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Infections caused by fungal pathogens
pose a serious and steadily increasing
threat to susceptible individuals world-
wide1 with a specific impact on treatment
of immunocompromised patients. Fungi
represent a distinct kingdom among the
Eukarya, making the design and valida-
tion of therapeutic compounds that may
counteract fungal infections a highly chal-
lenging and unfortunately massively
neglected field in the pharmaceutical pipe-
line.2 Mechanisms and determinants of
fungal pathogenesis are far from being
understood comprehensively but this is a
pre-requisite to define what has been
coined the human virulome of pathogenic
fungi.3 As an infectious disease is com-
monly the outcome of a potential patho-
gen encountering a susceptible host, both
sides of this intertwined interplay need to
be studied with the aim to put fungal
characteristics in the appropriate context
of virulence.4 Therefore, suitable models
of infection are an essential requirement
when testing distinct features of the patho-
gen as virulence-determining factors or to
validate therapeutic interventions such as
efficiencies of antimycotic substances.
Small vertebrates like mice, rats, rabbits,
guinea pigs, or hamsters have been estab-
lished extensively for such purposes, based
on their relative convenience with respect
to handling and manipulation. The in-
depth knowledge of the murine immune

system that is accompanied by its highly
advanced molecular biology and genetic
accessibility has cemented the prime role
of mice as hosts in infection studies, serv-
ing as proxy for the susceptible human
host that is confronted with fungal patho-
gens. Yet, financial, infrastructural, and
especially ethical issues limit the imple-
mentation of mammalian infection mod-
els to study the virulome of fungi. Apart
from this, following the course of infec-
tion in individual hosts to assess fungal
burden, histopathology, or immune
responses is generally hampered by the
application of invasive procedures that
usually require culling of the infected
cohort animal-by-animal.

Addressing these aspects, Coste and co-
workers describe in the recent issue of Vir-
ulence their efforts to combine 2 of the
most recent developments in fungal infec-
tion research, that is the use of an alterna-
tive insect mini-host accompanied by the
implementation of a suitable reporter sys-
tem based on bioluminescence that allows
longitudinal studies in single infected ani-
mals.5 Driven by the need for alternatives
replacing mammalian systems to study
fungal infections, established model
organisms such as the zebrafish Danio
rerio, the nematode Ceanorhabditis elegans
or the soil amoeba Dictyostelium discoi-
deum and Acanthamoeba castellanii have
been validated in recent years to cover

various characteristics of fungal virulence
and host response.6-12 This has been com-
plemented by making use of embryonated
chicken eggs, which allowed virulence
studies addressing relevant aspects such as
invasion, dissemination, or immune reac-
tions.13 In promoting such initiatives,
invertebrate insect hosts have a long-
standing tradition to elucidate mecha-
nisms of immunity against fungal patho-
gens and virulence determinants, ranging
from seminal early studies in the fruit fly
Drosophila melanogaster that opened the
field of receptor-mediated recognition of
pathogen-associated molecular patterns,
the so-called PAMPs, to recent ones in
locusts that appear suitable to mimic inva-
sion of the central nervous systems by
pathogenic fungi.14-16 Due their ease of
housing and handling and thereby obviat-
ing administrative as well as ethical con-
cerns, insect larvae have emerged as most
suitable for infection studies; this is
accompanied by several other benefits,
such as relatively low purchase costs, their
survival at appropriate temperatures that
support growth of fungal pathogens, or
the feasibility of precise and non-trau-
matic inoculation with defined infectious
doses due to their relatively large size.

For the opportunistic pathogen Can-
dida albicans, the silkworm Bombyx mori
or caterpillars of the tobacco hornworm
Manduca sexta had been established most
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recently as suitable replacement hosts to
monitor virulence traits, while larvae of
the greater wax moth Galleria mellonella
have served as predominant mini-host for
Candida infections since the year 2000.17-
19 These larvae lack an adaptive
immune response but hold various
hemocytes that eliminate invading
pathogens via phagocytosis; moreover,
humoral components of innate immu-
nity, like antimicrobial peptides, are
mounted upon infection, with differen-
ces being evident for the response
against bacterial or fungal pathogens.20

Wax moth larvae have served to address
various aspects of the host-fungus inter-
play in the context of pathogenesis,
ranging from pattern recognition trig-
gering nodulation to filamentation and
other traits of virulence and even the
efficiency of antifungals.21-23 A system-
atic analysis of C. albicans mutants
impaired in the yeast-to-hyphal transi-
tion in both the murine systemic infec-
tion model as well as the Galleria
system revealed a reliably good correla-
tion,22 and studies with the yeast patho-
gen Cryptococcus neoformans or the
human-pathogenic mold Aspergillus
fumigatus have led to similar conclu-
sions.24,25 A recent study from the
Coste group however also demonstrated
significant discrepancies between the 2
infection models.26 Yet, G. mellonella
larvae have earned their merits in study-
ing fungal infections that is only damp-
ened by the evident lack of a reference
genome sequence and missing tools of
molecular biology for genetic
engineering.

When following the course of disease
and/or therapeutic treatment in an appro-
priate infection model system, crucial
parameters such as symptomatic signs but
also pathogen distribution and load need
to be monitored. In this respect, sensitive
reporter systems have been developed that
are based on bioluminescence, i.e. photon
emission conjunct with substrate oxida-
tion that is catalyzed by light-generating
enzymes. These so-called luciferases have

evolved in prokaryotes as well as eukar-
yotes, and several enzymes of either origin
are nowadays established, differing with
respect to physico-chemical characteristics
such as the nature of (co-)substrates, signal
peak wavelength, or emission kinetics.27

Emitted photons are commonly detected
by the use of highly sensitive charged cou-
pled device (CCD) cameras to yield a
quantitative read-out of bioluminescence.
Accordingly, a longitudinal insight about
pathogen distribution in the infected
organism might be gained without the
need for terminal inspection, which evi-
dently reduces the number of hosts to be
monitored. For fungal pathogens, several
studies have demonstrated the usefulness
of but also the limitations of biolumines-
cence imaging in murine infection sys-
tems.28-35 A major restriction lies in the
obligate need for external substrate appli-
cation, which is in contrast to bacterial
pathogens that might be transformed with
thoroughly characterized and adapted bio-
luminescence operons.36 Due to the
orthogonality of such systems, these can-
not be employed in fungal organisms,
while eukaryotic bioluminescent systems
are only characterized with respect to the
luciferase activity but not substrate-gener-
ating pathways.

In the recent issue of Virulence, Eric
Delarze and colleagues have described the
fruitful combination of both approaches,
employing Galleria mellonella larvae as
hosts for infections by the human com-
mensal Candida albicans and implement-
ing bioluminescence as reporter read-out
to enhance studies on virulence traits as
well as antifungal treatment.5 By transfer-
ring a validated and optimized expression
module for surface display of the luciferase
enzyme from the copepod Gaussia
princeps29 to a wild-type isolate and con-
genic deletion strains, bioluminescent sig-
nals could be quantified ex vivo from the
pulp of infected and sacrificed larvae that
correlated to fungal burdens deduced
from colony forming units to some
degree. Most importantly, the fungal
infection could also be monitored over

time in living wax moth larvae by using a
non-toxic and water-soluble formulation
of the substrate coelenterazine, WCTZ.
This allowed in vivo kinetic studies of C.
albicans infections in this alternative host
and represents a step forward in elucidat-
ing virulence characteristics of this com-
mon yeast pathogen and in monitoring
options for antifungal treatment. From
this study, further perspectives emerge but
also shortcomings and limitations of the
system became evident: Obviously the
described achievements pave the road for
large scale studies to yield significant
insights at high reliability without the
need for infecting numerous cohorts of
susceptible mice. This proof-of-concept
study might also spark additional initia-
tives with other fungal pathogens for
which bioluminescence as well as the wax
moth larvae infection model had been suc-
cessfully established. Yet, drawbacks
emerge from the apparent lack of a stan-
dardized set of congenic C. albicans strains
that carry the integrated reporter con-
structs at defined and identical numbers.
Infecting wax moth larvae can also not
reflect the various facets of C. albicans
pathogenicity that range from superficial
colonization to systemic dissemination. In
this context, however, the Gaussia-derived
bioluminescence system had been charac-
terized exhaustingly in murine infection
models to reveal shortcomings that may
be associated with substrate instability,
emission characteristics, or tissue penetra-
tion issues.29 Accordingly, the necessity of
external substrate application in biolumi-
nescence studies on fungal pathogens is
still an unresolved issue that needs to be
addressed to significantly further the field.
The recent insights by Delarze et al., how-
ever, make a strong case for developing
bioluminescence imaging approaches in
alternative mini-hosts with the aim to
study fungal virulence.
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