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In order to alleviate the scale variation problem in object detection, many feature pyramid networks are developed. In this paper,
we rethink the issues existing in current methods and design a more effective module for feature fusion, called multiflow feature
fusion module (MEF*M). We first construct gate modules and multiple information flows in MF’M to avoid information re-
dundancy and enhance the completeness and accuracy of information transfer between feature maps. Furtherore, in order to
reduce the discrepancy of classification and regression in object detection, a modified deformable convolution which is termed
task adaptive convolution (TaConv) is proposed in this study. Different offsets and masks are predicted to achieve the dis-
entanglement of features for classification and regression in TaConv. By integrating the above two designs, we build a novel feature
pyramid network with feature fusion and disentanglement (FFAD) which can mitigate the scale misalignment and task mis-

alignment simultaneously. Experimental results show that FFAD can boost the performance in most models.

1. Introduction

Object detection is one of the most important and chal-
lenging tasks in the field of computer vision. This task widely
benefits image/video retrieval, intelligent surveillance, and
autonomous driving. Although the performance of object
detector grows rapidly with the development of deep con-
volutional neural networks, the existing detectors still suffer
from the problems caused by the scale variation across object
instances. To resolve this issue, the image pyramid method
[1] takes pictures of different resolutions as input to improve
the robustness of the model to small objects. However, this
strategy greatly increases the amount of memory and
computation. In SSD [2], the authors propose a method to
detect objects of different sizes on feature maps at different
levels. Compared with the solution that uses an image
pyramid, this method has less memory and computational
cost. Unfortunately, the performance of small object de-
tection is still poor, since the features in low layers of the
convolutional network always contain more geometric in-
formation and less semantic information. To alleviate this

problem, FPN [3] creates a top-down architecture with
lateral connections for building high-level semantic feature
maps at all scales. Recently, the assistance of geometric
information in shallow layers to large object detection is
noticed. Several methods such as PANet [4] and BiFPN [5]
add an extra bottom-up information flow path based on FPN
to enhance the deep-layer features with accurate localization
signals existing in low levels. Several methods like Libra
RCNN [6] and M2det [7] first gather multilayer features into
one layer and finally split it into a feature pyramid to in-
tegrate geometric and semantic information.

Despite the performance gained by the above pyramidal
architecture, they still have some intrinsic limitations. Most
feature pyramid networks are constructed by simply ag-
gregating the features of different levels intuitively, which
ignore the intrinsic properties between the features of
different levels. SPEC [8] shows us that the similarity be-
tween adjacent feature maps is high, while those far apart
are opposite. In this paper, we observe that there are two
critical drawbacks existing in most previous fusion
methods. First, information redundancy problem caused
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by directly summing or concatenating feature maps hinders
the performance of detection. Second, it is difficult to
accurately transfer information between feature maps,
especially for feature maps that are far apart, which leads to
the loss of some targets. Figure 1 demonstrates the heatmap
visualization examples of multilevel features after various
feature pyramid networks. We can observe the following:
(1) Only a few features are captured by conventional FPN
and it has no response to large-scale objects. (2) The second
method has larger activation regions at deep layers, but it
contains some inaccurate information. (3) Although the
third method has better performance on both large and
small objects, it still misses several targets and has some
unnecessary noise. Further, ignoring the spatial mis-
alignment between classification and localization func-
tions, the output of most pyramidal networks is shared by
downstream head of detector. Some researches [9-11] have
revealed that the spatial sensitivities of classification and
localization on the feature maps are different, which can
limit the performance of detection. However, previous
solutions to this problem can be deemed to disentangle the
information by adding a new branch and essentially in-
crease the parameters of the head. The conflict between the
two tasks is still not eliminated, since the feature map
extracted by backbone is still shared by the two branches,
which motivates us to explore a feature pyramid archi-
tecture with spatial disentanglement.

In this paper, we aim to propose a novel feature pyramid
network to break the above bottleneck restrictions. As
shown in Figure 2, we firstly construct two subnetworks for
top-down information flow and down-top information flow.
Then, following the attention mechanism applied in these
works [12-15] and the feature selection method on high-
dimensional data [16], we set several gate modules to help
the network focusing on important features as well as
suppressing unnecessary ones. Moreover, we add an extra
fusion path in each direction for enhancing the power of
communication to prevent the loss of important informa-
tion. Finally, we gather up the fusion outputs of two sub-
networks. It is worth noting that there are five information
flow paths in our module: one is horizontal, and the others
are vertical. In order to alleviate the inherent conflict be-
tween classification and regression in feature pyramid, a
modified deformable convolution is proposed for feature
decoupling, called task-adaptive convolution (TaConv). By
predicting two sets of offsets and mask, respectively, TaConv
outputs two feature maps for classification and regression,
respectively, at each level of feature pyramid. Our method
brings significant performance improvement compared with
the state-of-the-art one-stage object detectors.

The contributions of this study are as follows:

(1) Werethink the limitation existing in previous feature
fusion strategies and design a more effective module
to avoid these issues.

(2) We further propose a method (TaConv) for the
feature decoupling in one-stage detector to alleviate
the discrepancy between classification and
regression.
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(3) We construct a novel feature pyramid network
with feature fusion and decoupling and validate
the effectiveness of our approach on the standard
MS-COCO benchmark. The proposed network can
boost the performance of most single-shot de-
tectors (by about 1~2.5AP).

2. Related Work

2.1. Object Detection. There are mainly two streams of
methods in object detection. The first stream is two-stage.
Methods in this stream include RCNN family [17-19].
R-FCN [20] and Mask RCNN [21] consist of a separate
region proposal network and a region-wise prediction
network. They firstly predict region proposals and then
classify and fine-tune each of them. Methods in the other
stream are one-stage. This type of detector directly predicts
objects category and coordinates at each pixel of feature
map; thus, the efficiency of such methods is higher than that
of two-stage ones. However, one-stage detectors in early
time such as SSD [2] and YOLO family [22-24] lagged
behind two-stage detectors as regards the performance.
With the advent of focal loss [25], the category imbalance
problem in the single-stage detector is greatly alleviated.
Since then, following works [26-28] further improve its
performance by designing more elaborate heads. At present,
the single-stage detectors can achieve performance that is
very close to that of the two-stage ones.

2.2. Feature Fusion. Due to the convolutional networks’
deepening and downsampling operations, the features of
small objects are always lost. To tackle this problem, two
strategies were proposed in the literature. The first one is
image pyramid method such as SNIP [1] and SNIPER [29].
These methods take pictures of different resolutions as input
and perform detection separately and combine these pre-
diction results to give the final results. The other strategy is
feature pyramid. These methods like SSD [2] and MS-CNN
[30] conduct small object detection directly on the shallow
feature maps and perform large object detection on the deep
feature maps. Compared with the first strategy, the addi-
tional memory and computational cost required by the
second strategy are greatly reduced, so it can be deployed
during the training and testing phase of the real-time net-
work. Moreover, low-level features generally lack semantic
information but are rich in keeping geometric details while
high-level features are opposite. Therefore, an effective
feature fusion strategy plays a crucial role in processing
features of objects with various scales. FPN [3], the milestone
of pyramidal network, propagates high-level semantic in-
formation to shallow level by building a top-down archi-
tecture. Since then, feature pyramid has been widely used in
the object detection task. Recently, considering the lack of
geometric information of deep layer features, several bidi-
rectional models such as PANet [4] and BiFPN [5] add a
down-top path for low-level feature maps aggregation based
on the FPN. Libra-RCNN [6] firstly fuses features of all
layers and then disentangles them into the pyramid. M2Det
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FI1GURE 1: Heatmap visualization examples of current fusion methods. f, i = 1...5, means the output feature of i-th level in pyramid network.
Green boxes: ground truth; red boxes: detection result.
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FIGURE 2: The overview of the proposed FFAD cooperated with single-stage detector. The features of input images are first extracted by the
backbone network, and then MF>M fuse these features through multiple paths. Finally, TaConv produces a multilevel feature pyramid. There
are two parallel feature maps used to predict specific categories and regress precise boxes, respectively, at each level.

[7] stacks several U-shaped modules to fuse multilayer  other approaches that fuse features by concatenating fea-
features followed by generating the feature pyramid.  tures from different layers in the forward propagation of the
Moreover, different from the above method, there are some backbone. For instance, Hourglass Network [31]



concatenates features with the previous layers in the repeated
bottom-up and top-down processes. HRNet [32] gradually
adds a low-resolution subnetwork to the high-resolution
major network in parallel.

2.3. Feature Disentanglement. Most object detectors share
the features extracted by the backbone for both classification
and bounding box regression; thus, there is a lack of un-
derstanding between the two tasks. There has been some
work on the conflict between the classification and regres-
sion tasks. Zhang and Wang [33] point out that the direction
of the two task gradients is inconsistent, implying the po-
tential conflicts between the two tasks gradients. IoU-Net [9]
alleviates this discrepancy by adding an extra head to predict
the localization confidence and then aggregates it with the
classification confidence together to be the final score.
Double-Head RCNN [10] disentangles the sibling head into
two specific branches for classification and localization. TSD
[11] shows that classification task pays more attention to the
features in the salient areas of objects, while the features
around the boundary are beneficial for bounding box re-
gression. The authors ease this issue by generating two
disentangled proposals for classification and localization,
respectively. Despite the fact that the satisfactory perfor-
mance can be obtained by this detection head disentan-
glement, the conflict between the two tasks still remains,
since the inputs to the two heads are still shared. In this
paper, we propose a novel feature pyramid network with
feature fusion and disentanglement called FFAD, which can
alleviate the scale misalignment and task misalignment si-
multaneously. To the best of our knowledge, there is cur-
rently no work to explore spatial decoupling of feature
pyramids.

3. Proposed Method

FFAD contains two submodules, that is, MF°M and TaConv.
Compared with most of the current methods, MF°M ag-
gregates features more effectively. Then the output feature
maps of ME’M are disentangled by TaConv for alleviating
inherent conflict between the classification and regression
task. The prediction of classical pyramidal networks can be
written as

Pc :Hc(Fi)’

P, = H,(F,) =

r r i)?

where P, and P, denote the classification results and re-

gression results, respectively; H. and H, are the heads for

transforming feature to specific category and localization of

object; F; denotes the feature map of i-th level in feature

pyramid, and L denotes the numbers of layers of feature

pyramid. Unlike conventional pyramidal networks, FFAD

produces two feature maps for two tasks, respectively, at
each level of the feature pyramid:

Computational Intelligence and Neuroscience

P, = H_(F;),
P, =H, (Fzr)’

i=1...L,

(2)
i=1...L,
where F{ and F} denote the feature map for classification and
regression of the i-th layer in FFAD, respectively.

3.1. Multiflow Feature Fusion Module. We conclude that
there are about three styles of feature pyramid networks: (1)
conventional FPNs that are single directional pyramid net-
work (as shown in Figure 3(a)), (2) bidirectional pyramid
networks (as shown in Figure 3(b)), and (3) encoder-decoder
FPNs (as shown in Figure 3(c)). As shown in Figure 3(d), the
parts in the red- and yellow-dotted boxes represent two
subnetworks in different directions that share inputs. There
are three feature nodes at each level of each subnetwork.
Further, we propose information augmentation for enhancing
the signal transmitted between feature nodes, especially those
that are far apart. As seen from Figure 3(e), in the top-down
subnetwork, both the second and third nodes of each layer
have a fusion with the shallower features except for the
shallowest. Meanwhile, in the down-top subnetwork, the
second and third nodes of each layer are fused with the deeper
features except for the deepest layer. At the same time, in
order to simplify the network, we remove the shallowest
second node in the top-down network and the deepest second
node in the down-top network, so that there is only one input
edge. It is worth noting that there are two information flow
paths in each subnetwork. Finally, we gather up the outputs of
two subnetworks to form the fifth information flow. Let x; be
the i-th input of MF°M and let y; be the i-th output of MF*M.
Then the output of the MF’M is

yi = conv(C(F_y(x;), Fa_y (%)) (3)

where conv(-) denotes the convolution operation, C(-) de-
notes the concatenation operation, and F,_;(-) and F,_,(-)
are the outputs of top-down and down-top subnetworks,
respectively:

Fi_q(x;) = conv(conv (x;) + M (conv(x;.1))) + M (Fy_4 (xi1))s
Fy_ (x;) = conv(conv (x;) + U (conv(x;_1))) + U (Fay (1)),
(4)

where M (-) is the max-pooling layer and U (-) is the bilinear
upsampling layer.

EfficientDet [5] already shows that the feature map of
different scales should have a different contribution to the
output and proposes adding a weight for each input feature,
while most previous methods treat all input features equally
without distinction. Inspired by the spatial attention
mechanism and the intrinsic connections between feature
maps, we design a simple gate module for controlling the
intensity of information flow. Thus, the outputs of top-down
and down-top subnetworks are as follows:
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FIGURE 3: We propose two general structures of multiflow feature fusion methods: (d) 3-flow structure and (e) 5-flow structure. Native FPN
(a), bidirectional FPN (b), and encoder-decoder FPN (c) are some other popular fusion methods. Red-dotted lines mean that they can be
several operations including upsampling, downsampling, summing, and concatenation. The different directions of the red-dotted lines
represent different information flows. Each solid black line presents an independent convolution. The red-dotted box represents the down-
top subnetwork and the yellow-dotted box represents the top-down subnetwork.

Fr_q(x;) = g (conv(conv(x;) + M (conv (x;.1)))) + g (M (Fiq (xi-1)))s

Byt () = g (convlconv () + U (comv (1)) + 9 (U (Fay(x,4)), ©

where g (-) can be written as turther improve the feature pyramid network, we use DCN
[34] to adjust the results after fusing with other layer features
in the pyramid network. To avoid the extra computing cost
caused by deformable convolution as far as possible, we only
embed it in the nodes of each layer after the first fusion with
other layers. In this way, the outputs of top-down and down-
top subnetworks, F,_;(-) and F,_, (-), can be formulated as

follows:

g(x) = sigmoid (conv(x)) ® x, (6)

and x represents the input;
multiplication.

Deformable convolution is often embedded in the
backbone as well as the last layer of detector towers to further
improve the performance of object detectors. In order to

® denotes pixel-wise

Fo(x) = {g(conv(conv( x;)))s i=1,

g(dc onv(conv(x;) + M (conv(x;_y)))) + g(M (F,_4(x;1))), i=2...5, )
Fol(x) = {g(dc onv(conv(x;) + U (conv(x;1)))) + g(U(Fu (x,21))), i=1...4,

g (conv(conv(x;))), i=5,

between features suitable for classification and suitable for
regression, due to its superior ability to capture the key
information of objects. As shown in Figure 4, for the features

where dc onv(-) denotes deformable convolution operation.

3.2. Task-Adaptive Convolution. To mitigate the misalign-
ment between classification and localization existing in
classical feature pyramids, we propose task-adaptive con-
volution. It is indeed a modified modulated deformable
convolution. We borrow the idea of DCN [34] to distinguish

of each level in feature pyramids, TaConv first predicts two
groups of offsets and modulations. Then the two groups of
offsets are added to the coordinates of each sampling point of
the convolution kernel, respectively. The two modulations
are multiplied by the value of each sampling point of the



TaConv

Computational Intelligence and Neuroscience

Offsets and modulation for classification

Y
h x wx 3k
LR
Input features Modulation
®
Convolution kernel ﬁ

®
Offsets & modulation for regression é

~
~
~

Features for classification

Features for regression

CEIC]
AL
CE

Modulation

RN
NN

Offsets

F1GURE 4: Structural details of task-adaptive convolution (TaConv).

convolution kernel. Finally, TaConv generates two inde-
pendent feature maps: one is sensitive for classification task,
and the other is sensitive to localization task. Let x represent
the pixel value of feature map and the outputs of TaConv can
be formulated as follows:

K
Fi = ) w-xi(px+ ApS, py + AP) - m,

k=1

) (8)
Fi =Y wy-x;(pe+ Aplo py, + AP)) - m,

T
)

where K denotes the size of convolution kernel; w;, denotes
the k-th point of kernel. p, and p, denote the horizontal and
vertical coordinates of sampling point. Ap{ and Ap', rep-
resent the deviation of the classification task on the X-axis
and Y-axis, respectively. Ap. and Ap, denote the deviation
of the regression task on the X-axis and Y-axis, respectively.
m. and m, are the modulation multiplied by the convolution
kernel parameters.

4. Experimental Evaluation

We perform our experiments on the challenging MS-COCO
[35] benchmark of 80-category. Following the standard
protocol [36], we train on the training set (consisting of
around 118k images) and then report the results of minival set

(consisting of 5k images) for ablation studies. To compare the
accuracy of our algorithm with those of the state-of-the-art
single-shot detectors, we also report results of test-dev set
(consisting of around 2k images) which has no public labels
and requires the use of the evaluation server.

4.1. Implementation Details. In our study, we embed our
method into several latest and state-of-the-art single-stage
detectors including RetinaNet [25], FCOS [26], and ATSS
[28]. For fair comparison with the above detectors, the
configuration of hyperparameters used in our experiments
is set as same as the literature’s. Specifically, we use the
ImageNet [37] pretrained models such as ResNet-50 [38]
followed by FPN structure as the backbone. We use the
Stochastic Gradient Descent (SGD) algorithm to optimize
the training loss for 180k iterations with 0.9 momentum,
0.0001 weight decay, and a mini-batch of 8 images. The
initial learning rate is set to 0.05 and we reduce the learning
rate by a factor of 10 at iterations of 120k and 160k, re-
spectively. Unless otherwise stated, the input images are
resized to have their shorter side being 800 and their longer
side less or equal to 1333. We do not use any noise re-
duction method, and no data augmentations except
standard horizontal flipping are used. During the inference
stage, we resize the input image in the same way as in the
training stage and postprocess the predicted bounding
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boxes with a predicted class obtained by forwarding images
through the network, using the same hyperparameters of
the above detectors.

4.2. Ablation Study. To demonstrate that our proposed
MEF’M can capture the objects’ features of different sizes
more effectively, we compare MF°M with other common
teature fusion modules on FCOS. The results are shown in
Table 1. Compared with the baseline that actually uses
single directional FPN (37.1 AP), encoder-decoder FPN
obtains a higher score (37.3 AP), especially with an increase
of 0.4 AP for medium targets. Meanwhile, bidirectional
FPN gives the best performance among these three com-
mon FPN styles (37.6 AP), and its large target detection is
improved by 0.6 AP. Cooperating with 3 information flows’
structure, detailed in Figure 3(d), the detector based on
FCOS is promoted to 37.8 AP. This result verifies that
splitting the series bidirectional structure into two unidi-
rectional subnetworks can get better performance. By
adding an additional information flow in each subnetwork,
the performance of the detector is further improved by 0.5
AP. After fine-tuning the feature by DConv, our MF°M
achieves 39.2 AP, outperforming most current feature
fusion methods by a large margin. Specifically, the accuracy
of detecting small objects (increased by 2.0 AP compared to
the baseline) and large objects (increased by 3.4 AP
compared to the baseline) is particularly improved. It is
shown that our method can effectively fuse the features of
cross-scale objects. In order to more intuitively observe the
feature fusion ability of this method, we visualize the ac-
tivation values of the features of FPN, bidirectional FPN,
and MF’M. As shown in Figure 5, the first method loses
some features of small objects and cannot detect large
objects at all. Although the second and third methods can
capture the feature of large objects and make progress in
the detection of small objects, several objects are still
missed. At the same time, our approach almost never
misses features of both large and small targets.

As explained above, the core part of FFAD is composed
of MF’M and task-adaptive convolution. The MF’M is re-
sponsible for computing feature maps, which contain rich
features and the task-adaptive convolution decouples the
features to make them task-sensitive. Table 2 reports the
detailed ablations on them to demonstrate their effective-
ness. From the experimental results, we can know that this
method can alleviate the conflict between the classification
task and regression task to a certain extent. To better in-
terpret what task-adaptive convolution learns, we visualize
the learned feature on examples. As shown in Figure 6, the
features of classification branch are more distributed in the
central area of the objects, while the features of regression
branch are more sensitive to the edge area of the objects.

4.3. Analysis of the Performance in Different DCN’s Positions.
We have exhibited the effectiveness of MF’M for feature
tusion and the deformable convolution plays a significant
role in the adjustment of features. In this section, we further
discuss the performance of MF’M with different

TaBLE 1: Comparison of our method with other fashion feature
fusion modules including FPN, bidirectional FPN, and encoder-
decoder FPN on FCOS with ResNet-50 backbone. Results evaluated
on MS-COCO minival are reported.

Method AP APg APy AP;
FPN 371 21.3 41.0 47.8
Encoder-decoder FPN 37.3 21.6 414 48.1
Bidirectional FPN 37.6 21.8 41.3 48.4
3-flow structure 37.8 22.0 41.7 49.8
5-flow structure 38.3 22.8 42.3 49.7
MF*M 39.2 23.3 42.8 51.2

deformable convolution’s positions. Figure 7 shows the
structures where the deformable convolution is placed after
the first to the third nodes of each layer in each subnet,
respectively. Table 3 illustrates that the scheme of P2, which
uses DCN to fine-tune the nodes after the first feature
tusion, has the best effect. We believe that better results can
be achieved by fine-tuning all nodes after feature fusion
with DCN. However, excessive use of DCN will bring
greater computational effort, so we choose the most cost-
effective scheme.

4.4. Compatibility with Other Single-Stage Detectors. Since
FFAD has demonstrated its outstanding performance on
FCOS with ResNet-50, we also present that it can still be
effective when it is applied to other single-stage detectors. We
directly conduct several experiments with different detectors
including RetinaNet, FCOS, and ATSS on MS-COCO
minival. All evaluation was performed on one Nvidia 1080Ti
GPU. We set batch size to 8 and used the means of last 300
iterations in computation of speed. The results between the
proposed FFAD and their original baselines are compared in
Table 4. According to the first two columns of the table, it is
obvious that FFAD can steadily improve the performance by
1.8~2.6 AP, while the testing time is only increased by 3%~
11%.

4.5. Comparison with Other Feature Pyramids. With regard
to various feature pyramidal models, we compare our FFAD
with other state-of-the-art feature pyramid structures on
FCOS. Table 5 reports our experimental results. It is obvious
that FFAD provides a dramatic performance increase
compared to other advanced feature pyramid models, in-
cluding PANet [4], HRNet [32], Libra [6], and NAS-FPN
[39]. Moreover, FFAD also earns the close-to-the-minimum
FLOPs increment among the feature pyramidal models.

4.6. Comparison with Other State-of-the-Art Detectors. In
this section, we evaluate our proposed method on MS-COCO
test-dev set and compare it with other state-of-the-art
methods. For convenience, we only report FCOS equipped
with our proposed FFAD. As shown in Table 6, it is observed
that FFAD boosts the original baselines by a significant
margin and achieves the state-of-the-art 49.5 AP using
ResNext-101 backbone.
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FIGURE 5: Heatmap visualization examples of our proposed method MF’M and other current fusion methods embedded in RetinaNet. f;,
i=1, 3, 5, means the output feature of i-th level in pyramid network.

TaBLE 2: Ablation studies on our proposed task-adaptive convolution.

Method AP APs, AP5
FCOS 37.1 55.9 39.8
FCOS + MF°M 39.2 57.8 422
FCOS + MF’M + TaConv 39.7 58.2 43.5

All of the experiments are trained on FCOS with ResNet-50 backbone.

Classification

Regression [

FIGURE 6: Visualization of the learned features from task-adaptive convolution. The first row indicates the features that are sensitive to
classification. The second row indicates the features that are sensitive to regression.

4.7. Visual Results. We visualize part of the detection results
of our FFAD on COCO minival split. ResNet-101 is used as
the backbone. As shown in Figure 8, our proposed FFAD can
perform well in various natural scenes, being urban, wild,
land, or air. A wide range of objects can be detected by
FFAD, including crowded, incomplete, extremely small, and
very large objects.

4.8. Generalization on Global Wheat Head Detection. In
addition to evaluation on the COCO dataset, we further
corroborate the proposed method on the Global Wheat
Head Detection (GWHD) dataset [55]. The public dataset
brings about a challenging task for detecting wheat head
from several countries around the world at different growth
stages with a wide range of genotypes. To further verify and
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TasLE 3: Comparison of detection AP results of MF’M with different DCN’s positions.

DCN’s position AP APg APy AP,
P1 39.0 23.1 423 50.5
P2 39.2 23.3 42.8 51.2
P3 38.7 21.6 41.5 49.9
All experiments were trained on FCOS with ResNet-50 backbone. Results evaluated on MS-COCO minival are reported.
TaBLE 4: Comparison of detection AP results of different architectures.

Method Testing time (ms) AP AP, AP5 APg APy AP,
RetinaNet 56 35.7 55.0 38.5 18.9 38.9 46.3
RetinaNet + FFAD 58 37.5 57.1 40.4 22.7 41.2 49.3
FCOS 45 371 55.9 39.8 21.3 41.0 47.8
FCOS + FFAD 48 39.7 58.2 43.5 24.7 43.5 52.2
ATSS 44 39.3 57.5 42.8 243 43.3 51.3
ATSS + FFAD 49 41.4 59.1 45.0 25.1 45.5 53.8

All models were trained using ResNet-50 backbone and the same training strategies. Results are evaluated on COCO minival set.

TaBLE 5: Comparison of FFAD with other state-of-the-art feature pyramid networks. Results are evaluated on COCO minival set.

Pyramidal models FLOPS (G) AP AP, AP
FPN 200.04 37.1 55.9 39.8
PANet 216.58 37.8 57.1 41.2
Libra 275.62 38.0 58.3 40.8
HRNet 258.03 38.1 58.2 41.3
NAS-FPN 249.09 389 57.6 42.6
FFAD 230.79 39.7 58.2 43.5

TaBLE 6: Comparison of the test results of FFAD with other state-of-the-art object detectors. Results are evaluated on COCO test-dev.

~indicates multiscale testing is used.

Method Backbone AP APs5, AP APg APy APy
Two-stage detectors

Faster RCNN w/FPN [19] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Deformable R-FCN [40] Inc-Res-v2 37.5 58.0 40.8 194 40.1 52.5
Mask-RCNN [21] ResNext-101 39.8 62.3 43.4 22.1 43.2 51.2
Soft-NMS [41] ResNet-101 40.8 62.4 44.9 23.0 43.4 53.2
SOD-MTGAN [42] ResNet-101 41.4 63.2 45.4 24.7 44.2 52.6
Cascade-RCNN [43] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
TridentDet [44] ResNet-101 42.7 63.6 46.5 23.9 46.6 56.6
TSD [11] ResNet-101 43.2 64.0 46.9 24.0 46.3 55.8
SNIP™ [1] DCN + ResNet-101 44.4 66.2 49.2 27.3 46.4 56.9
SNIPER™ [29] DCN + ResNet-101 46.1 67.6 51.5 28.0 51.2 60.5
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TaBLE 6: Continued.
Method Backbone AP AP, AP5 APg APy APy
One-stage detectors
DSSD513 [45] ResNet-101 33.2 53.3 35.2 13.0 354 51.1
RefineDet512 [46] ResNet-101 36.4 57.5 39.5 13.6 39.9 51.4
RetinaNet800 [25] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
PPDet [47] ResNet-101 40.7 60.2 44.5 24.5 44.4 49.7
AutoFPN [48] ResNet-101 425 . . . . .
FreeAnchor [49] ResNet-101 43.0 62.2 46.4 24.7 46.0 54.0
M2Det ~ [7] ResNet-101 43.9 64.4 48.0 29.6 49.6 54.3
FoveaBox [50] ResNext-101 42.1 61.9 45.2 24.9 46.8 55.6
FCOS [26] ResNext-101 44.7 64.1 48.4 27.6 47.5 55.6
CornerNet [51] Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3
ExtremeNet [52] Hourglass-104 40.1 55.3 43.2 20.3 43.2 53.1
CenterNet [53] Hourglass-104 449 62.4 48.1 25.6 47.4 57.4
CenterNet ~ [53] Hourglass-104 47.0 64.5 50.7 28.9 49.9 58.9
RepPoints [54] DCN + ResNet-101 45.0 66.1 49.0 26.6 48.6 57.5
Ours
FFAD ResNet-101 44.1 62.2 47.9 27.4 47.6 56.7
FFAD DCN + ResNet-101 46.5 64.9 51.2 29.3 51.3 60.8
FFAD DCN + ResNext-101 47.4 66.9 52.0 31.1 51.5 61.9
FFAD ~ DCN + ResNext-101 49.5 68.9 53.9 35.8 53.6 63.3

FiGure 8: Visual results of FFAD on COCO minival split.

EfficientDet [5], and YOLOv5 [56] on this dataset. We
separate out a fifth of the training set as a validation set and
then evaluate the results on that. We set the input size to

delve the effectiveness of our proposed algorithm, we run
FFAD and several other detectors including Faster RCNN
[19], Mask RCNN [21], RetinaNet [25], FCOS [26],
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TaBLE 7: Comparison of the test results of FFAD with other state-of-the-art object detectors.
Method Backbone mAP@0.5
Faster RCNN ResNet-50 80.8
Mask RCNN ResNet-50 83.6
RetinaNet ResNet-50 87.5
FCOS ResNet-50 88.6
EfficientDet (D3) ResNet-50 88.9
YOLOvV5 CSPDarknet 89.3
FFAD ResNet-50 90.9

Results are evaluated on GWHD.

1024 x 1024 and the batch size to 4 to train these models for
10 epochs. As shown in Table 7, even in the face of such
dense and overlapping scenes, FFAD can still give satis-
factory improvements.

5. Conclusion and Future Work

In this paper, we point out that there are several bottlenecks
existing in current feature pyramid networks, which con-
siderably limit the performance of detectors. Motivated by
that, we look into these issues and propose a novel feature
pyramid network with feature fusion and disentanglement
(FFAD) to alleviate these problems. In particular, FFAD first
splits the conventional bidirectional feature pyramid into two
independent subnetworks and adds an additional flow of
information to each of them to strengthen the communi-
cation between feature maps and finally fuses the output of
the two subnetworks. Furthermore, we propose the task-
adaptive convolution to mitigate the inherent task conflict in
feature pyramid. By predicting two groups of different offsets
and modulations in task-adaptive convolution, FFAD gen-
erates the specific feature representation for classification and
localization, respectively. Being compatible with most single-
stage object detectors, our FFAD can easily enhance the
detection performance by about 1~2.6 AP. Our future work
will aim to simplify feature fusion module without losing
mAP and further enlarge the performance margin between
the disentangled and the shared features in pyramidal model.
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