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Abstract

Microglia-mediated inflammation is implicated in pathogenesis of neurodegenerative diseases. Oroxylin A, a flavonoid
isolated from Scutellariae baicalensis, has been shown to ameliorate microglia activation-mediated neurodegeneration in
vivo. The molecular mechanism underlying the inhibitory effects of oroxylin A on microglia activation, however, remains
unknown. In the present study, effects of oroxylin A co-treated with lipopolysaccharide (LPS, 100 ng/ml) on LPS-induced
activation of cultured microglial BV-2 cells were examined. Nitric oxide (NO) production was determined by Greiss method.
Expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-1b and IL-6 was assessed using real-time RT-PCR or
Western blot analysis. Furthermore, activation of the nuclear factor kB (NFkB) and the signal transducer and activator of
transcription 1 (STAT1) was examined by Western blot analysis and transcription factor DNA-binding activity assay. Our
results indicated that oroxylin A (10–100 mM) in a concentration-dependent manner inhibited LPS-induced NO production
via blocking iNOS expression at both mRNA and protein levels without affecting the degradation rate of iNOS mRNA.
Moreover, oroxylin A significantly attenuated LPS-induced late expression (20 hours after LPS challenge) of IL-1b and IL-6.
Furthermore, oroxylin A significantly suppressed LPS-induced JAK2-mediated STAT1 phosphorylation without affecting LPS-
induced NFkB-p65 nuclear translocation or NFkB-p65 DNA-binding activity. This is consistent with the finding that AG490, a
specific JAK2 inhibitor, significantly inhibited LPS-induced STAT1 phosphorylation with almost completely diminished iNOS
expression. These results suggest that oroxylin A, via suppressing STAT1 phosphorylation, inhibits LPS-induced expression
of pro-inflammatory genes in BV-2 microglial cells.
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Introduction

Accumulating evidence suggests that inflammation play a

critical role in neurodegenerative diseases, including Parkinson’s

disease [1], Alzheimer’s disease [2], Huntington’s disease [3] and

multiple sclerosis [4]. The inflammation in the central nervous

system (CNS) is primarily mediated by microglia [5] which are

resident innate immune cells in the CNS. Microglia are readily

activated by danger signals, such as molecules released from

damaged cells or components found on pathogens [6]. Activation

of microglia is indispensible for clearance of cell debris or invading

pathogens [5,7]. However, the prolonged and massive activation

of microglia with excessive production of pro-inflammatory factors

is thought, in part, responsible for inflammation-induced neuro-

degeneration [6,8].

Nitric oxide (NO), produced by inducible nitric oxide synthase

(iNOS) in microglia, is one of the best characterized pro-

inflammatory factors that induce neuronal death. It has been

demonstrated that iNOS-deficient mice exhibited less neuronal

loss in a Parkinson’s disease animal model [9]. Moreover,

inhibition of iNOS prevented microglia-mediated neuronal death,

indicating that NO plays a pivotal role in microglia-mediated

neurotoxicity [10]. In addition to NO, interleukins (ILs) such as

IL-1b and IL-6 also play critical roles in microglia-mediated

neurodegeneration [8,11,12].

The signal transductions in the intracellular milieu induced by

lipopolysaccharide (LPS), a bacterial endotoxin widely used for

studying experimental inflammation, eventually lead to the

activation of transcription factors, including nuclear factor kB

(NFkB) and signal transducer and activator of transcription 1

(STAT1), which mediate the expression of iNOS and interleukins.

NFkB, which exists primarily as a p50/p65 heterodimer, is

retained in the cytoplasm through its association with inhibitory

kB (IkB) [13]. LPS induces the degradation of IkB, which leads to

the nuclear translocation of NFkB, resulting in the transcription of

NFkB-responsive genes. Likely, LPS induces phosphorylation of

STAT1, resulting in the dimerization and nuclear translocation of

STAT1, followed by transcription of STAT1-responsive genes.
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STAT1 phosphorylation induced by LPS requires de novo synthesis

of interferons (IFNs) [14], which in an autocrine/paracrine

manner triggers the activation of IFN receptors, resulting in the

recruitment and the activation of Janus kinase (JAK), and, in turn,

stimulating the phosphorylation of STAT1 [15]. Accordingly,

activation of STAT1 in response to LPS is delayed compared with

that of NFkB. Although several plant flavonoids have been

reported to attenuate the expression of iNOS and interleukins via

inhibiting NFkB activation [16], it has also been demonstrated

that extracts of green tea and American ginseng preferentially

suppress the activation of STAT1, but not that of NFkB, in

inhibiting iNOS expression in macrophages and epithelial cells

[17,18]. Hence, we are interested in the roles of NFkB and

STAT1, and their influence by plant flavonoids in mediating

expression of iNOS and/or interleukins in different cell types such

as microglia.

Oroxylin A, 5,7-Dihydroxy-6-methoxyflavone, was isolated

from herbal medicine Scutellariae baicalensis (S. baicalensis). Our

previous study demonstrated that oroxylin A suppressed LPS-

induced iNOS and cyclooxygenase-2 expression through inhibit-

ing the activation of NFkB-p65 in RAW264.7 macrophages [19].

Also, it was recently reported that oroxylin A and its analogues

exhibited strong inhibitory activities against LPS-induced NO

production in microglia [20]. Furthermore, results from in vivo

studies indicated that oroxylin A prevented cerebral hypoperfu-

sion-induced neuronal damage [21], and that oroxylin A

ameliorated amyloid (Ab)-induced memory impairment [22].

Oroxylin A, therefore, exhibits anti-inflammatory and neuropro-

tective effects [16]. Whether oroxylin A works by inhibiting the

expression of pro-inflammatory genes in microglia to reduce

neuronal damage, however, remains unclarified.

In the present study, we aimed to examine the molecular

mechanisms by which oroxylin A inhibited LPS-induced activa-

tion of microglial BV-2 cells. Our results indicated that oroxylin A,

via inhibiting STAT1 phosphorylation, blocked LPS-induced

expression of pro-inflammatory genes, including iNOS, IL-1b
and IL-6.

Results

Oroxylin A inhibited LPS-induced NO production and
iNOS expression in BV-2 cells

Oroxylin A (10–100 mM) in a concentration-dependent manner

attenuated LPS (100 ng/ml)-induced NO production in BV-2

cells, with maximum inhibition at 50 mM (Fig. 1A). LPS-induced

increase of iNOS proteins also was reduced by oroxylin A (10–

100 mM) in a concentration dependent manner with maximum

inhibition at 100 mM (Fig. 1B). In parallel, LPS-induced up-

regulation of iNOS mRNA was suppressed by oroxylin A in a

concentration dependent manner with maximum suppression at

50 mM (Fig. 1C).

Oroxylin A did not affect the degradation rate of iNOS
mRNA

20 hours after LPS (100 ng/ml) stimulation, all transcriptional

activity was stopped by Actinomycin D (ActD, 0.1 mg/ml). The

level of iNOS mRNA at the time of ActD addition was regarded as

100%, and the decay of iNOS mRNA against time was shown in

Fig. 2. In the presence of oroxylin A (50 mM), the half-life of iNOS

mRNA was not significantly different from that of vehicle groups

(t1/2 value of 5.360.5 for oroxylin A vs. t1/2 value of 4.160.3 for

vehicle, p.0.05).

Oroxylin A did not affect BV-2 cell viability
Oroxylin A with concentrations up to 100 mM did not

significantly affect the viability of BV-2 cells in the presence of

LPS (100 ng/ml) compared to the LPS-treated control group

(Fig. 3). Oroxylin A at 100 mM alone did not affect the cell

viability compared to the vehicle-treated group.

Oroxylin A inhibited the late expression of IL-1b and IL-6
in BV-2 cells

The possibility that oroxylin A inhibited both the early and the

late expression of IL-1b and IL-6 was examined. Incubation of

BV-2 cells with LPS (100 ng/ml) for 1 hour resulted in 70- and

30-fold induction of IL-1b and IL-6 mRNA (the early expression),

respectively (Fig. 4A). Both inductions were not significantly

affected by its co-treatment with oroxylin A (50 mM). However,

20 hours after LPS treatment, the induction of IL-1b (300-fold)

and IL-6 mRNA (1500-fold) by LPS (the late expression) was

reduced significantly by co-treatment with oroxylin A (Fig. 4B).

Oroxylin A did not affect LPS-induced nuclear
accumulation of NFkB-p65

After LPS (100 ng/ml) stimulation, NFkB-p65 proteins in the

nucleus significantly increased in 15 minutes and reached the peak

in 30 minutes (Fig. 5A). Thereafter, the level of nuclear NFkB-p65

declined while LPS was still present in the medium, although it

was still higher than that of the control group in 6 hours after LPS

treatment. This LPS-induced time-dependent nuclear accumula-

tion of NFkB-p65 was not significantly affected by oroxylin A

(50 mM) at any time point measured after LPS treatment. As a

positive control, BAY 11-7082 (5 mM), a NFkB inhibitor [23],

significantly attenuated the nuclear translocation of NFkB-p65

(Fig. 5B).

Oroxylin A did not affect NFkB-p65 DNA-binding activity
We further determined whether the DNA-binding activity of

NFkB-p65 in the nucleus was reduced by oroxylin A. NFkB-p65

DNA-binding activity was significantly increased 30 minutes after

LPS stimulation as compared to that in 0 minute (data not shown).

This increase of NFkB-p65 DNA-binding activity was not

significantly affected by oroxylin A (50 mM, Fig. 5C).

Oroxylin A inhibited LPS-induced activation of STAT1
Different from the activation time course of NFkB-p65, the

phosphorylation of STAT1 induced by LPS (100 ng/ml) was not

observed until 3 hours after LPS (100 ng/ml) challenge, and the

level of STAT1 phosphorylation was even higher 6 hours after

LPS challenge (Fig. 6). Oroxylin A (50 mM) significantly reduced

the STAT1 phosphorylation 3 and 6 hours after LPS challenge by

85% and 70%, respectively. Since phosphorylation of STAT1 is

dependent on the kinase activity of JAK2 [18], effects of AG490, a

specific JAK2 inhibitor [18], on STAT1 phosphorylation in BV-2

cells was examined. AG490 (20 mM) significantly inhibited LPS-

induced STAT1 phosphorylation (Fig. 7A) with almost completely

diminished iNOS expression in BV-2 cells (Fig. 7B).

Discussion

Activation of microglia is an important process involved in

repairing brain injuries. Over-activation of microglia, however,

can be highly detrimental to neuronal cells, due to release of

several pro-inflammatory factors such as NO, IL-1b and IL-6

which are potentially neurotoxic [6,8]. Accordingly, inhibition of

microglia activation and production of pro-inflammatory factors

STAT1 Mediates Oroxylin A Inhibitory Effects
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may be beneficial in reversing microglia-mediated neurodegener-

ation. The present study demonstrated for the first time that

oroxylin A via suppressing STAT1 phosphorylation inhibited

LPS-induced expression of iNOS (and production of NO), IL-1b
and IL-6 in microglial cells.

Our present findings are consistent with previous reports that

oroxylin A attenuates LPS-induced NO production in RAW264.7

macrophages and microglial cells [19,20]. In addition, inhibition

of NO production in microglia reduces the loss of co-cultured

neuronal cells [10,24]. These results favor the hypothesis that

oroxylin A is beneficial in microglia-mediated NO-induced

neurotoxicity. NO synthesis is mainly catalyzed by iNOS in

activated microglia [25]. In the present study, both up-regulated

protein and mRNA levels of iNOS induced by LPS in BV-2 cells

were attenuated by oroxylin A, further indicating that oroxylin A

reduced NO production via inhibiting iNOS expression in BV-2

cells. This is consistent with that reported by others in

macrophages and microglial cells [26–28].

Modulation of mRNA stability, i.e. the degradation rate of

mRNA, is an important post-transcriptional mechanism in

regulating iNOS gene expression [29]. It has been reported that

c-Jun NH2-terminal kinase inhibitor reduced iNOS expression via

facilitating its mRNA degradation in macrophages [30]. However,

no appreciable effect of oroxylin A on the half-life of iNOS mRNA

was found in BV-2 cells, suggesting that oroxylin A did not affect

the process of iNOS mRNA degradation. This is consistent with

reports by others demonstrating that inhibition of iNOS expres-

sion did not result from facilitating its mRNA degradation but

from suppressing its transcription in macrophages and microglial

cells [26–28]. Thus, oroxylin A reduction of iNOS mRNA is most

likely due to its gene regulation at the transcriptional level.

It has been demonstrated that NFkB-p65 is required for the

transcription of iNOS [31]. In the present study, neither LPS-

induced NFkB-p65 translocation nor NFkB-p65-DNA binding

activity was affected by oroxylin A, suggesting that oroxylin A

inhibition of LPS-induced iNOS expression is unlikely resulted

from suppressing NFkB-p65 activation. This is consistent with

reports by others showing that attenuation of LPS-induced iNOS

expression is not necessarily accompanied by suppressing NFkB-

p65 activation in macrophages or glial cells [17,18,28,32].

Figure 1. Oroxylin A attenuation of LPS-induced NO production and iNOS expression in BV-2 cells. (A) BV-2 cells were cultured in a 24-
well plate at 56104 cells/well and were exposed to oroxylin A (Oro-A, 10–100 mM) and LPS (100 ng/ml) for 24 hours. The NO concentration in the
medium was measured by Griess reaction. All results are normalized to LPS-treated control group and are means6SEM from three independent
experiments in triplicates. (B) BV-2 cells (26106 cells) cultured in a 10-cm Petri-dish were treated with LPS (100 ng/ml) and oroxylin A (10–100 mM).
After 24 hours, cells were harvested and total proteins were subjected to Western blot analysis using specific antibodies against iNOS and actin. A
representative Western blot for iNOS and actin is shown in upper panel. The ratios of iNOS to actin are shown in bottom panel. Results are
means6SEM from three independent experiments. (C) BV-2 cells (56104 cells/well) were incubated with LPS (100 ng/ml) and oroxylin A (10–100 mM)
for 20 hours. Total mRNA was then isolated and converted to cDNA, followed by quantification of iNOS mRNA levels by real-time PCR. Levels of iNOS
mRNA are normalized to that of actin mRNA. Results are expressed as fold induction relative to vehicle-treated cells, and are mean6SEM from three
independent experiments. #, p,0.05, one-way ANOVA followed by Tukey’s post hoc test compared with vehicle-treated cells. *, p,0.05, one-way
ANOVA followed by Tukey’s post hoc test compared with LPS-treated cells.
doi:10.1371/journal.pone.0050363.g001

STAT1 Mediates Oroxylin A Inhibitory Effects
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It has been reported that LPS-induced IFNs mediate the

phosphorylation of STAT1 which is involved in controlling the

timing of iNOS expression [15]. It also has been shown that

AG490, a specific JAK2 inhibitor, via inhibiting the phosphory-

lation of STAT1, attenuated LPS-induced iNOS expression [18].

These results suggest that JAK2-mediated STAT1 phosphoryla-

tion plays an important role in iNOS expression. In the present

study, we also found that AG490 inhibited LPS-induced STAT1

phosphorylation resulting in attenuation of iNOS expression in

BV-2 cells. Interestingly, LPS-induced STAT1 phosphorylation

was inhibited by oroxylin A. Accordingly, oroxylin A attenuation

of LPS-induced iNOS expression is likely via inhibiting STAT1

phosphorylation in BV-2 cells.

We, however, reported previously that oroxylin A attenuation of

LPS-induced iNOS expression in RAW264.7 macrophages was

mediated by inhibiting NFkB-p65 activation [19]. The exact

reason for the difference between effects of oroxylin A on

RAW264.7 macrophages and BV-2 cells is not known. It,

however, has been reported that responses to the same stimulus

of microglia and macrophages, which are derived from the same

origin, can be distinct based on the differences in their gene

expression and function [33]. It appears that oroxylin A acts in a

cell-type-dependent manner. The cell-dependent phenomena for

several other compounds have been reported. For instance, cAMP

inhibition of LPS-induced iNOS expression in C6 glioma cells was

via suppressing the phosphorylation of p38-MAPK, while in

RAW264.7 macrophages LPS-induced p38-MAPK phosphoryla-

tion was not affected by cAMP which, on the contrary, up-

regulated iNOS expression [34]. Moreover, 15-deoxy-delta 12,14-

prostaglandin J2 (15d-PGJ2) inhibited LPS-induced iNOS expres-

sion without affecting NFkB-p65 translocation or NFkB-p65-DNA

binding activity in microglial BV-2 cells [35]. In RAW264.7

macrophages, however, inhibition of iNOS expression by 15d-

PGJ2 was associated with suppression of NFkB-p65 nuclear

translocation [36].

Here, we showed that LPS induced the early expression of IL-

1b and IL-6 in 1 hour and in 20 hours (the late expression) after

LPS challenge in BV-2 cells. However, only the late expression of

Figure 2. Lack of effect of oroxylin A on iNOS mRNA stability in
BV-2 cells. BV-2 cells (56104 cells/well) were treated with LPS (100 ng/
ml) for 20 hours. Subsequently, cells were incubated with ActD (0.1 mg/
ml), a transcription inhibitor, and oroxylin A (Oro-A, 50 mM)/vehicle for
indicated time periods. Total mRNA was then isolated and iNOS mRNA
levels were quantified by real-time RT-PCR. The iNOS mRNA level when
ActD was added was regarded as 100%, and the linear regression
against time was plotted. Results are means6SEM from three
independent experiments.
doi:10.1371/journal.pone.0050363.g002

Figure 3. Effects of oroxylin A on cell viability. BV-2 cells (56104

cells/well) were exposed to LPS (100 ng/ml) and oroxylin A (Oro-A, 10–
100 mM) for 24 hours. Subsequently, the cell viability was determined
by MTT assay. Results are expressed as percent of vehicle-treated group
and are means6SEM from three independent experiments in triplicates.
doi:10.1371/journal.pone.0050363.g003

Figure 4. Effects of oroxylin A on LPS-induced expression of IL-
1b and IL-6 in BV-2 cells. BV-2 cells (56104 cells/well) were co-treated
with LPS (100 ng/ml) and oroxylin A (Oro-A, 50 mM). Effects of oroxylin
A on LPS-induced increase of IL-1b and IL-6 mRNA were determined in
(A) 1 hour and (B) 20 hours by real-time RT-PCR. Results are expressed
as fold increase of target mRNA relative to the mRNA level in 0 hour,
and are mean6SEM from three independent experiments. n.s., not
significant, compared with LPS-treated cells. *, p,0.05, Student’s t-test
compared with LPS-treated cells.
doi:10.1371/journal.pone.0050363.g004

STAT1 Mediates Oroxylin A Inhibitory Effects
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IL-1b and IL-6 was inhibited by oroxylin A. It is well known that

expression of IL-1b and IL-6 is regulated by both NFkB and

STAT1 [37]. The timing of early expression of IL-1b and IL-6 was

correlated to that of NFkB-p65 activation (Fig. 5), suggesting that

NFkB-p65 is involved in the early expression of IL-1b and IL-6.

The finding that oroxylin A did not affect LPS-induced activation

of NFkB-p65 provides an explanation that LPS-induced early

expression of IL-1b and IL-6 was not inhibited by oroxylin A. On

the other hand, activation of STAT1 began 3 hours after LPS

stimulation, indicating that STAT1 is not likely associated with

LPS-induced early expression of IL-1b and IL-6. However, it was

demonstrated that JAK2 knockdown resulted in suppression of

LPS-induced production of IL-1b and IL-6 by 24 hours [38],

suggesting that JAK2-STAT1 signaling pathway is involved in late

expression of these two pro-inflammatory cytokines. This is

consistent with the present findings that oroxylin A inhibition of

STAT1 activation was accompanied by suppressing LPS-induced

expression of IL-1b and IL-6 20 hours after LPS challenge. It is

likely that oroxylin A, via inhibiting STAT1 activation, suppresses

the late expression of IL-1b and IL-6. In this regard, it is

interesting to note that over-expressing suppressor of cytokine

signaling 1 (SOCS1), which was demonstrated to inhibit STAT1

but not NFkB activation, inhibited LPS-induced late production of

tumor necrosis factor (TNF) and IL-6, while the early production

of TNF was not affected [39].

In conclusion, we demonstrated that oroxylin A inhibited LPS-

induced activation of BV-2 miroglial cells. Oroxylin A attenuation

of production of NO and expression of iNOS, IL-1b and IL-6 was

via suppressing STAT1 phosphorylation. Since massive activation

of microglia with excessive production of pro-inflammatory factors

is associated with inflammation-induced neuronal death [8], our

results suggest that oroxylin A may be beneficial in inflammation-

induced microglia-mediated neurodegeneration.

Materials and Methods

Cell culture
The murine microglial cell line BV-2 originally developed by

Dr. Blasi [40] was generously provided by Dr. Liang YC (School

of Medical Laboratory Science and Biotechnology, Taipei

Figure 5. Failure of oroxylin A to inhibit LPS-induced activation of NFkB-p65 in BV-2 cells. (A) BV-2 cells (26106 cells/dish) were
incubated with LPS (100 ng/ml) and oroxylin A (Oro-A, 50 mM) for indicated time periods. Nuclear proteins were then isolated and examined by
Western blot analysis using specific antibodies against NFkB-p65 and HDAC1. HDAC1 is used as nuclear internal control here. A representative
Western blot for NFkB-p65 and HDAC1 is shown in upper panel. The ratio of NFkB-p65 to HDAC1 is calculated and shown in bottom panel. (B) Cells
(26106 cells/dish) were incubated with a NFkB inhibitor, BAY 11-7082 (BAY, 5 mM), or oroxylin A (Oro-A, 50 mM) in the presence of LPS (100 ng/ml) for
30 minutes. Nuclear proteins were then isolated and examined by Western blot analysis using specific antibodies against NFkB-p65 and HDAC1. A
representative Western blot for NFkB-p65 and HDAC1 is shown in upper panel. The ratio of NFkB-p65 to HDAC1 is showed in bottom panel. (C) Cells
(26106 cells/dish) were exposed to LPS (100 ng/ml) and oroxylin A (50 mM) for 30 minutes. Nuclear proteins were then isolated and subjected to
transcription factor DNA-binding activity assay. All results are expressed as means6SEM from three independent experiments. n.s., not significant,
compared with LPS-treated cells. #, p,0.05, one-way ANOVA followed by Tukey’s post hoc test compared with vehicle-treated cells; *, p,0.05, one-
way ANOVA followed by Tukey’s post hoc test compared with LPS-treated cells.
doi:10.1371/journal.pone.0050363.g005

STAT1 Mediates Oroxylin A Inhibitory Effects
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Medical University, Taipei, Taiwan). BV-2 cells were cultured and

maintained in Dulbecco’s modified Eagle’s medium (DMEM;

HyClone, Logan, UT, USA) containing heat-inactivated 10% fetal

bovine serum (FBS; Invitrogen, Carlsbad, CA, USA) and

antibiotics (100 units/ml penicillin G and 100 units/ml strepto-

mycin; Invitrogen) at 37uC in a humidified incubator under 5%

CO2. Upon confluence, BV-2 cells were sub-cultured in a 24-well

plate or 10-cm Petri dish for various experimental purposes. In all

experiments, BV-2 cells were incubated in DMEM containing 2%

FBS and treated with or without lipopolysccharide (LPS; Sigma-

Aldrich, St. Louis, Missouri, USA) in the presence or absence of

oroxylin A. In examining effects of oroxylin A on LPS-induced

activation of BV-2 cells, oroxylin A and LPS were co-treated at the

same time.

Griess reaction
BV-2 cells cultured in 24-well plates at 56104 were incubated

with oroxylin A (10–100 mM) and LPS (100 ng/ml) for 24 hours.

The nitrite concentrations in the culture medium, indicative of

NO production, were measured colorimetrically by Griess

reaction [19]. Briefly, 100 ml of culture medium was mixed with

an equal volume of Griess reagent (1% sulfanilamide/0.1% N-1-

naphthyl)-ethyl-enediaminedihydrochloride/2.5% H3PO4; Sigma-

Aldrich). After five-minute incubation, the absorbance at 550 nm

was determined using a microplate reader (Molecular Devices,

Sunnyvale, CA, USA). Sodium nitrite was used as a standard to

calculate the concentration of nitrite in culture medium.

MTT assay
The cell viability was measured colorimetrically using 3- (4,5-

cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT,

Sigma-Aldrich). MTT is actively catalyzed by mitochondrial

succinate dehydrogenase to form formazan in live cells. Formation

of formazan is therefore used as an indicator of the cell viability.

BV-2 cells cultured in 24-well plates at 56104 were treated with

oroxylin A and LPS for 24 hours, followed by incubation of MTT

(0.5 mg/ml) for additional 4 hours. The formazan formed in cells

were dissolved by dimethyl sulfoxide (DMSO; Sigma-Aldrich) and

read at 565 nm using a microplate reader.

Western blot analysis
BV-2 cells were cultured in 10-cm Petri dish at 26106 and

treated with oroxylin A (10–100 mM) and LPS (100 ng/ml) for

various time periods. At indicated time points, BV-2 cells were

lysed using PRO-PREPTM protein extraction solution (iNtRON

Biotechnology, Seoul, Korea) to collect total protein extracts, or

using the Nuclear Extract Kit (Active Motif, Tokyo, Japan) to

collect nuclear protein extracts according to the procedure

described by the manufacturer. The protein concentration was

measured using BCA protein assay kit (Pierce, Rockford, IL,

USA). Equal amount of protein samples were separated on 10%

SDS polyacrylamide gels. Proteins were then transferred onto a

polyvinylidene difluoride (PVDF; Millipore) membranes using a

ECL Semi-Dry Transfer Unit (Amersham Biosciences, Piscat-

away, NJ, USA) and subsequently blocked for 2 hours at room

temperature with 5% non-fat milk in Tri-buffered saline contain-

ing 0.25% Tween (TBST). Membranes were then incubated

overnight at 4uC with specific antibodies for iNOS (1:1000;

Chemicon, Temecula, CA, USA; Cat. # 610432), NFkB p65

(1:500; Santa Cruz, CA, USA; Cat. # sc-8008), phospho-STAT1

(Tyr701) (1:1000; Cell Signaling Technology Beverly, MA, USA;

Cat. # 9171), HDAC1 (1:2000; Biovision, Mountain View, CA,

USA; Cat. # 3601) or actin (1:10000; Millipore, Billerica, MA,

USA; Cat. # MAB1501) in 5% non-fat milk. After washing with

TBST, membranes were incubated with horseradish peroxidase

(HRP)-conjugated anti-mouse or anti-rabbit secondary antibodies

(1:2000; KPL, Gaithersburg, MD, USA) for 2 hours at room

Figure 6. Oroxylin A inhibition of LPS-induced STAT1 activa-
tion in BV-2 cells. BV-2 cells (26106 cells/dish) were co-treated with
LPS (100 ng/ml) and oroxylin A (Oro-A, 50 mM) for indicated time
periods. Nuclear proteins were then isolated and subjected to Western
blot analysis using specific antibodies against p-STAT1 and HDAC1. A
representative Western blot is shown in upper panel and the ratio of p-
STAT1 to HDAC1is calculated and shown in bottom panel. Results are
expressed as means6SEM from three independent experiments. *,
p,0.05, Student’s t-test compared with corresponding LPS-treated
cells.
doi:10.1371/journal.pone.0050363.g006

Figure 7. Effect of AG490 and oroxylin A on LPS-induced
STAT1 phosphorylation and iNOS expression in BV-2 cells. (A)
BV-2 cells (26106 cells/dish) were incubated with AG490 (20 mM), a
specific JAK2 inhibitor, or oroxylin A (Oro-A, 50 mM) in the presence of
LPS (100 ng/ml). After 16 hours, nuclear proteins were isolated and
examined by Western blot analysis using specific antibodies against p-
STAT1 and HDAC1. A representative Western blot is shown in upper
panel. The ratio of p-STAT1 to HDAC1 is calculated and shown in
bottom panel. (B) Cells (26106 cells/dish) were treated with LPS
(100 ng/ml) and AG490 (20 mM)/oroxylin A (50 mM) for 16 hours. Effects
of AG490 and oroxylin A on LPS-induced iNOS protein expression were
determined by Western blot analysis. A representative Western blot is
shown in upper panel and the ratios of iNOS to actin are shown in panel
below. All results are expressed as means6SEM from three indepen-
dent experiments. #, p,0.05, one-way ANOVA followed by Tukey’s
post hoc test compared with vehicle-treated cells; *, p,0.05, one-way
ANOVA followed by Tukey’s post hoc test compared with LPS-treated
cells.
doi:10.1371/journal.pone.0050363.g007
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temperature and immumoreactivities were subsequently visualized

using an enhanced chemiluminescence (ECL) detection method.

Real-time reverse transcription-polymerase chain
reaction (real-time RT-PCR)

BV-2 cells cultured in 24-well plates were incubated with

oroxylin A (50 mM) and LPS (100 ng/ml) for indicated time

periods. Total mRNA was isolated from BV-2 cells using TRI

reagent (Applied Biosystems, Foster City, CA, USA) according to

manufacturer’s instructions. The amount of mRNA was quantified

using spectrophotometer, and 1 mg of mRNA were reversely

transcribed into first-strand cDNA by SuperScriptTM III Reverse

Transcriptase (Invitrogen) in a total reaction volume of 20 ml.

Real-time PCR amplifications were performed in triplicate using

mixture of 26 FastStar Universal SYBR Green Master (Roche

Applied Science, Mannheim, Germany), 2 ml of cDNA samples

and designate primers. The primers used were as follows: iNOS,

sense: 59-ACATCGACCCGTCAC- AGTAT-39, antisense: 59-

CAGAGGGGTAGGCTTGTCTC-39; IL-1b, sense: 59-

GAAATGCCACCTTTTGACAGTG-39, antisense: 59-CTGGA-

TGCTCTCATCAGGACA-39; IL-6, sense: 59-TAGTCCTTCC-

TACCC- CAATTTCC-39, antisense: 59-TTGGTCCTTAGC-

CACTCCTTC-39; actin, sense: 59-GGCTGTATTCCCCTC-

CATCG-39, antisense: 59-CCAGTTG-

GTAACAATGCCATGT-39. The real-time PCR were performed

for 45 cycles of 95uC for 15 s and 60 for 1 minute using a ABI

Prism 7300 instrument (Applied Biosystems).

iNOS mRNA stability assay
BV-2 cells culture in 24-well plates were stimulated with LPS

(100 ng/ml) for 20 hours, and then treated with a transcription

inhibitor actinomycin D (0.1 mg/ml; Tocris, Ellisville, MO, USA)

in the presence of oroxylin A (50 mM) or vehicle for various time

periods. Total mRNA from BV-2 cells was isolated at indicated

time points and iNOS mRNA levels were quantified by Real-time

RT-PCR. iNOS mRNA decay against time in the presence or

absence of oroxylin A was then analyzed.

Transcription factor DNA-binding activity assay
DNA-binding activity of NFkB-p65 was analyzed using NFkB

(p65) Transcription Factor Assay Kit (Cayman Chemical, Ann

Arbor, MI, USA) according to manufacturer’s instructions. Briefly,

nuclear proteins were extracted from BV-2 cells after LPS

(100 ng/ml) and oroxylin A (50 mM) treatments for various time

periods. Equal amounts of nuclear extracts were incubated

overnight in a 96-well plate coated with a NFkB consensus

double-stranded DNA (dsDNA). A competitor dsDNA was added

to confirm the DNA-binding specificity of NFkB. The samples

were then incubated with primary NFkB-p65 antibody for 1 hour.

Subsequently, they were incubated with HRP-conjugated second-

ary antibodies for an additional hour. After the incubation of

developing solution, the reaction was stopped by a stop solution,

and the absorbance at 450 nm was measured by microplate

reader.

Statistical analysis
All experiments were performed at least 3 times and the data

were expressed as means6SEM. Statistical significance was

analyzed by one-way ANOVA followed by Tukey’s post hoc test

or Student’s t-test. A value of P,0.05 is considered statistically

significant.
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