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Enteric and extraintestinal pathotypes of Escherichia coli utilize a wide range of virulence
factors to colonize niches within the human body. During infection, virulence factors such
as adhesins, secretions systems, or toxins require precise regulation and coordination to
ensure appropriate expression. Additionally, the bacteria navigate rapidly changing
environments with fluctuations in pH, temperature, and nutrient levels. Enteric
pathogens utilize sophisticated, interleaved systems of transcriptional and post-
transcriptional regulation to sense and respond to these changes and modulate
virulence gene expression. Regulatory small RNAs and RNA-binding proteins play
critical roles in the post-transcriptional regulation of virulence. In this review we discuss
how the mosaic genomes of Escherichia coli pathotypes utilize small RNA regulation to
adapt to their niche and become successful human pathogens.

Keywords: sRNAs, Escherichia coli, post-transcriptional regulation, RNA-binding proteins, Shiga toxins, locus of
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INTRODUCTION

Within a few hours of birth we are colonized by our first commensal Escherichia coli strains. These
microorganisms reside in our gastrointestinal tract and are prominent members of the gut
microbiota. This association with Escherichia coli persists for our entire lives (Milani et al., 2017).

While a majority of Escherichia coli strains are commensals, some have acquired repertoires of
virulence traits that allow them to thrive in unusual environmental niches and cause disease in
humans. The majority of virulence factors appear to have been horizontally acquired on mobile
genetic elements such as bacteriophages, transposons or plasmids, resulting in a highly mosaic
genome (Rasko et al., 2008; Lukjancenko et al., 2010; Gordienko et al., 2013). Pathogenic Escherichia
coli strains are divided into different pathotypes depending on the location of infection as well as the
combination of virulence factors expressed (Kaper et al., 2004). Broadly, pathogenic Escherichia coli
can be divided into extraintestinal pathogenic Escherichia coli (ExPEC) and diarrheagenic
Escherichia coli (DEC). ExPEC cause diseases such as urinary tract infections, meningitis and
sepsis and includes uropathogenic Escherichia coli (UPEC), sepsis-associated Escherichia coli
(SEPEC) and neonatal meningitis Escherichia coli (NMEC) (Dale and Woodford, 2015). DEC
pathotypes cause diarrheal diseases and are classified by the presence of characteristic virulence
factors that potentiate disease. They are classified into enteropathogenic Escherichia coli (EPEC),
enterohemorrhagic Escherichia coli (EHEC), enterotoxigenic Escherichia coli (ETEC),
enteroaggregative Escherichia coli (EAEC), enteroinvasive Escherichia coli (EIEC) and diffusely
adherent Escherichia coli (DAEC).
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The virulence factors that define these pathotypes can either
be integrated into the chromosome within pathogenicity islands
or encoded on accessory plasmids. These include adhesins and
colonization factors, toxins, and altered metabolic pathways, all
of which are expressed in a coordinated manner to facilitate
infection. The order in which these virulence factors are
expressed is important as bacterial pathogens traverse multiple
microenvironments enroute to the final site of infection that can
have varying pH, oxygen levels, or nutrient sources and must
rapidly sense and adapt to these changes. Pathogenic Escherichia
coli also need to time the expression of toxins, colonization factors,
and secretion systems as these molecules are immunostimulatory
and incur a high energy cost (Miao et al., 2010; Lee and Rietsch,
2015). Expression of these virulence factors are regulated at a
transcriptional level (Bustamante et al., 2001; Lee et al., 2012;
Thomas and Wigneshweraraj, 2014; Crofts et al., 2018; Connolly
et al., 2019) however, post-transcriptional regulation by small
RNAs, RNA-binding proteins (RBPs) and ribonucleases are
equally critical in modulating gene expression of stress response
genes and virulence factors in response to rapid changes in the
host environment. Each of these RNA regulators are described in
more detail below.

Regulatory RNAs, in particular trans-encoded small RNAs
(sRNAs), serve important regulatory roles across all levels of
gene expression. These include well-established mechanisms of
regulating translation initiation and transcript stability (Waters
and Storz, 2009; Papenfort and Vogel, 2010; Wagner and Romby,
2015). Since their initial discovery from intergenic regions of genes
however, a slew of novel biogenesis pathways and regulatory
mechanisms for sRNAs have been uncovered. sRNAs have since
been found to originate from 3’UTRs (Chao et al., 2012; Chao and
Vogel, 2016; De Mets et al., 2019; Hoyos et al., 2020; Wang et al.,
2020), 5’UTRs (Vanderpool and Gottesman, 2004; Thomason
et al., 2019), protein-coding transcripts (Dar and Sorek, 2018),
and pre-tRNAs (Lalaouna et al., 2015), and can effect regulation of
their targets by modulating Rho-dependent termination
(Sedlyarova et al., 2016; Silva et al., 2019; Hoyos et al., 2020),
ribosome loading (Jagodnik et al., 2017; Romilly et al., 2019) and
sponging interactions (Tree et al., 2014; Lalaouna et al., 2015;
Miyakoshi et al., 2015)

Bacterial post-transcriptional regulation is also significantly
influenced by global RNA-binding proteins (RBPs). In Gram
negative bacteria for example, major post-transcriptional
regulators include the conserved RNA-binding protein CsrA,
and the RNA-chaperones such as Hfq and ProQ, which facilitate
sRNA interactions with their targets (Vogel and Luisi, 2011;
Romeo et al., 2013; Smirnov et al., 2016). Deletion of any of these
RBPs has pleiotropic effects on gene regulation and pathogenicity
(Timmermans and Van Melderen, 2009; Chao and Vogel, 2010;
Vogel and Luisi, 2011; Potts et al., 2017; Westermann et al.,
2019). Each RBP controls a large network of transcripts and may
have antagonistic or overlapping roles, making for a sophisticated
post-transcriptional network (Papenfort and Vogel, 2014;
Melamed et al., 2020).

In this review, we discuss recent findings on sRNA regulation
of virulence in the diarrheagenic Escherichia coli pathotypes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
EHEC, EPEC, and DAEC, and extraintestinal pathotypes
UPEC and NMEC. In addition, we highlight how post-
transcriptional regulation creates an additional layer of
information that co-ordinates virulence factors, responds to
environmental signals, provides increased stress tolerance and
niche adaption, and even integrates host cell contact into
virulence gene expression.
SHIGA TOXINS AND PHAGE ENCODED
REGULATORY SMALL RNAS

Bacteriophages are major drivers of bacterial evolution and
appear to provide a ready source of virulence genes that can
augment bacterial virulence in a “plug and play” manner (Tobe
et al., 2006; Loukiadis et al., 2008). In EHEC the primary cause of
morbidity is the release of Shiga toxins (Stx) encoded within
lambdoid bacteriophages. The Shiga toxins are AB5 toxins that
bind to globotriaosylceramide (Gb3) that is expressed on renal
epithelial cells and neurons, and causes cell death by
depurinating and inactivating ribosomes. Shiga toxins are
divided into two major groups, Stx1 and Stx2, that are further
sub-divided into three subtypes of Stx1 (a, c, and d), and eight
subtypes of Stx2 (a-h) (Scheutz et al., 2012; Bai et al., 2018).
While multiple subtypes have been associated with human
disease, Stx1a, Stx2a and Stx2d are associated with more severe
disease outcomes (Melton-Celsa, 2014; Ogura et al., 2015). Three
regulatory pathways that control expression of the Shiga toxins
have been identified to date. The Shiga toxins are integrated into
the late region of the Stx phage and in 2001 it was shown that
transcription of the stxAB genes is driven by the Stx phage late
promoter PR’ (Wagner et al., 2001; Wagner et al., 2002). The
late promoter is regulated by phage induction and the RecA-
dependent SOS response. Almost all of the identified
regulatory signals that affect Stx production act through this
pathway by modulating the SOS stress response. This pathway
provides a single regulatory conduit from the Shiga toxin
genes to quorum sensing, antibiotic stimulation, and small
molecule inhibitors (Bielaszewska et al., 2012; Pacheco and
Sperandio, 2012; Huerta-Uribe et al., 2016). Stx1 expression
also responds to iron availability and nitric oxide stress
through a second pathway. Early work had shown that the
stx1AB genes were regulated by an upstream Fur-responsive
promoter (Pstx) that controls expression in response to iron
and nitric oxide (Calderwood and Mekalanos, 1987). In
addition, it is clear that a third regulatory pathway controls
the Shiga toxins post-transcriptionally.

Analysis of Hfq binding sites in EHEC recovered extensive
interactions with the Stx phages, including 11 intergenic peaks
that were predicted to be regulatory small RNAs (Tree et al.,
2014). Among the sRNAs identified, a Hfq-binding sRNA was
produced from the region bounded by the late promoter PR’
and tR’. This region is constitutively transcribed and terminated
during lysogeny as a by-product of antitermination regulation of
the late promoter. Surprisingly, this short transcript is not simply
degraded by the cell but is processed by RNase E to produce the
January 2021 | Volume 10 | Article 622202
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stable sRNA termed StxS. StxS is expressed from both lysogenic
Stx1 and Stx2a bacteriophages, and represses Shiga toxin 1
production 3-fold under lysogenic conditions by directly
binding to stx1B RBS to silence translation (Sy et al., 2020).
StxS does not appear to regulate stx2AB (that is only produced
during lytic induction), although Stx2a is also likely regulated by
as yet unidentified Hfq-dependent sRNAs (discussed below).
StxS regulation of stx1B appears to provide a post-transcriptional
check that suppresses Stx1 expression during lysogeny.

StxS sRNA also activates the stationary phase general stress
response regulator RpoS through interactions with an activating
seed region in the rpoS 5’UTR (Sy et al., 2020). StxS binds to rpoS
at the same site as the other known rpoS-activating sRNAs ArcZ,
DsrA, and RprA (Lease et al., 1998; Majdalani et al., 2001;
Mandin and Gottesman, 2010). These sRNAs unfold repressive
secondary structure in the rpoS 5’UTR and inhibit premature
Rho termination (Lease and Woodson, 2004; Updegrove et al.,
2008; Soper et al., 2010; Sedlyarova et al., 2016). StxS likely acts
through the same mechanism to constitutively activate rpoS, at
least partly uncoupling rpoS from post-transcriptional repression
in EHEC. Through StxS activation of rpoS translation, it was
shown that EHEC is able to increase stationary phase cell density
~20% in nutrient limited minimal media (Sy et al., 2020).

Deletion of hfq in the EHEC strains 86-24 and EDL933 results
in increased expression of stx2AB, suggesting that there are likely
undiscovered sRNAs that can regulate expression of stx2AB,
either directly or through modulation of the SOS response
(Kendall et al., 2011). The Qin phage sRNA DicF has
expanded from 1 to 4 copies in many EHEC strains and
represses expression of stx2A (Melson and Kendall, 2019).
DicF is upregulated during oxygen-limitation and this sRNA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
may link stx2A expression to oxygen availability during
colonization, although the mechanism of DicF regulation of
stx2A remains to be determined.

Another sRNA has been identified within the late region of
the Stx phage f24B and has been termed sRNA 24B_1. This RNA
is unusual in that the mature sRNA is proposed to be processed
from an 80 nt stem into a 20 nt ‘microRNA-sized’ regulatory
RNA (Nejman-Faleńczyk et al., 2015). The authors identified this
20 nt fragment by selectively sequencing 10–40 nt RNAs present
in f24B lysogenized commensal Escherichia coli MG1655.
However, the mechanism of maturation, and function outside
of the context of the longer 80 nt sRNA has not been determined.
It remains likely that this 20 nt RNA represents a degradation
product of the longer functional sRNA. In earlier analysis of Hfq
binding sites in EHEC str. Sakai (Tree et al., 2014) this region of
the Sp5 Stx2 phage was found to be bound by Hfq (termed sRNA
EcOnc53). In our recent transcriptome-wide 5’ and 3’ end
mapping data (dRNA-seq and Term-seq; Sy et al., 2020) we
find that EcOnc53 is 67 nt in length (Figure 1). Gruber and
Sperandio (2015) also identified EcOnc53 in the Stx phage
BP933W, termed sRNA108 in their study. These authors found
that sRNA108 was not destabilized by hfq deletion in EHEC str.
EDL933. Extrapolating from experiments using the 189 nt f24B
D24B_1 deletion and 566 nt complementation construct
(Nejman-Faleńczyk et al., 2015), is seems that EcOnc53 may
control the rate of phage lysogeny through interactions with Stx
phage transcripts however, the mechanism of regulation
remains unclear.

In addition to StxS and EcOnc53, ten additional Hfq binding
sRNAs were identified in the Sp15 and Sp5 Stx phages (Figure 1
and Table 1). Notably the stxAB genes are bookended by Hfq-
FIGURE 1 | Post-transcriptional regulation to and from the Shiga toxin 2 phage. RNA sequencing data for the positive (top) and negative (bottom) strands are
shown. Transcription start sites identified using differential RNA-seq (dRNA-seq) are indicated in green (GEO accession GSE143631). RNA 3’ends identified using
Term-seq are indicated in purple. Hfq and RNase E-binding data from UV-crosslinking and sequencing experiments are shown in orange and blue, respectively (GEO
accession GSE46118 and GSE77463). Regulatory RNAs encoded by the phage are indicated using outward arrows. Direct targets are indicated using solid line
arrows, while dashed lines show indirect or unknown mechanisms of action.
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binding sRNAs: StxS at the 5’ end and a dyad of sRNAs termed
AsxR and EcOnc27 at the 3’ end (Tree et al., 2014). AsxR is a
sRNA sponge that regulates that activity of the core genome-
encoded sRNA FnrS and relieves repression of the haem
oxygenase chuS involved in haem uptake (Tree et al., 2014).
EcOnc27 was also identified in EHEC str. EDL933 and termed
sRNA103 (Gruber and Sperandio, 2015). Overexpression of
sRNA103 was found to upregulate fimZ although the
mechanism of regulation is not clear.

Collectively, the repertoire of regulatory sRNAs encoded
within the Stx phages have been shown to directly control
Shiga toxin 1 expression and growth, and at least indirectly
control lysogeny and fimZ expression. Oxygen-limitation also
appears to be an important signal as both DicF (represses stx2A)
and FnrS (repressed by AsxR) are induced under this condition.
Given that tissue damage from the toxin may release haem, the
logic behind this regulatory circuit is not clear, but it seems that
haem uptake is promoted by the Stx phage (AsxR) while the core
genome acts to repress Stx2 toxin expression under oxygen
limitation. Further investigation will likely reveal the selective
pressures that drive maintenance of these regulatory pathways.

Escherichia coli prophages appear to be littered with
regulatory sRNA and some have been shown to modulate
virulence. An additional oxygen-sensitive sRNA was recently
described in the neonatal meningitis causing Escherichia coli
(NMEC) strain K1. For NMEC to establish infection in the
central nervous system, it must survive in the microaerophilic
environment of blood and cross the blood brain barrier (Doran
et al., 2016). In this low oxygen environment, the transcription
factor ArcA inhibits expression of the mEp460 phage-encoded
sRNA, sRNA-17. Using a mouse model of meningitis, it was
shown that deleting this sRNA results in increased survival in
blood and improved penetration of the blood brain barrier (Song
et al., 2020). While the direct targets of this sRNA have not been
identified, the authors propose that this phenotype is a result of
metabolic changes during growth in blood.

The small RNA sponge, AgvB, is also encoded within a
cryptic EHEC prophage and represses the sRNA GcvB (Tree
et al., 2014). GcvB represses amino acid uptake pathways and
AgvB de-represses these transporters through interactions with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the GcvB R1 seed region. AgvB allows increased growth in
bovine terminal rectal mucus (the reservoir host for EHEC)
demonstrating that horizontal acquisition of sRNA sponges can
adapt core genome-encoded regulatory pathways for fitness in a
specialized niche. AgvB (like AsxR and EcOnc27) is encoded
within a dyad of sRNAs, in this case AgvB is transcribed from the
antisense strand of EcOnc06. These dyads of Hfq-binding sRNAs
are positioned between the lysis genes and late promoter of at
least eight lambdoid phages in EHEC str. Sakai (Tree et al., 2014).
Why this arrangement of sRNAs occurs is unclear, but it appears
to be a source of regulatory information that adapts EHEC to a
pathogenic lifestyle.
COLONIZATION AND ADHESION

Type 3 Secretion in Attaching
and Effacing Pathotypes
Both EPEC and EHEC are enteric pathogens that cause moderate
to severe levels of diarrhea. Diarrheal disease is dependent on
formation of attaching and effacing (A/E) lesions on the
intestinal epithelia, which is conferred by genes encoded within
the locus of enterocyte effacement (LEE). The LEE encodes a type
3 secretion system (T3SS) that injects a cocktail of bacterial
effectors that affect cellular processes such as modification of the
actin cytoskeleton, disruption of microtubule networks, and ion
uptake, which collectively result in the formation of an actin
pedestal at the site of attachment that is characteristic of EPEC
and EHEC (Galán et al., 2014; Wagner et al., 2018).

The LEE consists of five major operons (LEE 1-5) (Figure 2)
and is subject to extensive post-transcriptional regulation that
coordinates expression within operons and with external loci.
Transcriptional regulation is controlled by the master regulators
Ler and GrlRA, acting in concert with a panoply of transcription
factors that integrate environmental signals that indicate host
infection (Tree et al., 2009; Turner et al., 2018). The polycistronic
transcripts of the LEE are regulated by the global RNA binding
proteins CsrA and Hfq. Deletion of hfq upregulates LEE
expression in strains Sakai and EDL933, but paradoxically
represses T3S in strain 86-24 (Hansen & Kaper, 2009;
TABLE 1 | Hfq-dependent sRNAs identified in the Shiga toxin-encoding bacteriophages.

Stx phage sRNA Synonym Experimental confirmation Targets Direct interaction? References

Stx2F AsxR EcOnc02 Northern probing; Hfq-CRAC FnrS Yes Tree et al., 2014
StxS EcOnc15 Northern probing; Hfq-CRAC rpoS Yes Tree et al., 2014

stx1b Yes Sy et al., 2020
EcOnc27 sRNA103 Northern probing; Hfq-CRAC Tree et al., 2014

fimz;espA In silico yes; In silico no Gruber and Sperandio, 2015
EcOnc53 sRNA108; 24B_1 Northern probing; Hfq-CRAC d_ant In silico yes Tree et al., 2014; Nejman-Faleńczyk et al., 2015
sRNA110 none Northern probing unknown N/A Gruber and Sperandio, 2015
EcOnc20 none Hfq-CRAC unknown N/A Tree et al., 2014
EcOnc50 none Northern probing; Hfq-CRAC unknown N/A Tree et al., 2014
EcOnc36 none Hfq-CRAC unknown N/A Tree et al., 2014
EcOnc43 none Hfq-CRAC unknown N/A Tree et al., 2014
EcOnc31 none Hfq-CRAC unknown N/A Tree et al., 2014

Stx1F EcOnc22 EcOnc23; EcOnc24 Northern probing; Hfq-CRAC unknown N/A Tree et al., 2014
EcOnc42 EcOnc21; EcOnc08 Northern probing; Hfq-CRAC unknown N/A Tree et al., 2014
January 2021 | Volume 10 | Article 622202
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Shakhnovich et al., 2009; Kendall et al., 2011; Wang et al., 2017;
Wang et al., 2018). In EDL933, Hfq represses grlA expression
during exponential phase, which indirectly represses the
expression of Ler (Hansen and Kaper, 2009). In stationary
phase Hfq appears to be able to directly repress the LEE in an
ler-dependent, GrlA-independent manner (Shakhnovich et al.,
2009). In the EHEC strain 86-24, Hfq is reported to activate
expression from the LEE (Kendall et al., 2011). This effect has
been attributed to the differing sRNA repertoires in mosaic
EHEC genomes. Indeed, copy numbers of EHEC-specific
sRNAs such as StxS, EcOnc10 and EcOnc42 appear to vary
between EHEC strains Sakai and 86-24.

Both pathotype-specific and core genome-encoded sRNAs
control expression of the T3SS. The EHEC specific sRNA Esr41
represses ler although the mechanism of repression is yet to be
identified (Sudo et al., 2018). In EPEC, the core genome encoded
sRNAs MgrR and RyhB regulate expression of the LEE by
directly base-pairing with different regions of the grlRA
transcript (Bhatt et al., 2017). Base-pairing of RyhB close to
the ribosome binding site of grlRA results in the repression of the
entire operon, resulting in LEE repression. MgrR on the other
hand binds close to the transcription start site and appears to
repress grlR alone. The repression of grlR prevents it from
regulating grlA, resulting in activation of the latter. RyhB and
MgrR are regulated by iron and magnesium availability
respectively, suggesting that metal ion availability plays an
important role in post-transcriptional activation and repression.

Transcription of the master regulator ler is induced by the
non-LEE encoded transcriptional regulators PchABC. Under
microaerobic conditions, such as those experienced in the
gastrointestinal tract, the sRNA DicF activates translation of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
pchA by disrupting a secondary structure formed by the pchA
leader region that blocks ribosome association (Balasubramanian
et al., 2016; Melson and Kendall, 2019). PchA then activates
transcription of ler, which results in increased LEE expression
(Iyoda and Watanabe, 2004; Melson and Kendall, 2019). This
represents another example of a core genome encoded sRNA
being co-opted by Escherichia coli pathotypes to regulate
virulence genes. As mentioned earlier, this regulation appears
to have been expanded in EHEC strains Sakai and 86-24 that
have four copies of dicF, while the commensal Escherichia coli
encodes a single copy in the cryptic Qin prophage.

In EHEC strains, translation of the T3SS filament EspA from
LEE4 is heterogenous at the single cell level despite homogenous
transcription levels among the bacterial population (Roe et al.,
2003; Roe et al., 2004). While the mechanism of heterogeneity
has yet to be uncovered it is clear that the LEE4 operon is subject
to quite sophisticated post-transcriptional regulation. SepL is
encoded at the start of the polycistronic LEE4 operon and acts as
a gate keeper to the T3S translocon (O’Connell et al., 2004; Deng
et al., 2005). The sepL 5’UTR adopts a translationally inactive
“clover leaf” structure consisting of four stem loops that occlude
the RBS of the nascent mRNA (Wang et al., 2018). The global
RNA binding protein CsrA activates LEE4 by directly binding to
the leader region of the sepL-espADB transcript to unfold the
repressive cloverleaf structure and allow translation of sepL
(Bhatt et al., 2009; Wang et al., 2018). The open structure is
then a target for Hfq and the sRNA Spot42 that repress
translation of sepL through direct base-pairing with the RBS.
The binding constant (Kd) for CsrA-sepL is 23 nM (Bhatt et al.,
2009) and Hfq interactions with mRNAs typically have a Kd of 1-
4 nM (Fender et al., 2010) suggesting that the nascent sepL
FIGURE 2 | Post-transcriptional regulation of the locus of enterocyte effacement. RNA sequencing data for the positive (top) and negative (bottom) strands are
shown. Transcription start sites identified using differential RNA-seq (dRNA-seq) are indicated in green (GEO accession GSE143631). RNA 3’ends identified using
Term-seq are indicated in purple (GEO accession GSE14363). Hfq and RNase E-binding data from UV-crosslinking and sequencing experiments are shown in
orange and blue, respectively (GEO accession GSE46118 and GSE77463). Direct targets for post-transcriptional regulators are pointed to by solid black arrows,
while indirect targets are indicated with dashed lines.
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transcript would rapidly toggle from translationally OFF to ON
to OFF after transcription. Spot42 and CsrA are regulated by the
availability of preferred carbon sources and their relative
concentrations would likely be in lock step, maintaining
competition between the regulators to rapidly toggle between
OFF-ON-OFF states (Wang et al., 2018). The effect of this post-
transcriptional toggle is expected to be a limited round of sepL
translation. Importantly, the downstream espADB operon is
cleaved from the sepL-espADB transcript (Lodato and Kaper,
2009) and can undergo independent translation. SepL is required
at a lower stoichiometry than the EspADB needle filament and
tip proteins, and the limited burst of sepL translation likely
contributes to producing the correct stoichiometric ratio of
SepL to EspADB for T3SS assembly.

Expression of the LEE4-encoded espADB and transcripts
from LEE5 are also repressed by the paralogous sRNAs GlmY
and GlmZ (Gruber and Sperandio, 2014; Gruber and Sperandio,
2015). The effects of GlmY on the LEE is due to its established
role of sequestering the RNase E adapter protein RapZ from
GlmZ (Göpel et al., 2013; Gruber and Sperandio, 2015). GlmZ
repression of LEE5 is due to an unknown indirect mechanism,
while regulation of espADB is due to direct binding of GlmZ to
the 3’ region of LEE4. GlmZ binding to the espADB transcript
results in its destabilization (Gruber and Sperandio, 2014). While
recruitment of RNase E to the GlmZ-LEE4 binding site has been
ruled out as a mechanism for destabilization of the espADB
transcript, other explanations could include processing by RNase
III, or possibly recruitment of Rho.

CsrA binds to AUGGA sequence motifs in stem loops to both
positively and negatively regulate translation (Romeo et al., 2013;
Holmqvist et al., 2016; Potts et al., 2017). In addition to LEE4,
CsrA controls a broad range of bacterial processes including
central carbon metabolism, motility and virulence (Romeo et al.,
2013; Vakulskas et al., 2015). In EPEC and EHEC, CsrA has
opposing regulatory effects on sepL (activating) and grlRA
(repressive) suggesting temporal separation of these events
(Wang et al., 2017; Wang et al., 2018). CsrA also represses
translation of the non-LEE encoded effector nleA, which is
expressed after attachment to host cells, and controls host
inflammatory pathways (Gruenheid et al., 2004; Kim et al.,
2007; Yen et al., 2015). The leader region of the nleA transcript
contains two CsrA binding sites, and translation of this nleA is
repressed by CsrA binding (Katsowich et al., 2017). In EPEC,
CsrA activity is modulated by the T3SS effector chaperone CesT,
which interacts with Tir and other effectors (Abe et al., 2002;
Katsowich et al., 2017). Importantly, Tir is the first effector
secreted after host cell contact, releasing CesT. Free CesT binds
the mRNA-binding surface of CsrA, resulting in its sequestration
and de-repression of nleA translation (Ye et al., 2018). This
interaction provides an elegant mechanism to couple host cell
contact to translation of secreted effectors. Sequestration of CsrA
also modulates bacterial carbon metabolism to suit an A/
E lifestyle.

The LEE-encoded T3SS is a complex molecular machine
regulated at the transcriptional, post-transcriptional, and post-
translational level to ensure appropriate gene expression in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
response to environmental cues, subunit stoichiometry, and
temporal signals during T3S assemble and host cell contact. It
is clear that CsrA, Hfq, and regulatory sRNAs play critical roles
in regulating these processes and we expect that many more
RNA-based regulatory signals that control elaboration of this
sophisticated machine remain to be discovered.

Regulation of Fimbriae and Invasins
UPEC are the major causative agent of uncomplicated urinary
tract infections (UTI). This pathotype colonizes the bladder,
causing cystitis, that can lead to ascending infections of the
kidney termed pyelonephritis. Its success as a pathogen is due to
a wide array of virulence factors, such as toxins, iron-acquisition
systems, flagella, fimbrial adhesins and other surface structures
(Terlizzi et al., 2017). Fimbriae are essential for attachment to
host cells and the formation of intracellular bacterial
communities (IBCs) (Subashchandrabose and Mobley, 2015).
Type 1 fimbriae bind uroplakins on the surface of bladder
epithelial cells (Wu et al., 1996; Chahales and Thanassi, 2015)
and P-fimbriae are required for colonization of the kidney and
progression to pyelonephritis (Roberts et al., 1994; Dodson et al.,
2001; Chahales and Thanassi, 2015).

The RNA chaperone Hfq is required for UPEC pathogenicity
and it was posited that this was exerted through sRNAs
regulation of outer membrane homeostasis (Kulesus et al.,
2008). Hfq RIP-seq was used to identify sRNAs expressed
during UPEC infection of epithelial cells and in liquid culture.
Interestingly, this study identified C271 as a UPEC-specific
sRNA expressed in both conditions, though the role of C271 in
pathogenesis was not explored further. Another sRNA, PapR,
which can also be found in some EHEC and Shigella species, was
found to be more highly expressed during host cell infection
(Khandige et al., 2015). This sRNA was found to repress
expression of the P-fimbriae regulator papI, which is required
for phase-variation of this virulence factor. PapR achieves this
repression by binding +74 to +96 nucleotides downstream of the
translational start site, suggesting that it may regulate papI by
recruiting RNases, or by affecting ribosomal loading (Bandyra
et al., 2012; Jagodnik et al., 2017).

An in silico-based screen in UPEC strain 536 and ExPEC
strain AL862 identified 5 sRNAs expressed antisense to the
coding region of virulence genes. Three of these sRNAs, PrfR,
HlyR, and HaeR were predicted to interact with the mRNAs prfF,
hlyR, and haeR, respectively. One sRNA discovered using this
screen was FimR, which is encoded antisense to the 3’ end of the
fimbrial usher gene fimD. FimR regulates type 1 fimbriae gene
expression by directly activating fimD (Pichon et al., 2012).
Changes in fimD expression were not observed in a Dhfq
mutant carrying a plasmid encoding FimR, suggesting that this
interaction is Hfq-dependent (Pichon et al., 2012). However,
Khandige et al. (2015) note that FimR is not detected in their Hfq
co-IP study performed in UPEC strain UTI89 despite the
conservation of the fim operon between strains (Khandige
et al., 2015). These divergent results may suggest that the
regulation of fimD by FimR is not directly mediated by Hfq.
As such, additional experimental verification is required to
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understand whether Hfq is needed for FimR base-pairing
with fimD.

AfaR is a sRNA expressed by pathogenic E. coli that harbor
the afa-8 PAI, which includes some DAEC and ExPEC strains
(Lalioui and Le Bouguénec, 2001; Pichon et al., 2013; Servin,
2014). AfaR is encoded antisense to the intergenic region of afaD
and afaE invasins and is regulated by both temperature and by an
RpoE-dependent promoter. AfaR regulates expression of AfaD-
VIII invasins by binding to the 5’UTR of afaD in an Hfq-
dependent manner, and promotes its degradation by RNase E
(Pichon et al., 2013). AfaR expression is repressed by
temperatures higher that 37°C likely to allow for expression of
the AfaD-VIII invasion once the pathogen has entered the host.

Motility
Motility plays an important role in colonization through
inducing and evading the host immune response, as well as
movement to sites of infection and environments that are more
suitable for bacterial growth (Josenhans and Suerbaum, 2002). In
commensal Escherichia coli, expression of the master flagellar
regulator FlhDC is subject to post-transcriptional regulation by
CsrA and the sRNAs ArcZ and OxyS (Wei et al., 2001; De Lay
and Gottesman, 2012; Thomason et al., 2012; Mika and Hengge,
2013; Yakhnin et al., 2013; Bak et al., 2015). In EHEC, motility is
coordinated with expression of the T3SS during attachment
(Iyoda et al., 2006). The EHEC specific sRNA Esr41 has been
found to repress the LEE and increase motility through activation
of fliC (Sudo et al., 2014; Sudo et al., 2018). However, while LEE
repression appears to be is due to an interaction between the leader
region of the ler mRNA and Esr41, no sites of complementarity
between Esr41, ler, and fliC have been identified, and the
mechanism of regulation is still unclear (Sudo et al., 2014; Sudo
et al., 2018).
IRON HOMEOSTASIS

Iron is essential for maintaining bacterial homeostasis but is also
required for virulence of a variety of pathogens (Anzaldi and
Skaar, 2010; Skaar, 2010). Vertebrate hosts prevent infection by
depriving pathogens of this valuable cofactor through
sequestration, termed nutritional immunity. Despite its utility,
an excess of iron is detrimental due to the build-up of free
radicals that can damage both DNA and the bacterial membrane
(Anzaldi and Skaar, 2010). Bacteria have developed elegant ways
to maintain iron homeostasis, and key among these is the
transcriptional regulator Fur, and Fur-regulated sRNA RyhB
(Braun and Braun, 2002; Massé et al., 2005; Massé et al., 2007;
Chareyre and Mandin, 2018). In Pseudomonas aeruginosa the
RyhB analog PrrF control the iron-sparing response and is
required for virulence in a mouse model of lung colonization
(Reinhart et al., 2015; Reinhart et al., 2017). In commensal
Escherichia coli, siderophore production is regulated through
RyhB interactions with shiA and entCEBAH (Prévost et al., 2007;
Salvail et al., 2010). In UPEC, RyhB additionally positively
regulates production of the pathotype-specific siderophores
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aerobactin and salmochelins. Deleting ryhB resulted in reduced
colonization of the bladder and kidneys in a mouse model of
infection, and down regulation of the aerobactin synthesis gene
iucD indicating that RyhB and aerobactin are required for
uropathogensis (Porcheron et al., 2014).

Bacterial pathogens can also acquire iron through haem
acquisition and degradation systems (Runyen-Janecky, 2013;
Choby and Skaar, 2016; Richard et al., 2019). In EPEC, EHEC and
UPEC, a TonB-dependent outer membrane haem receptor is
encoded by chuA (Torres and Payne, 1997; Nagy et al., 2001;
Hagan and Mobley, 2009). The 5’UTR of chuA is unusually long at
approximately 300 nucleotides (Nagy et al., 2001). In EHEC, sRNA
interactome sequencing (RNase E-CLASH) revealed that chuA is
repressed by the pathotype-specific sRNAEsr41 through direct base-
pairing. The same study identified bfr (bacterioferritin) and cirA
(catecholate siderophore receptor) as targets for Esr41 (Waters et al.,
2017). Interestingly, these genes are also targets for RyhB, suggesting
that Esr41 may be a pathotype-specific sRNA for regulating iron
homeostasis (Massé and Gottesman, 2002; Salvail et al., 2013;
Porcheron et al., 2014). Surprisingly, while RyhB activates
translation of cirA, Esr41 was found to repress CirA expression.
This differencemayallowEHEC topreferentially use the adhesin and
enterobactin siderophore Iha, which is encoded immediately
upstreamofEsr41, as an iron acquisition system (Waters et al., 2017).

Iron acquisition and nutritional immunity have long been
known to play critical roles in infection and recent studies have
demonstrate that post-transcriptional regulation of iron
homeostasis is required for disease progression.
WHERE TO FROM HERE?

It has become increasingly clear that post-transcriptional
regulation is vital for regulation of virulence in pathogenic
Escherichia coli and significant progress has been made to
better understand these mechanisms. The advent of high-
throughput approaches to map Hfq interactions, and identify
sRNAs and their targets using MAPS, CRAC, CLASH, RIL-seq
and GRIL-seq have provided a window into the extent of sRNA
regulation (Lalaouna et al., 2015; Han et al., 2016; Melamed et al.,
2016; Waters et al., 2017; Iosub et al., 2020a; Wong et al., 2018).
In EHEC alone, 55 novel sRNAs were found along the
pathogenicity islands of O157:H7 str. Sakai (Tree et al., 2014).
However, the analysis used to identify these sRNAs searched for
orphan Hfq-binding sites that were >100 nt from any annotated
coding region. Recently, the 3’UTR of coding genes have
emerged as a significant source of regulatory sRNAs, and have
been found to regulate the outer membrane stress response, nitrate
transport, and acetate and carbon metabolism (Chao et al., 2012;
Chao and Vogel, 2016; De Mets et al., 2019; Hoyos et al., 2020;
Iosub et al., 2020b; Wang et al., 2020). Taken together, this
suggests that there may be many more pathotype-specific
sRNAs than we currently appreciate, and it will be intriguing to
investigate how these 3’UTR, 5’UTR, and recently identified CDS-
encoded sRNAs may affect bacterial virulence.
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RNA binding proteins play important roles in facilitating
sRNA interactions and methods for discovering novel RNA-
binding proteins will undoubtably provide new insight into post-
transcriptional regulation of bacterial virulence. Indeed, the
development of Grad-seq in Salmonella led to the discovery of
a second sRNA chaperone ProQ, which governs its own sRNA
network distinct fromHfq and CsrA (Smirnov et al., 2016). ProQ
is required for pathogenicity in Salmonella enterica, suggesting
the same may be true for pathogenic Escherichia coli. An analysis
of the ProQ RNA interactome in commensal Escherichia coli has
shown that while ProQ has a distinct RNA interactome, it has
some overlap with Hfq that provides additive or divergent effects
(Melamed et al., 2020). Further investigation into the effects of
ProQ in pathogenic Escherichia coli virulence is certainly
warranted and may identify regulatory pathways required
for virulence.

Additional methods for identifying the RNA-binding
proteome have recently been developed for prokaryotes. These
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
include TRAPP (Shchepachev et al., 2019), PTex (Urdaneta et al.,
2019) and OOPS (Queiroz et al., 2019). The development of
these methods provide exciting opportunities for discovering
novel RNA-binding proteins that may have significant roles in
infection and pathogenicity.
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