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Abstract: A signal transduction pathway (STP) is a cascade composed of a series of signal transferring steps, which often activate one 
or more transcription factors (TFs) to control the transcription of target genes. Understanding signaling pathways is important to our 
understanding of the molecular mechanisms of disease. Many condition-annotated pathways have been deposited in public databases. 
However, condition-annotated pathways are far from complete, considering the large number of possible conditions. Computational 
methods to assist in the identification of conditionally activated pathways are greatly needed. In this paper, we propose an efficient 
method to identify conditionally activated pathway segments starting from the identification of conditionally activated TFs, by incor-
porating protein-DNA binding data, gene expression data and protein interaction data. Applying our methods on several microarray 
datasets, we have discovered many significantly activated TFs and their corresponding pathway segments, which are supported by 
evidence in the literature.
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1. Introduction
Signal transduction pathways (STPs) reflect complex 
biological processes during which the cell converts 
one signal to another. The activation of STPs often 
activates downstream transcription factors (TFs), 
which then bind to their target genes to turn on or off 
various transcription programs. Understanding STPs 
will significantly augment our understanding of spe-
cific cellular mechanisms.

STP activation is condition-dependent. A number 
of curated condition-annotated STPs have been depos-
ited in various databases.1 However, considering 
the large number of ligands and receptors, and the 
many possible conditions, the STPs collected in 
current pathway repositories are far from complete. 
Novel computational methods have been developed 
to model STPs as chains or networks of interacting 
proteins and to identify STPs by assuming that 
genes in the same pathway are more likely to have 
correlated microarray expression.2–6 However, genes 
in the same STP may not have well-correlated gene 
expression. Additionally, current methods for STP 
identification seldom consider the condition depen-
dence of STPs. Even though intracellular signal 
transductions ultimately effect transcriptional 
changes and the activation of a pathway downstream 
TF often indicates the phenotype-relevance of its 
corresponding STP, current methods rarely inves-
tigate STP-corresponding transcription regulation 
programs during STP modeling.

In this paper, we propose an efficient method to 
identify differentially activated TFs and their corre-
sponding pathway segments by incorporating DNA-
protein binding data, protein interaction (PPI) data and 
microarray expression data. We first design a statisti-
cal method to identify differentially activated TFs. We 
then design a graph algorithm ACTPATH to identify 
pathway segments corresponding to each identified 
differentially activated TF. The ACTPATH algorithm 
applies a random walk method to the PPI network to 
discover significant protein interactions. By identifying 
connected PPI subnetworks from significant protein 
interactions, the algorithm will output potential pathway 
segments corresponding to the identified activated TFs. 
As an experimental study, we applied our approach 
to breast cancer and essential thrombocythemia (ET) 
microarray data sets and identified dozens of TFs 
differentially activated under given conditions. We also 

predicted a number of TF-corresponding pathway 
segments. Statistical assessment and a literature search 
demonstrate the efficacy of our approach.

2. Method
As we mentioned before, the activation of TFs is one 
good indicator of activation of their corresponding 
pathways. Based on this observation, we start by iden-
tifying activated TFs from a two-condition microarray 
experimental dataset (Section 2.1). We then describe 
the algorithm ACTPATH, which identifies TF-corre-
sponding pathway segments (Section 2.2).

2.1. Identification of differentially 
activated TFs
TFs are often regulated at the post-transcription level, 
and thus it is often hard to identify TF activity by 
directly measuring the change in expression of their 
corresponding mRNAs. Therefore, we will determine 
differentially activated TFs by expression of its target 
genes. Our assumption is that if the target genes of a 
TF are differentially expressed, it is most likely that the 
TF is differentially activated. Note that a TF could bind 
to different target genes under different conditions. The 
target genes a TF binds to under a given condition are 
called condition-specific target genes for this TF.

If we assume target genes of a differentially acti-
vated TF are more likely to be differentially expressed 
than those of an inactivated TF, and we also assume 
the condition-specific target genes of an activated 
TF are known, then the identification of activated 
TFs in two-sample comparison microarray experi-
ments could be done simply by using a hypergeo-
metric test described as follows. Assume there are 
N genes on the microarrays and n of them are dif-
ferentially expressed. For one TF, assume we know 
there are M potential target genes on the arrays and 
m of them are among the n differentially expressed 
genes. Then the following hypergeometric test will 
assess the overrepresentation of the TF target genes in 
the differentially expressed gene list by a p-value of 
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However, it is difficult to simply apply the 
hypergeometric test because we do not know which 
genes are differentially expressed without applying 
some arbitrary cutoff for the differential test statistic. 
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Zilberstein et al proposed the minimal hypergeometric 
test (mHG) to avoid the arbitrary cutoff when defin-
ing the differentially expressed genes.8 The basic idea 
of the mHG is to try all possible cutoffs to define 
differentially expressed genes and then choose the 
cutoff with the smallest hypergeometric p-value and 
determine the significance of such a cutoff.

However, the mHG is not suitable for our task of 
identifying differentially active TFs either. There are 
two reasons for this. One, the mHG does not explic-
itly take the rank of the genes into account. Given a 
cutoff, all the genes above the cutoff are treated in 
the same way. However, the more significantly dif-
ferentially expressed, the more related a gene is to 
the given condition. The TFs binding to these more 
significantly differentially expressed genes are more 
likely to be conditionally activated. The other is that, 
the mHG assumes the condition-specific target genes 
of a TF are known, which is often not the case. There-
fore, the mHG cannot be directly applied here to prop-
erly select significantly differentially activated TFs.

To identify differentially activated TFs for two-
sample comparisons, we propose incorporating two 
tests measuring different aspects of the conditional 
relevance of a TF. One is to test whether the m 
condition-specific target genes rank at very top of the 
n genes, using a U-test. The other is to test whether 
there are significantly more condition-specific target 
genes in the top n genes compared with the rest using 
hypergeometric test.

Our method to combine the aforementioned 
two tests includes the four steps outlined below. At 
step 1, like the mHG, we sort the genes according 
to the p-value of differential expression. At step 2, 
for any TF, at any place in the rank list, we calculate 
a U-test p-value and a hypergeometric p-value. The 
product of the two p-values will be considered to be 
the p-value for this TF to be differentially activated, 
corresponding to this specific cutoff. At step 3, the 
smallest p-value is picked as the p-value for this TF to 
be differentially activated. At step 4, we will calculate 
the false discovery rate (FDR)9 and select the most 
significantly activated TFs. The details of the second 
and the fourth step are as follows.

Here we detail step 2. For a cutoff in the ranked 
gene list, we calculate the U-test p-value. Basically, 
we assume that for an active TF, its target genes 
should be ranked highest. That is, the higher the 

target gene’s rank, the more relevant the TF. Assume 
that, for a special cutoff, we have n differentially 
expressed genes. For one TF, assume the ranks of its 
target genes are x x xm1 2, , , . We want to determine 
how these m target genes are ranked. The U-test is 
perfect for such a purpose. It calculates the sum of the 
ranks of the target genes and compares the sum with 
that obtained by randomly ranking the n genes. When 
n and m are large than 10, the normal distribution can 
be used to approximate the distribution of the sum 
of the ranks. The mean of the normal distribution is 
m*(n – m)/2 and the standard deviation of the normal 
distribution is m n m n( )( ) /− +1 12 .

With the p-value from the U-test, we further 
calculate a hypergeometric test p-value. Because the 
two tests are independent, we use the product of the 
two p-values as the p-value of the TF activity.

With many TFs having been tested this way, at 
Step 4 we control the FDR in our prediction of the 
activated TFs. We will select the active TFs by a 
q-value calculation described below. First, we rank 
the TFs according to their p-values, calculated above 
from the smallest to the largest. Then we calculate 
the q-value, using the Q-VALUE software.9 Third, we 
identify the largest k such that kqk  α. Here the qk 
is the FDR when we select the k TFs with smallest 
p-values. The idea is that if kqk is smaller than α, we 
will make at most α false predictions. We set α as 
0.05 in this paper.

2.2. Identification of activated 
STP segments corresponding 
to activated TFs
With the differentially activated TFs from 
two-condition comparison microarray data identified 
above, we design the following algorithm ACTPATH 
(Algorithm 1), to identify TF-corresponding STP 
segments from a human protein interaction network.

Two assumptions of the ACTPATH algorithm to 
identify TF-corresponding STP segments include: 
1) in comparison with genes not involved in 
condition-relevant pathways, those genes that are 
involved in condition-relevant pathways are more 
likely to be differentially expressed. This assump-
tion has been made in recent studies on phenotype 
relevant pathways, such as,10 Also, 2) pathway genes 
should not be too far away from the given TF in 
the protein interaction network. This assumption 
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is based on several previous studies.2,3,11 Based on 
the first assumption, we will choose proteins whose 
genes are more differentially expressed with larger 
probabilities. Based on the second assumption, we 
restrict our search of pathways to within a short range 
around the TF in the protein interaction network.

We model the human protein interaction network 
as a graph G, in which each node represents a protein, 
and each edge represents interaction between two 
proteins. For a given TF identified to be activated, we 
describe the algorithm as following.

Algorithm 1 ACTPATH(G,TF)

1.	 For each node v in G, identify the shortest distance 
SP(v,TF) between v and the given TF;

2.	 Construct a subgraph sub(G) containing only nodes 
within a distance k of TF;

3.	 Perform a random walk on sub(G) to identify a signif-
icant edge set E representing condition-relevant pro-
tein interactions with high statistical significance;

4.	 Construct a subgraph G’ of sub(G) containing only 
significant edges E;

5.	 Identify and output connected components from G’ 
as pathway segments corresponding to the TF.

At steps 1–3 of Algorithm 1, we try to identify 
pathway edge candidates. We assume that pathway 
genes should be within a limited range of the given 
TF in the PPI network. Therefore, at steps 1–2, based 
on the second assumption, we first extract a subgraph 
sub(G) from G, containing only nodes within a cer-
tain distance to the given TF. At step 3, to identify 
edges most likely to exist in the pathway correspond-
ing to the given TF, we perform a random walk start-
ing from the TF on the subgraph sub(G). This step is 
based on the aforementioned first assumption.

The main procedure in step 3 is the random walk. 
A random walk is a stochastic process generated by a 
Markov chain. Given the current state of the random 
walk, say protein i, the next state of the random walk 
will be determined by the transition matrix P of the 
Markov chain. That is, if the random walk currently is 
at protein i, at the next step, the random walk will be 
at protein j with probability pij. To define the transition 
probability, we take the rank of differential expression 
of each gene into account. Assuming the random walk 
currently is at protein i0 and the proteins 1, 2, …, m 
are connected with i0 in the protein interaction network, 

and the rank of these m proteins is r1, r2, …, rm, then 
we define the transition probability from i0 to the ith 
protein as e er b r b

j
mi i− −

=∑ 1 . Here b is a scale parameter 
indicating how small the rank should be to claim a gene 
as differentially expressed. Empirically, we recommend 
a b value of n/2 or smaller if one believes the top 2 × n 
genes are more reliable differentially expressed genes. 
Besides the general transition rule, we also force the 
random walk to return to the TF with probability 1 when 
the random walk arrives at the boundary of sub(G). The 
boundary is defined as those proteins where the dis-
tance between the TF and the protein is equal to a pre-
defined threshold. This is to ensure the walk identifies 
interesting pathways around the TF, instead of wander-
ing around the uninteresting proteins at the boundary.

One can easily prove that the above Markov Chain 
is irreducible and positive recurrent. According 
to probability theory,12 an irreducible and positive 
recurrent Markov chain will have a unique stationary 
distribution π and the transition matrix will converge 
to the stationary transition matrix P p

n

n* lim=
→∞

. Note 
that there could be thousands of proteins in sub(G). 
The transition matrix can be huge. Consequently, 
calculating P* by computing Pn can be expensive. 
Therefore, instead of calculating P* and π, we run the 
random walk many times until it converges. To judge 
whether the random walk converges, we calculate the 
frequency of visiting each protein after n steps of ran-
dom walking. If the change of the frequency of visit-
ing each protein is smaller than a predefined threshold 
0.01, the frequency will be used to approximate π and 
the transition frequency between two proteins will 
be used to approximate P*. After the random walk 
converges, we will output the top 1% of the most vis-
ited edges as the significant edges. Such significant 
edges not only show that the proteins connected by 
the edges are frequently visited, but also show that 
the edges themselves are frequently visited.

At steps 4–5, with the significant edges defined, we 
construct a subgraph G’ of sub(G). G’ only contains 
significant edges. We will then identify and output con-
nected components from G’ as pathway segments.

3. Experimental Study
3.1. Data collection
We collected two microarray data sets. The essential 
thrombocythemia (ET) data set11 consists of samples 
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from 16 patients, 9 of 16 of whom have a JAK2 
V617F mutation and 7 of 16 of whom do not have 
a JAK2V617F mutation. The breast cancer data 
set12 consists of samples from 286 patients: 209 of 
286 patients are ER positive and 77 of 286 patients 
are ER negative. For these microarray data sets, 
we first classified all the samples into two relevant 
conditions. For example, for the breast cancer data 
set, we group samples corresponding to ER positive 
and ER negative respectively. We next used a dif-
ferential t test to test whether a gene is differentially 
expressed between the two relevant conditions. The 
differential test is able to assign to each gene a 
p-value. All the genes are then ranked according to 
this p-value. We downloaded TF-target information 
from the mSigDB database.13 This TF target gene 
data is collected from curated data in the TRANS-
FAC database14 and/or predicted by comparative 
genomics approaches.15 Note that the downloaded 
TF target genes are candidate target genes, because 
a TF may bind with different subsets of its target 
gene candidates under different conditions. We also 
downloaded protein interaction information from 
HPRD.16

3.2. Identified differentially activated TFs
For the breast cancer dataset, we identified fourteen 
TFs (Table 1). The involvement of all of these TFs in 

Table 1. Activated TFs identified from breast cancer data.

TFBS p-value q-value TF
CTTTGA_V$LEF1_Q2 5.89E-05 0.018 LEF1
V$FAC1_01 3.53E-05 0.018 FALZ
V$HFH3_01 2.67E-04 0.028 FOXI1(X)
V$PAX_Q6 2.77E-04 0.028 PAX5
V$OCT1_06 1.46E-04 0.028 POU2F1
CAGCTG_V$AP4_Q5 1.54E-03 0.041 REPIN1(X)
TTGTTT_V$FOXO4_01 9.53E-04 0.041 FOXO4
CAGGTG_V$E12_Q6 1.31E-03 0.041 ELSPBP1
V$MYOD_Q6_01 1.37E-03 0.041 MYOD
V$SP1_01 5.78E-04 0.041 SP1
V$FOXO1_01 1.18E-03 0.041 FOXO1
V$GATA2_01 1.52E-03 0.041 GATA2
V$IRF1_01 8.14E-04 0.041 IRF1
V$AREB6_03 6.92E-04 0.041 ZEB1

Table 2. Activated TFs identified from ET data.

TFBS p-value q-value TF
V$HSF1_01 6.97E-06 0.004 HSF1
V$ATF4_Q2 2.31E-05 0.007 ATF4
V$RORA2_01 7.91E-05 0.012 RORA2
V$ERR1_Q2 0.00014 0.018 ESRRA
TGGAAA_V$NFAT_Q4_01 0.00036 0.028 NFAT5
V$GATA1_03 0.00043 0.028 GATA1
V$STAT_01 0.00042 0.028 STAT
V$RORA1_01 0.00049 0.028 RORA
V$YY1_Q6 6.00E-04 0.031 YY1
GGGAGGRR_V$MAZ_Q6 0.00065 0.031 MAZ
V$NFMUE1_Q6 0.00077 0.034 NFMUE1
V$CREB_Q4 0.00113 0.041 CREB1
V$PXR_Q2 0.00113 0.041 PXR
V$FOXJ2_02 0.00105 0.041 FOXJ2
V$CEBPB_02 0.00124 0.042 CEBPB
V$ZIC2_01 0.00136 0.042 ZIC2
V$USF_Q6 0.00134 0.042 USF
V$AML_Q6 0.00159 0.047 AML

the disease mechanism of breast cancer is validated by 
a literature search. For example, Sp1 has been reported 
to play a key role in basal and estrogen-induced 
growth and gene expression in breast cancer cells.17 
Also, Interferon regulatory factor-1 (IRF-1) has been 
implicated as a tumor suppressor in breast cancer, and 
is associated with caspase activation and induction of 
apoptosis.18

For ET data, we identified eighteen activated TFs 
with a q-value cutoff of 0.05 (Table 2). Similarly, 
we observed evidence in the literature of association 
between the identified TFs and myeloproliferative 
disorders. For example, STAT has been documented 
to have an important role in ET,19 and GATA1 has 
been reported to be associated with myeloprolifera-
tive disorders.20

3.3. Identified STP segments
With differentially activated TFs obtained under the 
given conditions, we applied our ACTPATH algo-
rithm to identify STP segments corresponding to 
the activated TFs in the microarray experiments. 
Because of the lack of a gold standard of activated 
pathways under any given condition, we will assess 
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the efficacy of our approach by evidence obtained 
from the existing biological knowledge. We use the 
PubMatrix tool from NCBI,21 which is a web-based 
application that allows a simple systematic approach 
to querying the medical literature in PubMed to 
assign genetic, biological, or clinical relevance to 
genes of interest.

We applied our approach to breast cancer data and 
found many interesting pathway segments. As an 
example, Figure 1 shows the pathway segments 
corresponding to the bromodomain PHD finger 
transcription factor (FALZ). The relevance matrix 
generated by PubMatrix (Table 3) corresponds 
to the pathway segment of JUP-MUC1-ERBB4-
ERBB3-ADAM17 in Figure 1. Each entry (i,j) in 
this matrix, when i is not equal to j, stores the num-
ber of co-occurrences of the ith and jth term in lit-
erature searched by PubMatrix. We can see from 
Table 3 that all five genes are relevant to the term 
“breast cancer”, and JUP is relevant to MUC1, 
MUC1 is relevant to ERBB4, ERBB3 and ADAM17 
and so on. This relevance matrix shows that the five 
genes in the pathway segments are associated with 
each other and with breast cancer. Because there 
may be false positives from PubMatrix results, 

we also manually searched relevant literature 
and further validated the biological significance 
of our predictions. For example, the DF3/MUC1 
transmembrane oncoprotein has been shown 
to be aberrantly overexpressed in most human 
breast carcinomas, and interacts with the Wnt 
effector γ-catenin (JUP).22,23 A novel function of 
increased MUC1 expression, potentiation of erbB 
signaling through the activation of mitogenic MAP 
kinase pathways has been implicated in breast 
cancer.24

Figure 2 shows another example of pathway 
segments corresponding to cAMP responsive element 
binding protein 1 (CREB1) identified from ET data. 
The PubMatrix results indicate significant asso-
ciations between genes in these identified pathway 
segments (Table 5). For example, CYP2C19 is rel-
evant to POR and STAT, and POR is further asso-
ciated with HMOX1, CYP2C9, STAT and JAK. We 
again manually searched related literature and fur-
ther validated the biological relevance of the identi-
fied pathway segments. For example, HMOX1 often 
acts in concert with P450 cytochrome oxidoreductase 
(encoded by Por) and biliverdin reductase to convert 
heme into bilirubin, carbon monoxide and iron.25 
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Figure 1. Example of pathway segments corresponding to FALZ identified from breast cancer data (Figure drawn with Cytoscape).7
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Table 3. Relevance matrix corresponding to a breast cancer pathway segment (by PubMatrix tool).

PubMatrix Breast cancer JUP MUC1 ERBB4 ERBB3 ADAM17
JUP 17 203 2 0 0 0
MUC1 533 2 2228 2 4 1
ERBB4 215 0 2 869 294 0
ERBB3 159 0 4 294 712 1
ADAM17 9 0 1 0 1 246

HMOX1 expression has recently been shown to be 
regulated by interleukin-6 via the Jak/STAT pathway 
in hepatocytes.26

3.4. Comparison with other methods
As we discussed in the introduction section, several 
methods that have been developed to discover 
denovo pathways or pathway segments do not focus 
on conditionally activated pathway identification,2–4 
and cannot output differentially activated pathway 
segments. Also, most of these methods are applied 
to yeast PPI data and are difficult to apply to larger 
networks. Ideker et al27 have developed a simulated 
annealing-based algorithm to identify differen-
tially activated networks by utilizing differentially 

expressed genes and protein interaction networks. 
However, the method does not focus on TFs and 
pathway identification.

In addition, gene enrichment test methods such 
as GSEA13 have been developed for ranking the 
conditional relevance of a previously defined gene 
set, and therefore can only be applied to known 
pathways. We also applied GSEA to both breast 
cancer data and ET data. Table 5 listed the highest-
ranked enriched pathways obtained by GSEA. Most 
of these previously defined pathways are not explic-
itly associated with the given phenotype, and none 
of them contain the activated TFs we have identi-
fied and which are supported by evidence in the 
literature.

Figure 2. Example of pathway segments corresponding to CREB1 identified from ET data.
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Table 4. Relevance matrix corresponding to an ET pathway segment (by PubMatrix tool).

PubMatrix CYP2C19 POR HMOX1 BLVRB CYP2C9 STAT JAK2 JAK Myeloproliferative 
disorder

CYP2C19 1849 4 0 0 701 1 0 0 0
POR 4 2101 1 0 1 1 0 1 10
HMOX1 0 1 3746 0 1 18 1 5 5
BLVRB 0 0 0 2 0 0 0 0 0
CYP2C9 701 1 1 0 2093 1 0 0 1

Table 5. Top pathways obtained by GSEA method.

Data set Top three pathways obtained 
by GSEA method

Breast cancer Repression of pain sensation by the 
transcriptional regulator DREAM
CARM1 and regulation of the Estrogen 
Receptor
Circadian rhythm

ET Cell Cycle: G2/M checkpoint
Cell cycle pathway
Role of EGF receptor trans-activation 
by GPCRs in cardiac hypertrophy

4. Conclusions
In this paper, we developed a computational approach 
to detect conditionally activated TFs and their 
corresponding pathway segments from microarray 
and PPI data. Differing from current pathway analysis 
methods, the main features of our approach include 
two aspects. One is that we identify pathway seg-
ments by taking into account their corresponding 
experimental/physiological conditions. The other 
is that we consider downstream TF activation and 
incorporate TF activation information into pathway 
segment identification. We have applied our method 
to two microarray data sets and demonstrated the 
effectiveness of our approach by using literature 
search tools. With more information such as TF-target 
data and PPI data accumulated in the future, our 
approach will further assist in biological hypothesis 
generating and facilitate greater understanding of 
specific biological processes.
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