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Androgen production by the ovary is an essential requirement for normal cyclical

secretion of estradiol but its physiological role extends to important actions on

both preantral and antral follicle development, including promotion of granulosa cell

proliferation. It is likely only in mature antral follicles that androgens encourage apoptosis

and consequent follicle atresia, and this may be an important mechanism to ensure

mono-follicular ovulation in primates, including humans. Recent studies have provided

new insight into the mechanism of androgen signaling in the ovary which involves

both genomic and non-genomic effects that are complementary in effecting a cellular

response. In polycystic ovary syndrome, a condition characterized by intra-ovarian

androgen excess, aberrant development of both preantral and antral follicles is a salient

feature. We present evidence that local action of androgens plays a part in such

abnormalities. Finally, we review the role of androgens in follicle atresia and conclude

that the effects are part of the normal physiology of follicle maturation.

Keywords: androgen receptor, follicle development, apoptosis, polycystic ovary syndrome, genomic and non-

genomic actions, follicle atresia

INTRODUCTION

Whilst it is well recognized that androgens are an essential substrate for estradiol production
by the ovary, the perception persists that androgens have an adverse effect on ovarian follicular
development, even under physiological conditions but especially in an environment of androgen
excess. This review will focus on the variety of androgen action on normal ovarian function and on
the role of androgen excess in the etiology and ovarianmanifestations of polycystic ovary syndrome
(PCOS), the commonest endocrine disorder in women of reproductive age.

PHYSIOLOGY OF ANDROGEN ACTION IN THE OVARY

Androgens and Antral Follicle Function
The cyclical production of estradiol depends upon the availability of androgen, as a steroid
precursor and, of course, cyclical changes in gonadotrophins. Under the influence of tonic
levels of LH, androgens are produced by the theca cells of antral follicles. In the human
ovary, LH receptors are present in theca cells but normally only appear in granulosa cells
in mature follicles greater than 10mm in diameter (i.e., the antral follicle that is most
likely to go on to ovulate) (1). FSH receptors are present exclusively in the granulosa
cells. Androgens (predominantly androstenedione and testosterone) diffuse across the basal
lamina of the follicle to the granulosa layer where, under the control of FSH, they are
converted to estrogen by the action of CYP19 (aromatase) (2). This co-ordinated interaction
of gonadotrophins within the follicle is often referred to as the 2-cell, 2-gonadotophin process
(2). Androgens may also have a role in the demise of antral follicles that form part of the
cohort that undergo further growth in response to the early follicular phase rise in FSH
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but regress in the late follicular phase as FSH levels fall (1, 3). This
is a physiological mechanism that ensures that in humans (and
non-human primates), mono-follicular ovulation is the rule. The
ability of androgens to induce atresia in antral follicles has often
been cast as a deleterious effect, particularly under conditions of
androgen excess (notably PCOS) but the role of androgens may
be rather more nuanced than has been described, as suggested
below (see “Androgens and follicle atresia revisited”).

Androgen Receptor Expression and
Androgen Action Throughout Follicle
Development
Although androgen receptor (AR) is found in all three
components of the ovarian follicle, granulosa, theca and oocyte
(4, 5), AR RNA and protein are most abundant in granulosa
cells. In the primate ovary, there is little expression of AR
in oocyte and theca of antral follicles (6) and in the human
fetal ovary, AR expression is confined to somatic cells (7).
Gene expression in the human ovary is high in granulosa
cells of small antral follicles but reduces in pre-ovulatory
follicles (8). AR expression is present in preantral follicles in
rodent (9), ovine (10) as well as primate ovary, suggesting a
physiological role in follicle development and function over
and above the provision of substrate for estrogen production.
In the human ovary, AR gene expression can be detected
in human preantral follicles from the primary stage onwards
(11), whilst AR protein can be observed from the primordial
stage, gradually increasing during follicle development so that
100% of multi-layered, preantral follicles express AR protein
(12) (Figure 1). AR gene expression is prominent in human
antral follicles but it is noteworthy that peak expression is
in small antral follicles (of around 6mm in diameter) but is
much reduced in larger (about 15mm) antral follicles and lower

FIGURE 1 | Immunohistochemical identification of androgen receptor (AR) protein in preantral follicles of women with and without PCOS. Bars represent the

proportion of follicles that stain positive for AR protein. AR expression increased significantly with increasing stage of follicle development in both normal and PCOS

(stage effect) but here was a significantly greater abundance of AR in PCO follicles (ovary effect). From Webber (12).

still in the mature, preovulatory follicle (8). These changes in
the level of AR expression during the later stages of follicle
development may be important in terms of androgen action
on survival or loss of follicles during a normal ovulatory
cycle (see section on “Androgens and follicle atresia revisited”
below).

There is plentiful evidence to show that androgens stimulate
the growth of both preantral and antral follicles in various species
(13–20). Androgen action appears be important for normal
follicle development and function. Mice lacking AR in the ovary
have impaired follicle maturation and reduced litter size (21–23).
Recently, Walters and colleagues have shown that in a neurone-
specific AR knockout mouse, there is significant disruption
of the hypothalamic regulation of gonadotrophins, associated
with abnormalities of ovarian follicular development (24). The
potent androgen, dihydrotestosterone (DHT) stimulates protein
expression of Ki67 (a marker of cell proliferation) in granulosa
cells of mouse preantral follicles without effect on apoptosis (20).
Androgen also increases responsiveness of granulosa cells to FSH
in terms of both growth and expression of key genes involved
in steroidogenesis (15, 20, 25, 26). These results reflect those
of a seminal series of studies in primate ovary in which Bondy
and colleagues demonstrated that in vivo exposure to androgen
leads to growth of both preantral and antral follicles and was
associated with increased expression of FSH receptor (FSHR)
in granulosa cells (18, 27, 28). AR expression was found to be
positively correlated with that of Ki67 and inversely related to
apoptotic cell count (27).

In isolated, mouse preantral follicles, incubation with DHT
greatly enhances expression of the steroid acute regulatory
protein (StAR, a key regulator of steroidogenesis) in response
to FSH (20). In the same model, both testosterone and DHT
interact with members of the TGFβ superfamily, most noticeably
reducing gene expression of anti-Mullerian hormone (AMH)
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FIGURE 2 | Proposed pathways of androgen action on preantral follicle

growth. Testosterone or DHT act via the androgen receptor, increasing

granulosa cell proliferation. This may be mediated directly, or indirectly by

increased FSHR (stimulating GC proliferation) or decreased AMH (reducing

AMH inhibition). AMH can be further reduced by androgen-induced reduction

of oocyte-specific BMP, which normally stimulates AMH levels. Inset box

summarizes androgen-induced inhibition of TGFβ ligands, and type I and II

TGFβ receptors, with the exception of Alk6 Laird et al. (20).

(produced by granulosa cells) and bone morphogenetic protein-
15 (BMP-15) (produced by the oocyte) both of which may have
inhibitory effects on follicle growth (20) (although BMP-15,
particularly in the presence of GDF-9 signaling, may also have a
stimulatory action on follicle growth) (29). The positive effect of
DHT on FSHR expression and the negative effect on the growth-
inhibitory AMH and BMP-15, suggest that DHT-stimulated
growth in preantral follicles is a complex phenomenon that relies
upon a balance of endocrine and local growth factor actions
(Figure 2). Conversely, there is evidence that BMPs 4, 6, and
7 have inhibitory actions on androgen production by bovine
theca (30).

Androgen Signaling in the Ovary
The classic mode of androgen action, as for most steroids,
involves binding of androgen to AR in the cell cytoplasm and
translocation of the hormone-receptor complex to the nucleus
where it binds to a specific sequence in the promotor of the
relevant target gene and promotes gene transcription (31, 32).
Whilst there is clear evidence that this pathway is operational
in both physiological and pathological actions of androgens,
recent work suggests that the pathway(s) of androgen signaling
are more complex and involve rapid effects that do not involve
classic nuclear receptor action on transcription ie non-genomic

actions (22, 33, 34). These non-genomic actions have been
highlighted in the work of Sen and colleagues who describe
transactivation of the epidermal growth factor receptor (EGFR)
by androgen. They show that androgens can activate the MAPK
kinase pathway (by phosphorylation of ERK), which, classically,
transduces rapid growth factor signaling (33, 35–37). In this
sense, androgens appear to have growth factor properties. The
action of androgens on ERK activation appear to be mediated
by matrix metalloproteases (MMPs) and by paxillin (PXN),
an adaptor protein which is also implicated in translocation
of AR to the nucleus (22, 36). In this way, it is proposed
that genomic and non-genomic actions of androgens can be
co-ordinated and may work in concert (37). PXN is able to
induce expression of the microRNA miR-125b which has an
anti-apoptotic effect, hence promoting androgen induced follicle
survival (33).

The important finding of an interaction of androgen with the
EGFR is supported by data from our own laboratory. Exposure
of mouse preantral follicles to a combination of DHT and EGF in
culture results in stimulation of growth that is greater than either
treatment alone. Furthermore, incubation of follicles with DHT
in the presence of an EGF receptor inhibitor results in attenuation
of the growth-promoting effect of DHT, strongly suggesting that
the effect of androgen on proliferation of granulosa cells is, in
part, mediated by activation of EGFR (38).

The EGF signaling pathway is one of several growth factor-
signaling pathways with which androgens may interact. As
previously mentioned, DHT influences expression of oocyte- and
granulosa cell-derived growth factors of the TGFβ superfamily
(20). Androgen can enhance both synthesis and action of
insulin-like growth factors (IGFs) (18, 28). IGFs signal primarily
though the PI3Kinase (PI3K) pathway and recently, Sen and
colleagues have provided evidence that androgens also directly
activate the PI3K signaling pathway, leading to a complex
cascade of events that involve, in an initial and rapid effect,
phosphorylation, and thereby inhibition, of the polycomb
group protein enhancer of zeste homolog 2 (Ezh2) (34). Ezh2
appears to be a factor in regulation of LH action in the
preovulatory follicle. In the longer term (24–48 h) the micro
RNA miR-101 is induced which, in turn, greatly reduces the
expression of Ezh2 protein (34). These findings give further
support to their hypothesis that androgen action is likely to
involve both genomic and non-genomic events that are closely
co-ordinated.

ANDROGENS AND POLYCYSTIC OVARY
SYNDROME

Increased Androgen Production in PCOS
Polycystic ovary syndrome (PCOS) is the commonest endocrine
disorder in women of reproductive age (39, 40). Although
there is a wide spectrum of clinical presentation, it is typically
characterized by infrequent or absent ovulation together with
clinical and/or biochemical evidence of androgen excess. The
biochemical hall mark of PCOS is excess androgen production,
predominantly of ovarian origin (39, 41).
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Androgen Action in Polycystic Ovaries
The systemic effects of androgen excess include cutaneous
manifestations (hirsutism, acne, androgenetic alopecia) and
predisposition to metabolic derangement (including increased
risk of type 2 diabetes mellitus) (42–49). But there are also
local actions within the ovary that are characteristic of PCOS.
Anovulation in PCOS is distinguished by arrest of growth of
antral follicles at 5–8mm (50). The mechanism of follicle arrest
is complex but is likely to be due to the abnormal endocrine
environment that includes excessive secretion of LH, insulin and
androgens, all of which may contribute to premature arrest of
follicles (1, 50, 51).

There is, in addition, clear evidence for aberrant development
of preantral follicles in the ovaries of women with PCOS.
The density of preantral follicles is increased compared with
that in normal ovaries and there is a higher proportion of
primordial follicles that have been activated and have started
to grow (52) with evidence for accumulation (“stockpiling”
at the primary stage (53). Small preantral follicles in PCOS
show higher expression of the proliferation marker, mini-
chromosome maintenance protein-2 (MCM-2) than that in
size matched follicles of normal ovaries (54) and demonstrate
prolonged survival in culture (55). These changes in early
follicle development can be attributed, at least in part, to the
effects of androgen. As described above, androgens stimulate
preantral follicle growth in mice, rats, sheep, cows and
primates (16–18, 20, 56–58). In the prenatally androgenised
sheep, histological examination of ovarian cortical tissue reveals
an increase in the proportion of growing preantral follicles and
a reciprocal reduction in the proportion of primordial follicles, a
pattern that mimics that seen in human cortical tissue in women
with PCOS (52, 58).

An interesting question is whether the androgen-growth
factor interactions, referred to above, play a part in aberrant
early follicle development in PCOS. In that context, it has been
shown that both gene and protein expression of the type 1 IGF
receptor is increased in preantral follicles of women with PCOS
(59). Furthermore, there are differences between normal and
polycystic ovaries in growth responsiveness to IGF1 of follicles
during culture of cortical tissue which suggest that PCOS follicles
have been exposed to enhanced action of IGFs in vivo (59).

It remains unclear whether these aberrations in early follicle
development contribute to the characteristic arrest of antral
follicles in PCOS but the premature appearance of LH receptors
in small antral follicles may provide a clue. Androgens induce
FSHR expression and the acquisition of LH receptors in the
dominant follicle that is destined to ovulate is an FSH-dependent
event. As yet, we know little about FSHR expression in follicles of
women with PCOS but it is noteworthy that cultured granulosa
cells from small antral follicles in polycystic ovaries are hyper-
responsive to FSH in terms of estradiol production (60, 61).

Androgen and the Developmental Origins of PCOS
The impact of excess androgen extends beyond the systemic
and local effects described above Data from animal models of
PCOS suggest that exposure to excess androgen during fetal
life may play as significant part in the development of PCOS

(62–67). In rodents, exposure to androgen in postnatal life can
also reproduce some of reproductive and metabolic sequelae of
PCOS (56, 57). Studies using large animal models (sheep, rhesus
monkey) provide information that is perhaps more relevant to
human PCOS, particularly as ovarian function is similar in terms
of follicle development and mono-ovulatory cycles (62, 64, 66,
67). At critical stages during pregnancy, these animals are given
very large doses of testosterone which are sufficient to overload
the “buffering” of androgen action that occurs during normal
pregnancy [elevated maternal plasma levels of sex hormone-
binding globulin (SHBG) and activation of placental aromatase]
that prevent the fetus being exposed to excess maternal androgen.
The fetus is therefore androgenised and, in postnatal life,
shows features which replicate many of the characteristics
of PCOS including ovarian hyperandrogenism, infrequent or
absent ovulation and metabolic dysfunction (65, 66). These
findings raise the possibility that PCOS is a developmental
disorder in which “programming” by excess androgen plays
a key role—probably by epigenetic modification (64, 68). In
human development, the source of excess androgen is unlikely
to be maternal androgen (thanks to the protective effect of high,
maternal, circulating levels of SHBG and placental aromatase).
It is more plausible that, in human PCOS, the source of
excess androgen is the ovary itself. We have postulated that
the polycystic ovary is genetically predisposed to secrete excess
androgen and that androgen excess is manifest, perhaps in the
fetal ovary but more likely during the “mini-puberty” of infancy
and/or at the onset of puberty itself (64, 68, 69). Certainly, there
is strong evidence for a genetic basis of PCOS. Recent genome-
wide association studies have indeed identified loci (such as
DENND1A) that can be implicated in androgen production by
theca cells (70–73).

Further evidence to support the notion that developmental
programming by excess androgens plays a part in the origins
of PCOS comes from data in women with congenital adrenal
hyperplasia (CAH) due to 21-hydroxylase deficiency. Here,
of course, the adrenal, rather than ovary is the source of
excess androgen in fetal life and beyond. Women with a well-
established diagnosis of CAH commonly (80% or more) have
polycystic ovaries on ultrasound (74, 75) and, indeed, may have
associated endocrine abnormalities including elevated serum
levels of LH (76).

ANDROGENS AND FOLLICLE ATRESIA
REVISITED

There is, as has been illustrated in this review, ample evidence
to support the contention that androgens have a positive and,
indeed obligatory, role in normal follicle growth and function.
These phenomena call into question the widely perceived view
that androgens are predominantly detrimental to normal ovarian
function. Nevertheless, there is clear evidence that androgens
have the ability to inhibit proliferation and promote apoptosis
in mature antral follicles as, for example, shown in the rat ovary
(77). These apparently paradoxical phenomena can perhaps
be best explained by taking into account the stage of follicle
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development. In the menstrual cycle of humans and non-human
primates, mono-follicular ovulation is the rule. In such cycles,
a single, “dominant” follicle is selected from the cohort of
perhaps 5–10 small antral follicles that are recruited by the early
follicular phase rise in FSH. Thereafter, it is the follicle that is
most responsive to FSH that continues on the path to ovulation
whereas the subsidiary follicles are unable to progress because of
the negative feedback on effect on FSH of rising circulating levels
of estradiol (and inhibin) (1, 50). FSH deficiency clearly plays
a role in the atresia of the smaller follicles but, in this context,
intra-follicular androgen concentrations appear also to play an
important role.

Hillier and colleagues demonstrated a biphasic action of
androgens in the ovaries of a non-human primate, the
marmoset. In small antral follicles, androgens augmented
FSH action on aromatase activity whereas, in larger follicles,
androgen had a clear inhibitory effect (26). In a classic study,
McNatty and colleagues measured estradiol and androstenedione
concentrations in a large number of individual, healthy and
atretic human ovarian follicles. Androgen concentrations were
similar in healthy and atretic follicles but atretic follicles were
characterized by much lower levels of estradiol (3). This has
been interpreted as an indication that a high androstenedione
to estradiol ratio (i.e., an excess of androgen over estrogen)
contributes to (if not causes) follicle atresia. However, it can
also be viewed as an effect of FSH deficiency, which itself is

the major reason for demise of subsidiary follicles. Nevertheless,
the striking finding that AR expression, which is high in small
antral follicles, is drastically reduced in the healthy, preovulatory
follicle (8) points to the removal, or reduction, of a potentially
deleterious effect of androgen on granulosa cell survival and
function in the mature follicle.

SUMMARY

In this review, we have provided evidence that androgens have
a clear and important physiological role in follicle development,
at all stages, and in estrogen production by antral follicles. In
PCOS, androgen excess may contribute to aberrant preantral
and antral follicle function in PCOS although other endocrine
(and paracrine) factors play a part. The role of androgens in
causing follicle atresia, in a normal cycle, has probably been
exaggerated. FSH deficiency is likely to be the major cause of
atresia in subsidiary follicles in mono-ovulatory species but in
these estrogen deficient, androgen dominated follicles, androgen
action may contribute to follicle loss.
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