, specifically
Th1 cells, leads to the secretion of IFN-γ which stimulates
killing mechanisms inside the infected macrophage, liberating
ICBI antigen epitopes, and increasing antigen presentation by
bystander dendritic cells. It seems possible therefore that ICBIs
could impact the immune response to TB. Case reports of co-
infections with TB and ICBIs are present in the literature (154–
157). However, an American population-based study found no
difference in the risk of the ICBIs Salmonella spp, Yersinia
spp, and Listeria monocytogenes in persons who developed
TB vs. those in the general population, and found there
were actually fewer Chlamydia trachomatis infections observed
within the first year post-TB diagnosis compared to the non-
TB population. Extrapulmonary TB was linked to a higher
rate of salmonella infections compared to pulmonary TB but
all 8 patients with salmonellosis and TB were also HIV
co-infected (158).

Besides ICBI, multiple other bacteria have been reported to
be associated with TB, including S. aureus, Streptococcus milleri,
(159) enterococcus and klebsiella (160). Besides presenting
in the lung, these concurrent tuberculous and bacterial
infections have been described in other anatomical locations in
children including the retropharynx (161) and central nervous
system (162, 163).

NON-TUBERCULOUS MYCOBACTERIA

Non-tuberculous mycobacteria (NTM) include many
environmental mycobacterial species other than M. tuberculosis
and M. leprae. NTM and M. tuberculosis share microbiological
attributes, induce similar immune responses, and have
overlapping clinical manifestations (164). However, unlike
M. tuberculosis, NTM are not always pathogenic and a major
challenge with the diagnosis and management of NTM is
to differentiate environmental contamination, colonization,
and disease.

In the absence of primary or secondary immunodeficiencies,
the host immune system is usually capable of containing and
possibly eradicating NTM via established innate and acquired
immune mechanisms. As for TB, containment of NTM relies on
the integrity of the helper T cell type 1-cytokine pathway and
cellular immune mechanisms. NTM disease has been associated
with cystic fibrosis, mendelian susceptibility to mycobacterial
disease and HIV infection. However, while the two latter are also
risk factors of TB, there exists an inverse correlation between
cystic fibrosis carriership and TB incidence, suggesting a lower
susceptibility of cystic fibrosis carriers to TB (165). Exposure to
NTM strains in the environment is thought to contribute to the
variability of BCG vaccine, although the relationship is complex
and unproven; both blocking and masking mechanisms have
been proposed.

The epidemiology of NTM varies by world region (166).
Attempts to understand the burden of NTM disease and

identify risk factors in the pediatric population are hampered
by inadequate mandatory NTM reporting and by the overlap of
clinical presentation with TB. An association between increased
disease incidence of mycobacterial disease caused by NTM and
decreased incidence of TB has been suggested in adults although
no causal relation has been proven. No estimates exist for the
incidence of clinical syndromes caused by NTM in children or
adults, and the available data is usually a by-product of studies
assessing the burden of pulmonary TB in children, from whom
NTMwere isolated from respiratory specimens. The rate of NTM
isolation in high TB burden settings varies between countries;
from 2.7–26.3%, and increasing age is associated with a higher
proportion (167–170). Mycobacterium avium complex species,
M. fortuitum, scrofulaceum, and gordonae, are among the most
frequently identified NTM in these studies.

Although concurrent TB and NTM is thought to be common,
only a few reports have addressed this issue, (171–174) and the
prevalence of co-infection depends on the sensitivity of the assay
in detecting multiple species. In a recent study of HIV-infected
children from African and South East Asian settings, NTM was
isolated in 46/427(10.8%) of children, including 5 (1.2%) with
both NTM andM. tuberculosis (170).

Whether or not concurrent infection is identified, the clinical
significance of an NTM isolate in a patient receiving TB
treatment is unknown (174, 175). Even if the isolate is likely to
be clinically insignificant, it is plausible that co-infection plays a
part in TB pathogenesis or time to sputum clearance (172). In
adults, a previous history of TB disease is a risk factor for NTM
pulmonary disease, probably due to structural damage to the
lung (such as in bronchiectasis) altering mucociliary clearance
and thereby predisposing the lung tissue to NTM isolation
and disease (176, 177). Although the same phenomenon has
not been described in children, bronchiectasis is often seen in
children with HIV and chronic lung disease, (178) past TB,
recurrent pneumonia, severe immunosuppression, and lymphoid
interstitial pneumonitis (179).

LEPROSY

Leprosy, a disease caused by M. leprae has similar geographic
endemicity as TB. A total of 14 adult co-infected cases have
been published to date (180). There is no clear consensus on
whether prior exposure to one mycobacteria offers protection
or predisposition to the other, but several authors have
suggested that impaired cell mediated immunity in patients
with multibacillary leprosy may predispose them to TB
co-infection (181, 182).

FUNGI

Mycobacteria share several features with pathogenic fungi
including infection site, metabolic features, the composition
and display of cell surface molecules, the range of innate
immune receptors engaged during infection, and the ability
to form granulomas (183). A number of immunodeficiencies,
including chronic granulomatous disease, T cell disorders
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and deficiencies in the IL-17 pathways lead to increased
susceptibility to mycobacterial and fungal infections, suggesting
their immunopathogenesis is similar (184, 185). The innate
immune response is defined by an array of pattern recognition
receptors, such as the TLRs, which recognize bacterial targets
such as lipopolysaccharide, flagellin etc.M. tuberculosis and fungi
are both “poor agonists” of the TLRs, and virulent strains of M.
tuberculosis have even been reported to down-regulate MyD88,
a key TLR signaling molecule (186). Virulent strains of both
mycobacteria and fungi appear to induce a Th2 rather than
a Th1 response in order to evade the host immune response.
The key immunopathological feature of TB is the formation of
granuloma in the lungs—a condition that can be considered
mutually beneficial for host and pathogen, as it constrains the
pathogen, while providing a microenvironment for replication
of the organism. Granuloma are also noted in fungal, but not
other bacterial infections. Both mycobacterial and fungal disease
dissemination depends on the ability of the host to maintain
the granuloma, a balance influenced both by virulence factors
of the invading organism, as well as a variety of external factors
including age, malnutrition, and co-infections.

Mycobacterial-fungal co-infection most frequently occurs
in the context of immunodeficiency, such as HIV, bone
marrow transplant, and primary immunodeficiencies, such as
severe combined immunodeficiency or chronic granulomatous
disease. Pneumocystis jirovecii pneumonia (PCP) is one of the
commonest opportunistic infections in HIV-infected patients
in the developed world and although less common in low
and middle income countries, still poses a threat. PCP-TB co-
infection has been described in these patients, but not in HIV-
uninfected populations (146).

A number of adult studies have suggested that TB-fungal
co-infection with agents such as Candida and Aspergillus may
occur in between 6.5 and 40% of cases of pulmonary TB
(187, 188). Co-infection was more common in adult patients
with multidrug-resistant-TB, who were more likely to have
significant lung pathology. Chronic pulmonary aspergillosis
affects patients without obvious immune compromise, but with
concurrent or prior TB disease. Chronic pulmonary aspergillosis
has recently been recognized as an important global health
problem, associated with significant morbidity and mortality.
The most common predisposing factor is previously-treated TB,
independent of HIV infection (189). Although this is not seen
frequently in children, identifying, and treating TB promptly in
childhood may prevent chronic lung disease in adulthood.

MICROBIOME AND GASTROINTESTINAL
INFECTIONS

Between ten trillion and a hundred trillion organisms live
within, or on the surface of, each human being, termed the
human microbiota (190). The genetic material within these
organisms is referred to as the human microbiome. Although
the majority of the microbiome is within the gut, an important
population resides in the lung and cross-talk between the two,
termed the gut-lung axis, is emerging as a central concept

in our understanding of the microbiome (191, 192). Bacteria,
bacterial toxins, cytokines, metabolites, and hormones move
between the two populations through the bloodstream, with
the two communicating to each other and each influencing the
composition of the other.

The microbiome can impact on host immunology in a
number of ways (193). First, it can act as a barrier to
the overgrowth of other organisms, through what has been
termed colonization resistance. In this situation, competition
for limited resources limits the growth of non-microbiota
organisms. Second, it can impact on the innate immune
system, both through the stimulation of TLRs to produce
antimicrobial peptides (194) as well as through modulation
of innate immune cell development. Finally, in addition to
its impact on the innate system, the microbiota can also
prime the adaptive immune system, particularly in its mucosal
T-cell response.

Our understanding of the microbiome is rapidly progressing,
and there is increasing interest in the role of the microbiome
in TB pathogenesis, (195–197) and specific interest in the gut-
lung axis (198, 199). While a comprehensive review of the
microbiome and potential TB risk is beyond the scope of this
article, it is possible that the microbiome impacts on risk of
TB infection following exposure, risk of disease progression
following infection and also disease outcome. Although there
may be some mycobacterial exposure in the gut (mainly withM.
bovis), most mucosal interaction with M. tuberculosis is within
the lung. Wu et al. used 16S RNA sequencing to analyse and
compare the sputummicrobiota of adults with new TB, recurrent
TB, TB treatment failure and healthy controls, demonstrating
significant differences in the abundance of commensals between
the groups (200).

The lung microbiota may influence the host response at the
initial point of M. tuberculosis exposure, through colonization
resistance and stimulation of TLR-mediated responses (201).
However, as TB infection develops, stimulation of host immune
cells and cytokines is required to contain proliferation of the
mycobacteria, and it is likely that this is influenced by both
the lung and gut microbiomes. It has been demonstrated that
individuals infected with H. pylori, a bacteria that resides in the
stomach of nearly 50% of the world’s population, had higher
TB antigen-induced IFN-γ responses, compared to those with
negativeH. pylori serology. Those with positiveH. pylori serology
were also less likely to progress to TB disease compared to those
with negative serology (199).

The composition of the gut bacterial microbiome changes
with age (202). Soon after birth the neonatal gut is dominated
by Enterobacteriaceae. This is soon replaced by predominately
Bifidobacteria which continue to be the most commonly
represented class of bacteria until the child is weaned onto solids.
Following weaning, the adult pattern is seen with Bacteroides,
Prevotella, Ruminococcus, Clostridium, andVeillonella occupying
the gut (203).

In addition to the alterations in the microbiota seen
with age, the organisms that cause enteric infections, and
frequency of infections, also changes (204). Infants experience
infections with rotavirus, cryptosporidium, E. coli, Shigella
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and adenovirus most commonly. Children 12–23 months have
fewer infections but with similar pathogens. Children over
2 years, have fewer infections still mainly due to Shigella
and rotavirus (205). As rotavirus vaccination becomes more
widespread, this distribution will likely change. The relationship
between malnutrition, microbiome, intestinal infections, and
host immunological status is complex as interplay exists
between each of these and is beyond the scope of this review
(206–209). It is likely that this combination will impact on
TB pathogenesis.

HELMINTHS

Studies of the immune interactions between helminths and TB
have largely focused on the effect of co-infection on: the efficacy
of BCG vaccination; diagnostic tests for TB infection (TST and
IGRA); and the role of anti-helminthic treatment on TB outcome,
as measured by progression from TB infection to disease (210).
Results of these studies have been variable, likely reflecting
the diversity of environmental influences and possibly differing
immune responses induced by different helminth species.

The most common helminth infections globally are the
soil-transmitted intestinal helminths, including the roundworm
Ascaris lumbricoides, the hookworms Necator americanus and
Ancylostoma duodenale, the whipworm Trichuris trichiura, and
Enterobius vermicularis, and Strongyloides spp. Tissue damage
by these intestinal helminths during feeding and migration
results in production of danger associatedmolecular patterns and
induce an immune response characterized by IgE secretion, IgG4
production, eosinophilia, production of Th2 cytokines (IL-4, IL-
9, IL-10, IL-13) and induction of FOXP3+ regulatory T cells
and the associated regulatory cytokines Tumor Growth Factor-β
and IL-10. As with measles, it is hypothesized that this shift
away from Th1 responses is responsible for making individuals
infected with helminths more susceptible to TB infection and
disease. This regulation can affect not only responses to helminth
antigens, but also responses to unrelated antigens such as TB or
the BCG vaccine.

There is variability in studies of the influence of helminth
infection on diagnostic tests for TB infection, mostly focusing
on the TST. A recent South African study showed no impact of
deworming on either the TST or IGRA in children (211) however
Thomas and colleagues found an increase in indeterminate
results of IGRA assays (212). The influence of helminth infection
on progression to TB disease is similarly unclear. In one
study on recent immigrants to the UK, those patients with
helminth infection showed a significant increase in CD4+
FOXP3+ regulatory T cells compared to those without helminth
infection. Following anti-helminth treatment, the frequency of
regulatory T cells decreased, with an associated increase in IFN-γ
producing CD4+ T cells, demonstrating a potential mechanism
for susceptibility to TB disease (213). Although Indonesian
children with helminth infections had similar frequencies of
regulatory T cells in comparison with those without infections,
in vitro T-cell functional studies demonstrated suppressed
IFN-γ responses to whole blood stimulation with BCG and

Plasmodium falciparum, an effect that was reversed with
depletion of regulatory T cells (214). Furthermore, children
with ascaris or schistosomiasis infections showed significantly
increased Th2 responses to mycobacterial stimulation compared
to uninfected children, and these responses persisted for up to 6
months following confirmed successful anti-helminth treatment
in children with schistosomiasis, but not ascaris (215). In
addition, these children had also evidence of epigenetic changes
due to helminth infection, as measured by corresponding DNA
methylation signatures.

However, no longitudinal studies to date have been powered
to determine whether helminth infection influences progression
from TB infection to disease, or to confirm a direct relationship
between helminth infection and TB disease severity. While
in vitro studies clearly demonstrate that pre-exposure or co-
incident infection with filarial, hookworm, strongyloides and
schistosoma infections is associated with downregulated Th1
and Th17 responses and upregulate Th2 and Regulatory T
cells to mycobacterial antigens, (210, 213–215) these findings
have not been replicated in patients with TB disease, although
increased regulatory and Th2 responses have been shown in
patients with asymptomatic helminth infections and TB disease
(216). Adults from helminth endemic countries with TB disease
demonstrate a mixed Th1/Th2 picture, with reduced CD8+
T cells, while those from low helminth settings have a Th1,
IFN (type I and IFN-γ) predominant phenotype (217). In
Brazil and Ethiopia, patients with TB disease were more likely
to have intestinal helminths than those unaffected and co-
infection was associated with more advanced TB disease (218,
219). However, a randomized control trial showed no benefit
of anti-helminthic treatment on clinical improvement of TB
(220). An Indian study of more than 5000 patients over 10
years showed no effect of helminth co-infection on progression
to disease nor severity of disease in an adult population
although as helminth status was only measured at baseline, it
is difficult to draw definitive conclusions about this (221). In
endemic regions, the burden of helminthic infection peaks by
adolescence, suggesting at least partial protective immunity with
increasing age. Larger longitudinal studies in young children
could elucidate the impact of helminth co-infection on TB
disease progression.

MALARIA

Malaria kills more individuals each year than any other parasitic
disease, responsible for ∼445,000 deaths in 2016, most of them
young children in sub-Saharan Africa (9) Of the estimated 216
million cases of malaria worldwide in 2016, 90% took place in
the WHO African Region, followed by the WHO South-East
Asia region.

Protection against malaria is postulated to be mediated
by both cell mediated and humoral immune responses.
P. falciparum infection is characterized by the production of
pro-inflammatory cytokines including IL-1β, IL-6, IL-12, TNF-
α, IFN-γ, and associated Th1 cytokines (222). The variability in
the TNF-α response to endotoxins couldmediate differential host
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responses which contribute to severe malaria when TNF-α levels
are high (223). High levels of IFN-γ have also been associated
with severe malaria infection, but evidence is inconsistent
(224). Moreover, malaria has several immunomodulating effects
during acute infection including lymphopenia, decreased levels
of CD4+ T cells, and a functional immunosuppression greater
than can be attributed to the quantitative fall in CD4+
cells (225, 226).

Although the first published report of malaria TB co-infection
was in 1945, (227) there are only few papers published to date,
including a case of perinatal malaria and TB in an infant (228),
and several epidemiological surveys with prevalence varying
from 37% in hospitalized adult and pediatric TB patients in
Angola, to 4.3% among adult pulmonary TB patients in Tanzania
(229, 230). Co-infections have been studied in both animal
models and humans (226, 231–234), and biological interactions
seem to exist between P. falciparum,M. tuberculosis, and a shared
human host.

Malarial parasites decrease the host’s effective humoral
and cellular immune responses to M. tuberculosis, and in
experimental models co-infection exacerbates acute and chronic
mycobacterial infection (235, 236). In humans, co-infection
with malaria and TB seems to modulate the immune response
to confer immunological protection against malaria while
weakening response to TB (231). Chukwuanukwu et al. recently
showed that patients co-infected with malaria had an increase
in the production of Th2-associated cytokine IL-4 and anti-
inflammatory IL-10 in tuberculin-stimulated cells of TB patients
>12 years of age compared to malaria-free TB patients,
suggesting that malaria co-infection diverts immune response
toward a Th2/anti-inflammatory response (231). However, the
true impact on risk of infection and disease progression remains
unclear. Some authors suggest that TB co-infection has no impact
on the outcome of induced experimental cerebral malaria in mice
and attribute this to the induction of the inflammatory response
which rapidly dominates (233).

Malaria may also impact the ability to diagnose TB infection.
Drabe et al. evaluated the performance of IGRA and IP-
10 release assays in adult patients with concurrent malaria
in Tanzania and found that during malaria infection, IP-10
and IFN-γ levels in the unstimulated samples were elevated,
mitogen responsiveness was impaired and CD4 cell counts
were decreased (225). These alterations reverted rapidly after
malaria treatment.

In terms of the impact ofM. tuberculosis onmalaria immunity,
animal models suggest that M. tuberculosis offers some non-
specific protection against rodent plasmodium, reflected by
reduced parasitaemia due to mycobacterium-induced pro-
inflammatory response (IFN-γ and TNF-α mediated activation
of macrophages) (235, 237).

Beyond the complex immunological interactions described
above, both diseases seem to share common pathogenesis
pathways and genetic factors affecting susceptibility. First, matrix
metalloproteinases (MMP), a family of proteolytic enzymes
involved in modulating inflammatory response, disrupting tight
junctions and degrading sub-endothelial basal lamina, seem to
play a critical role in both TB and cerebral malaria pathogenesis

(238–240). Data from in vitro and in vivo studies suggest that
MMP might be involved in the pathogenesis of cerebral malaria
through blood brain barrier damage and leakage as well as
through induced inflammatory response. In addition, MMP-1
and MMP-9, as well as other MMP, have been implicated in
lung matrix destruction in TB through degradation of fibrillar
collagens and other matrix components. MMP-9 concentrations
are also increased in the cerebrospinal fluid of patients with
TB meningitis and correlated with extent of neurological
compromise (238). Moreover, it has recently been suggested that,
through complement-mediated lysis, α-Gal immunity might
protect against malaria, TB, as well as other NTM, leishmania and
trypanosoma; all of which express α-Gal on their surface (241,
242). Although the direct association between blood type, low
α-Gal antibody titres and susceptibility to pathogens containing
α-Gal still remains to be verified, Cabezas-Cruz et al. suggest that
blood type B decreases the anti-α-Gal antibody levels increasing
the risk of malaria or TB (242). It has been shown that the
incidence of blood type B is positively correlated with the
incidence of malaria and TB, but not dengue, which does not
produce α-Gal antigen.

OTHER PROTOZOA

Besides malaria, multiple other protozoa, including leishmania,
trichomona, toxoplasma, giardia and entamoeba, have been
described in co-infection with TB although the literature is
limited to several case reports, few epidemiological surveys
and some immunological research (236). Among non-malaria
protozoa, leishmaniasis, a vector borne zoonosis caused by an
intracellular pathogen, is reported to co-exist more frequently
with TB. In Sudan, up to 77% of TB patients (adult and
children) were positive for the leishmania skin test in the
community (243). In a systematic review of TB and parasites
co-infection published in 2013, the authors found that TB
and parasitic diseases were reported as risk factors for each
other (236). Two studies conducted in Sudan and Ethiopia
evaluated the inter-relationship of TB and parasitic diseases
and reported that the risk of TB was higher in patients who
were Leishmania donovani positive or Giardia lamblia positive
(243, 244). Likewise, TB patients were more easily infected by
Leishmania donovani and Giardia lamblia than those without
pulmonary TB.

Several reports (245–247), including a pediatric case (248),
have described the potential immunological changes observed
during co-infection of leishmania and TB, the development
of both depends on impaired cell-mediated immunity. A case
report on the triple infection of leishmania, M. tuberculosis, and
M. lepra showed that the adult patient, with no recognized
immunodeficiency, was unable to mount a Th-cell response to
upregulate the IL-12 receptor expression after stimulation of the
triple infection (245). It has recently been suggested that TB could
be a decisive contributing factor to the high mortality observed
in patients with visceral leishmaniasis and HIV, although the
authors conclude that the true prevalence and impact of co-
infection remain unclear (246).
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TABLE 2 | Type of vaccines and how they may influence susceptibility and protection to tuberculosis in children.

Type of vaccine Examples of vaccine Immune responses* Possible influence on TB immunity

Live attenuated vaccine • Measles, mumps Rubella (MMR)

• Rotavirus

• Varicella

• Yellow Fever

• BCG

1. Induce cytotoxic T cells CD4 and CD8

2. Heterologous immune responses, in

particular BCG

1. Cytotoxic T cells more IFN—greater anti-TB immune responses

2. Possible mechanism for protection against disseminated BCG

Inactivated vaccine • Hepatitis

• Influenza A

• Inactivated polio

Th2 stimulation

IL2, IL4, IL5, IL6

B cell activation,

Memory B cell IgM to IgG class switch

Th2 predominant—less effective anti-TB immune response

Toxoid vaccines • Diphtheria

• Tetanus

Th2 stimulation

B cell activation

Memory B cell IgM to IgG class switch

Th2 predominant—less effective anti-TB immune response

Subunit/conjugate • Haemophilus influenza b (Hib)

• Pneumococcus

• Meningococcal B & C

• Hepatitis B

• Human papillomavirus

Polysaccheride vaccines—T cell

independent response, no Th2

Conjugate vaccines—T cell dependent

Th2, more specific than toxoid

Th2 predominant—less effective anti-TB immune response

*Not complete list of immune responses, describing commonest, or predominant immune response.

VACCINATIONS

As discussed above, infants, and young children are highly
susceptible to both TB infection and disease and we have
described how a variety of childhood infections, many of which
are most common in the early years, may impact on immune
responses essential to protection from TB. During these early
years, infants also receive several routine vaccinations, both live
and inactivated, that may also have an immunomodulatory effect
on TB susceptibility (Table 2).

Antigen specific induction of T and B lymphocytes and the
“adaptive” immune system have traditionally been ascribed the
role of vaccine-induced protection. However, cells in the innate
immune system, such as monocytes, macrophages, dendritic
cells, and NK cells, appear to be influenced by contact with
a variety of antigens, leading to functional reprogramming,
which facilitates rapid, enhanced responses to future, non-
specific threats—termed “trained immunity.” The duration and
mechanisms by which this long-term innate immunity is induced
are the subject of extensive research (249).

BCG is a live, attenuated vaccine that is widely administered
to infants in most areas endemic for TB and although it provides
imperfect protection against TB infection and disease, it does
result in at least partial protection against severe manifestations
of TB disease during the first years of life (250, 251). The
BCG vaccine unfortunately does not protect all infants from
dissemination ofM. tuberculosis, and why it works for some and
not for others is still not sufficiently explained through immune
mechanisms (252). Recently, in a study of adult BCG vaccinated
healthy volunteers, cytokines associated with trained immunity,
TNF-α, IL-1β, and IL-6 were found to be induced, and associated
with control of mycobacterial growth in an inhibition assay
(253). Novel markers of trained immunity, CXCL-9 and CXCL-
10 were also identified in this study. Both helminth infection and
NTM infection have been implicated in variable BCG responses,
although the evidence is variable and no definitive study has
confirmed a mechanism to date.

Most efficacious vaccines induce antibody mediated
protection, and although there is some evidence that antibody
responses may mediate some protection against TB, this has not
been explored, or understood to the same extent as cell-mediated
responses (254, 255). Recently, total IgG levels were found to be
protective against TB infection as measured by IGRA positivity
in infants. There was a trend toward a protective effect of BCG
and measles IgG to Quantiferon positivity, and the authors
concluded that BCG and measles vaccination may provide
heterologous protection against M. tuberculosis infection,
however this is speculative, and numbers were small. Conversely,
as mentioned above, measles vaccination has previously been
associated with hypo-responsiveness to the TST (256, 257).

A relationship between S. pneumoniae and TB has been
explored. In a clinical trial of a 9-valent polysaccharide
pneumococcal vaccine, South African children who received the
vaccine were 43% less likely to be hospitalized with culture-
confirmed pulmonary TB than those who received placebo.
In HIV-infected children, vaccines were 47% less likely to
be diagnosed with culture-confirmed pulmonary TB compared
to placebo recipients. These observations were attributed
to pneumococcal infections precipitating hospitalisations and
diagnosis of pulmonary TB (258). However, a subsequent study
by the same group looking at the trends in pediatric pulmonary
TB hospitalisations found no evidence for an effect of the
vaccine (259). Limited studies exist on whether other vaccines
may increase or decrease the susceptibility of infants and young
children to TB and further studies are warranted.

RESEARCH PRIORITIES

A great deal of further work is required to better understand
the relationship between TB and other infections. We need more
details of the epidemiology of co-infections to understand how
commonly they occur and in which patient populations they
take place. We need to know more about how co-infections
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TABLE 3 | Potential study designs to answer the priority research questions in the field of tuberculosis co-infections.

Type of research Research question Research design

Basic science research • Does co-infection influence

mycobacterial immune responses?

• Evaluate interaction between host and M. tuberculosis by stimulating blood from children

infected with various pathogens to M. tuberculosis in the laboratory

• In vitro assessment of immunological impact of co-infection of blood with variety of pathogens

and mycobacteria in vitro

• Impact on novel diagnostics based on host transcriptomics. Presumed altered results if

different co-infections—need to include diagnostic tests for co-infection as part of

these studies

Surveys of disease

prevalence

• Describe the epidemiology of

TB-pathogen co-infection in a variety of

geographical areas

• Describe the impact of other

environmental factors/interventions on

TB exposure outcomes

• Quantify how common co-infections are in children of different ages, in different geographical

areas and evaluate in: (a) all children; (b) children exposed to TB; (c) children with TB infection;

(d) children with TB disease. These studies would also ideally collect samples for serological

analyses, transcriptomics, presences of pathogen particles in blood (antigen/PCR) and culture

samples from blood or other sites

• Determine the effect of malnutrition (worsening of microbiome and associated with helminth),

HIV, and other comorbidities on the immune response to TB

Longitudinal cohorts • Describe the natural history of TB

exposure in children following a variety

of different exposures/interventions

• Mother -infant and birth cohort studies—exploring influence of co-infections on mycobacterial

responses or outcomes following household TB exposure

• TB natural history studies—observational and interventional cohorts taking part in MDR-TB

chemoprophylaxis studies

• Infants born to mothers taking part in maternal vaccination studies—these infants will be

having samples taken to explore the impact of maternal immunization on their vaccine

responses, need to gather data on co-infections, TB exposure and outcome as part of

these studies

Vaccine cohorts • Do co-infections affect efficacy or

immunogenicity of novel vaccine

candidates

• Explore influence of co-infections on pediatric and adult cohorts taking part in novel vaccine

studies. These studies would also ideally collect samples for serological analyses,

transcriptomics, presences of pathogen particles in blood (antigen/PCR), and culture

samples from blood or other sites and analyse the impact of various pathogens isolated

Direct studies of

co-infection

• Do interventions to change co-infections

alter outcome following TB exposure

Evaluation of host directed therapies to mitigate effects of co-infections.

Evaluation of novel vaccine candidates, or booster doses of BCG to mitigate effects of

co-infections

Explore the role of vaccines against specific pathogens in protecting against TB—e.g.,

measles, CMV, Influenza, etc.

Programmatic changes • Can optimisation of current

programmes improve TB outcomes

• PMTCT—great success, what can we do to improve it, and improved access to ARV in those

who are infected, in particular young women who may become pregnant

• Impact of interventions which may influence early childhood illnesses impact on the risk and

outcomes of TB (i.e., promotion of maternal health and antenatal care, which may in turn

influence microbiome, birth weight, maternal antibody transfer, and protection)

impact on a child’s immune system, specifically in relation to
the way that the host responds to M. tuberculosis, and also how
this changes with age. A more comprehensive understanding
of the effect of co-infections on the diagnosis and treatment
of children with TB would help manage children with both
illnesses and finally it would be useful to understand how
vaccination strategies for co-infections might impact on the
pathogenesis of TB in children. We outline some of these
issues in Table 3.

CONCLUSIONS

This review suggests that for many children in low resource
settings co-infections are common and it is likely that
many childhood illnesses impact on the host response to
M. tuberculosis, affecting risk of TB infection and disease.
Vaccinations are also important, both for direct protection
from the pathogens vaccines are designed for, but also for
the indirect protection from vaccines such as BCG and
measles. Better understanding the relationship between

co-infections and TB may allow clinicians to improve
the care of children at every stage of TB pathogenesis,
through early treatment of co-infections, immunomodulation,
or vaccination.
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