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The association of colorectal cancer (CRC) and the human gut microbiome dysbiosis has
been the focus of several studies in the past. Many bacterial taxa have been shown to
have differential abundance among CRC patients compared to healthy controls. However,
the relationship between CRC and non-bacterial gut microbiome such as the gut virome is
under-studied and not well understood. In this study we conducted a comprehensive
analysis of the association of viral abundances with CRC using metagenomic shotgun
sequencing data of 462 CRC subjects and 449 healthy controls from 7 studies performed
in 8 different countries. Despite the high heterogeneity, our results showed that the virome
alpha diversity was consistently higher in CRC patients than in healthy controls (p-value
<0.001). This finding is in sharp contrast to previous reports of low alpha diversity of
prokaryotes in CRC compared to healthy controls. In addition to the previously known
association of Podoviridae, Siphoviridae and Myoviridae with CRC, we further
demonstrate that Herelleviridae, a newly constructed viral family, is significantly
depleted in CRC subjects. Our interkingdom association analysis reveals a less
intertwined correlation between the gut virome and bacteriome in CRC compared to
healthy controls. Furthermore, we show that the viral abundance profiles can be used to
accurately predict CRC disease status (AUROC >0.8) in both within-study and cross-
study settings. The combination of training sets resulted in rather generalized and
accurate prediction models. Our study clearly shows that subjects with colorectal
cancer harbor a distinct human gut virome profile which may have an important role in
this disease.

Keywords: gut virome, metagenomics, colorectal cancer, virus-host association, CRC prediction
INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer worldwide causing at least 500,000
deaths annually (Bray et al., 2018). Most colorectal cancers are caused by complex genetic and
environmental factors. While only a small proportion of cases are explained by genetic mutations
(Toma et al., 2012), over 70% of them are due to environmental and lifestyle factors (Frank et al.,
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2017). Potential CRC risk factors include older age, lack of
physical activity, diet rich in red meat, smoking and alcohol
use (Fund and for Cancer Research, 2007; Watson and
Collins, 2011).

The human gut microbiome, the microbial communities
inhabiting our gastrointestinal tract, can greatly influence
human health through the immune and metabolic systems
(Holmes et al., 2012). Many studies have demonstrated the
complicated associations between gut microbiome and human
diseases such as inflammatory bowel disease (IBD) (Norman
et al., 2015; Zuo et al., 2022), metabolic diseases (Qin et al., 2012)
and autoimmune diseases (Tomofuji et al., 2022). The human
gut microbiome, which could be altered by some of the
mentioned risk factors, has also been considered as one of the
most important environmental factors in the development of
CRC. Indeed, several studies have already shown the structural
alterations of gut microbiome among CRC patients (Thomas
et al., 2019; Wirbel et al., 2019).

Most of the current microbiome studies concentrate on
prokaryotes as they constitute most of the genetic materials in
the gut microbial community. On the other hand, the number of
viruses that infect bacteria referred to as bacteriophages or simply
phages for short outnumber the bacteria by tenfold. These
bacteriophages impact the microbial community directly
through their own genes or indirectly by infecting their hosts.
However, the importance of the gut virome was vastly
understudied due to the relatively low fraction of viral genetic
materials in microbiomes, despite their larger numbers compared
to that of prokaryotes. The lack of well-curated viral reference
genomes has also hampered efforts to accurately study the virome.
To overcome these issues, experimental techniques to enrich
virus-like particles (VLP) in microbiome studies have been
developed (Ludwig and Wagner, 2007). Through the enrichment
of VLPs, it has been shown that several viral taxa were associated
with some diseases such as ulcerative colitis (UC) (Zuo et al.,
2019), a subtype of IBD. However, only a very limited number of
VLP studies related to CRC have been conducted thus far.

Until recently, most studies used NCBI virus database as
references for virome studies. However, the fraction of viruses in
NCBI only represented a tiny fraction of all the viruses. To
overcome this issue, metagenome assembled genomes (MAG)
were constructed from a large number of metagenomes and
computational virus identification algorithms such as VirFinder
(Ren et al., 2017) and/or VirSorter (Roux et al., 2015). This
allowed the identification of more viruses resulting in larger virus
databases. Gregory et al. (2020) constructed the Gut Virome
Database (GVD) from 2,697 public metagenomic samples, Paez-
Espino et al. (2019) built the IMG/VR database based on stool
samples from the Human Microbiome Project (HMP) and
Camarillo-Guerrero et al. (2021) formed the Gut Phage
Database (GPD) from 28,060 metagenomes. These large
virome databases provided new resources for investigating the
relationship between viruses and complex diseases. However, to
the best of our knowledge, no studies have been carried out to
investigate the relationship between human gut virome and CRC
using such newly developed databases.
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In this study, we analyzed metagenomic shotgun sequencing
data from 7 CRC studies, including 462 CRC subjects and 449
healthy controls. We evaluated changes in the gut virome of CRC
subjects and the heterogeneity among different studies by
obtaining the virus abundance profiles and mapping the reads
against the Gut Phage Database (Camarillo-Guerrero et al.,
2021), the largest phage database available to date. Secondly,
we performed differential abundance analysis to identify CRC-
associated viral species, bacterial species and metabolic pathways.
Next, phage-bacterium associations were identified to illustrate
the symbiotic network in CRC. In addition, we estimated the
diagnostic ability of the viral profiling by the performance of
classification models trained on either within-study and cross-
study settings. Finally, we measured the generalizability and
robustness of the classifiers by pooling these datasets together.
Our results provide comprehensive insight into the links between
gut virome and colorectal cancer.
MATERIALS AND METHODS

Cohort Description
We collected 911 healthy control and CRC subjects from 7
publicly available datasets from 7 countries and 3 continents
(Table 1 and Supplementary Tables S1, S2). All 7 studies used
fecal shotgun sequencing to compare the gut microbiome of CRC
patients to that of healthy controls. Fecal samples from all
participants of these studies were collected before treatment,
thus excluding the cancer treatment as a potential confounding
factor. Characteristics of these datasets are shown in Table 1.
Sequencing depth distributions within these datasets are shown
in Supplementary Figure S1.

Quantification of Viral Abundance
Centrifuge v1.0.4 (Kim et al., 2016) with default parameters was
used to map reads from each sample against the Gut Phage
Database (GPD) (Camarillo-Guerrero et al., 2021), since
Centrifuge yielded more accurate estimation of relative
abundance at species and genus rank (Meyer et al., 2022). GPD
is a recently published database containing 142,809 non-redundant
gut phage genomes. On average, 31.84% reads of each sample were
mapped to GPD. Although a small proportion (< 10%) of viral
reads could still be mapped to NCBI bacterial reference genomes, it
does not substantially affect the statistical results. Such reads are
potentially caused by the prophage in the bactieral reference
genomes or the non-viral genome in GPD (the allowed false
positive rate of GPD was 0.25%). The distribution of viral
mapping rates within each dataset is shown in Supplementary
Figure S2. The number of unique mappings given by Centrifuge
was further normalized with trimmed mean of M values (TMM)
(Robinson et al., 2010) using the edgeR package (Robinson et al.,
2010) to obtain the TMM normalized abundance profiling.
Although other viruses such as eukaryotic viruses and
endogenous retroviruses are also important components of gut
virome, their mapping rate was low (< 0.02%). Therefore, we
focused our analyses on gut phages in this study.
June 2022 | Volume 12 | Article 918010
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Taxonomic Annotation
A protein-level comparison was used for the species-level
annotation. First, open reading frames (ORFs) in viral
genomes from GPD were predicted using Prodigal meta
(v2.6.3) (Hyatt et al., 2010). The predicted ORFs in the viral
genomes were searched against the RefSeq protein database
(downloaded in December 2021, containing 577,484 proteins)
using DIAMOND blastp (v2.0.13) (Buchfink et al., 2021) with e-
value less than . Each ORF was assigned to the protein with the
highest bit score. Each viral genome was assigned taxonomy
based on the majority of taxa within that genome using a voting
system for virus taxonomic assignment at different taxon levels
(Minot et al., 2013; Hannigan et al., 2015; Zuo et al., 2019). Viral
genomes with less than two ORFs were considered unclassified
viral species (Tomofuji et al., 2022).

In summary, 134,871 viral genomes in GPD were annotated
with species or higher-level taxon, respectively. Camarillo-
Guerrero et al. (2021) also used HMMER (Eddy, 1998) to
query each protein sequence within the viral genome against
the ViPhOG database for taxonomic annotation. Only 16,636
viral genomes in GPD were annotated with family-level taxon.
Out of these 16,636 viral genomes, we assigned family-level
taxon to 15,603 genomes with 70.7%(11,033) having the same
predicted taxon as obtained by Camarillo-Guerrero et al. (2021).

Viral Functional Profiling
In order to study the viral gene expression in CRC patients, we
used viral reads (reads that were mapped to GPD) to obtain the
gene family and pathway profiling. HUMAnN3 (Beghini et al.,
2021) along with its ChocoPhlAn pangenome database and
UniRef90 EC filtered database was used to predict the Pfam
protein domains and Gene Ontology terms, with the reported
abundance value shown as RPKs (reads per kilobases). In total,
462 pathways and 497,967 ( ± 132,909) were identified.

Viral Diversity, Multivariate Analysis and
Meta-Analysis
Shannon index (Spellerberg and Fedor, 2003), Heip evenness
(Heip, 1974) and Chao1 richness (Chao, 1984) were used to
measure viral diversity for each dataset at species, genus and
family levels, respectively. To study the association between
disease status and alpha diversity as well as the impact of age,
gender and body mass index (BMI in kg/) on this association
(Thomas et al., 2019), we performed a naive linear model
(Y∼Disease) and an age-, gender- and BMI-adjusted linear
model (Y∼Disease+Age+Gender+BMI), where Y is the log-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
transformed alpha diversity. Coefficients and p-values of the
disease variable were obtained to perform the comparisons.
Meta-analysis was implemented using the R package metafor
(Viechtbauer, 2010). Standardized mean difference of alpha
diversity was calculated for each taxonomic level to obtain the
random effect model. Heterogeneity among studies was
quantified by (percentage of total heterogeneity on total
variability) and the p-value was obtained by Cochran’s Q test
(Cochran, 1950).

Principal Coordinate Analysis
The dissimilarity between CRC cases and healthy controls in all 7
datasets were measured by principal coordinate analysis (PCoA)
(Dray et al., 2006) based on Bray-Curtis distance (Bray and
Curtis, 1957). PCoA was performed on either combined datasets
or each separate dataset. Permutational multivariate analysis of
variance (PERMANOVA) (Anderson, 2001) was used to
quantify the heterogeneity among different datasets and the
separation between healthy controls and CRC subjects.

Differential Abundance Analysis
To identify viral species, genus, families, as well as the viral
functions that are differentially abundant in the CRC group, we
used DESeq2 (Love et al., 2014) to perform differential analysis
based on their abundance profiling. Taxa with low variance (less
than half of the median) or not found in ≥90% samples were
removed (Lloyd-Price et al., 2019).

The exact test in DESeq2 was used to calculate the p-value for
each variable. Multiple hypothesis tests were adjusted using the
Benjamini-Hochberg false discovery rate (BH-FDR) procedure
(Benjamini and Hochberg, 1995). Associations with FDR less
than 0.05 were considered significant.

Quantification of Bacterial Abundance and
Virus-Bacterium Association
Centrifuge v1.0.4 (Kim et al., 2016) with default parameters was
used to map non-viral reads from each sample against the
UHGG database (Almeida et al., 2021) to obtain the bacterial
abundance profile. The TMM normalized abundance profiles
were obtained in the same way as the viral abundance profile.

We chose the 27 bacterial species that are differentially
abundant between CRC cases and healthy controls in all 7
datasets for further analysis. Spearman’s correlation coefficients
based on the bacterial species abundance and viral family
abundance were calculated. Fisher’s z-transformation (Fisher,
1915) and meta-analysis were used to derive a random effect
TABLE 1 | Characteristics of metagenomic datasets used in this study.

Study No. of controls No. of CRC Country Reference

Zeller 93 91 France/Germany (Zeller et al., 2014)
Yu 54 74 China (Yu et al., 2017)
Feng 63 46 Austria (Feng et al., 2015)
Vogtmann 52 52 USA (Vogtmann et al., 2016)
Thomas 52 61 Italy (Thomas et al., 2019)
Yachida 40 40 Japan (Yachida et al., 2019)
Yang 95 98 China (Yang et al., 2020)
Total 449 462
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model on Spearman’s correlation coefficients. The p-values were
adjusted by the BH procedure. Only associations with adjusted
p-value <0.05 were considered significant.

Random Forest Classifier for Within-Study
and Cross-Study Prediction
We used six types of microbiome quantitative profiles: GPD
genome-level, taxonomic family-level, genus-level, species-level
TMM normalized abundance estimated by Centrifuge (Kim
et al., 2016) and gene-family and pathway abundance (in
RPKs) estimated by HUMAnN3 (Beghini et al., 2021), to
predict CRC status using random forests.

Since the random forests algorithm (Breiman, 2001) has been
proven to have better performance than other machine learning
models, especially on microbial abundance data (Pasolli et al.,
2016; Gao et al., 2022), all experiments were carried out using the
random forests classifier implemented by the python package
scikit-learn v1.0.2 (Pedregosa et al., 2011). We set the number of
estimators as 1000 (Thomas et al., 2019; Gao et al., 2022) and all
other parameters as their default values (Probst et al., 2019) in all
prediction experiments. The area under the ROC curve
(AUROC) was used as a criterion measuring the performance
of every prediction model.

To accurately measure the performance, generalizability and
robustness of predictions models, we performed within-dataset,
cross-dataset and leave-one-dataset-out (LODO) predictions
(Thomas et al., 2019). The within-dataset analysis was
performed by repeating 10-fold cross validation 20 times
(Thomas et al., 2019). The average AUROC based on 200 runs
was calculated as the final measurement.

The cross-dataset analysis was performed by pairwise datasets
prediction. For each pair of all 7 datasets, one was used as the
training set, and the other one as the validation set. This step was
also repeated 20 times to reduce randomness within
the algorithm.

The LODO analysis consisted of the validation set as one of
the 7 datasets and the training set as the pooled samples from the
other 6 datasets. This approach substantially increased the size of
the training set, which could potentially improve the
performance and generalization of the random forests
classifier. It also helped reduce profiling differences between
different data batches.
RESULTS

Case-Control Comparison Showed Higher
Viral Diversity in CRC Samples Compared
to Healthy Controls
By taxonomic annotation, GPD genomes were assigned to 2,056
viral species, 673 viral genera, 24 viral families and 7 viral orders,
respectively. To study the gut viral structural alteration within
each dataset, we performed case-control comparison for species-
level, genus-level and family-level alpha diversity [measured by
Shannon index (Spellerberg and Fedor, 2003), Heip evenness
(Heip, 1974) and Chao1 richness (Chao, 1984)] for each dataset.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Figure 1A and Supplementary Figures S3, 4 showed that the
virome alpha diversity and evenness are higher in CRC subjects
than healthy controls at species, genus and family levels, which
are consistent with the findings in Nakatsu et al. (2018). The
increments are significant in the Feng, Yachida and Yang
datasets (adjusted p-values of two-tailed Wilcoxon rank-sum
test are less than 0.01). This positive association between species
viral diversity and CRC can be further observed in the
multivariate analysis (Figure 1B and Supplementary Table
S3), since all coefficients given by linear models are positive.
Potential confounding factors such as age, gender and BMI do
not meaningfully impact the contribution of disease status to the
alpha diversity. It should be noted that although the viral alpha
diversity in CRC cases is not statistically different from that in
healthy controls, they are in the same direction as the other three
datasets. Results of meta-analysis (Figure 1) also showed this
significant positive association (m=0.26, p-value<0.0001) with no
heterogeneity observed in alpha diversity (I2=0.0%, Q test p-
value =0.49). Similarly, the evenness also exhibited a positive
association with CRC (m=0.28, p-value<0.0001) without
significant heterogeneity (I2=0.0%, Q test p-value =0.89,
Supplementary Figure S4). Whereas, the Chao1 richness
(Supplementary Figure S5) indicated either negative
associations or positive associations with CRC in different
studies. However, the random effect model obtained by the
meta-analysis suggested a positive effect size (m=0.12, p-
value=0.318) of the richness, although this association was not
significant. Altogether, these findings highlighted associations
between dysbiosis of gut virome and CRC.

Principal Coordinates Analysis Among
Different Studies
By using the principal coordinates analysis based on Bray-Curtis
distance, we assessed both the heterogeneity among different
datasets from various studies and the dissimilarity in the gut viral
communities between healthy controls and CRC subjects.
Figure 2A revealed that the heterogeneity among 7 datasets
had significant effect (PERMANOVA R2=0.164, p-value=0.001)
on the gut viral composition, which is consistent with the results
from Thomas et al. (2019) and Wirbel et al. (2019).

Samples from Feng dataset (light green), Zeller dataset (red)
and Yang dataset (fuchsia) tend to cluster to the left, middle and
right among all subjects, respectively. Boxplots (Figures 2B, D)
also show that their first principal coordinates (explained 28.3%
of the variance) are significantly greater in the CRC group
compared to the control group, suggesting the existence of
within-study clusters. The significance of these separations is
validated by the PEMANOVA between the viral dissimilarity
and disease status (R2=0.011, p-value=0.001). Meta-analysis also
indicates substantial heterogeneity on the second principal
coordinates (Figures 2C, E, m = 0.13, p-value = 0.29,
I2=71.88%, Q test p-value = 0.0027) . In addit ion,
Supplementary Figure S6 further demonstrates significant
separations between healthy controls and CRC subjects within
each dataset. All PERMANOVA p-values are less than 0.05
except the p-value of the Vogtmann dataset.
June 2022 | Volume 12 | Article 918010
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Differential Abundance Analysis Revealed
Important Viral Taxon and Metabolic
Pathways Associated With CRC
We next used DESeq2 to perform differential abundance analysis
on species-level, genus-level, family-level and pathway
abundance (Supplementary Tables S4–S7). In general, most
taxa identified in this analysis were from the Caudovirales order.
Most of them were enriched in CRC cohorts compared to
healthy controls. We found 11 CRC-enriched viral species (p-
value <10-5, Figures 3A, C and Supplementary Figure S7) from
3 phage families that were significantly enriched in CRC cohorts
in all 7 datasets, including Erwinia phage phiEt88, Klebsiella virus
ST16OXA48phi5-4, Vibrio phage martha 12B12, Mannheimia
phage vB_MhM_3927AP2, Salmonella phage 118970_sal3 from
Myoviridae, Salmonella virus Epsilon15 from Podoviridae and
Pseudomonas virus B3, Escherichia phage HK639, Enterobacteria
phage phi80, Enterobacteria phage ES18, Cronobacter phage
phiES15 from Siphoviridae. Among these species, Klebsiella
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
virus (Canizalez-Roman et al., 2022) Enterobacteria phage
phi80 and Salmonella phage (Gao et al., 2021) were found to
increase in the CRC group. Erwinia phage and Vibrio phage were
also reported to contribute to CRC progression (Nakatsu et al.,
2018; Ng et al., 2019). All viral genera that were significant in at
least 6 datasets were found to be increased in the CRC group
(Supplementary Figure S8). In regard to family-level taxon,
besides Myoviridae, Podoviridae and Siphoviridae that were
obtained from the species-level analysis, we additionally
identified Drexlerviridae, Inoviridae and Herelleviridae that
were significantly associated with CRC (Supplementary Figure
S9). While all other 5 families were found to be more abundant
in the CRC group, Herelleviridae, a recently established phage
family in the Caudovirales order (Barylski et al., 2020), was
observed to be significantly depleted in the CRC group for most
datasets (Supplementary Figure S9C). Phages in the
Herelleviridae family typically infect members of the Firmicutes
phylum (Barylski et al., 2020) and serve as a potential treatment
A

B C

FIGURE 1 | Analysis of viral species Shannon diversity within each dataset. (A) Boxplots of viral species-level Shannon index for gut samples of CRC subjects and
healthy controls stratified by disease status in each dataset. BH adjusted p-values were calculated using the two-tailed Wilcoxon rank-sum test. ns: p> 0.05, *p<
0.05, **p< 0.01, ***p< 0.001. (B) Multivariate analysis of the adjusted impact of age, gender and BMI on Shannon diversity. (C) Forest plot showing effect sizes from
a meta-analysis on species-level diversity. RE Model: Random effect model.
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to the infection of intestinal epithelium-like environment
(Núñez-Sánchez et al., 2020).

Viral functional signatures were described by the differential
abundance analysis of KEGG pathways. Even though most gut
virome functions remain to be uncurated with only a small
portion of viral reads that can be functionally characterized, we
detected 7 metabolic pathways (p-value <10-5) that were notably
associated with CRC. Similar to taxonomic taxa, most pathways
were enriched in the CRC groups in most datasets (Figures 3B,
D and Supplementary Figure S10), including stearate
biosynthesis II, oleate biosynthesis IV, fatty acid elongation –
saturated, palmitoleate biosynthesis I and (5Z)-dodecenoate
biosynthesis I. These pathways were substantially associated
with fatty acid biosynthesis such as stearic acid, oleic acid and
palmitoleic acid, all of which were demonstrated to modulate the
metabolic profiles and increase the risk of CRC (Chen et al.,
2016; Serini et al., 2018; Kim, 2019). On the contrary, we
discovered two pathways that were significantly decreased in
the CRC groups. One is L-methionine biosynthesis iii, which is
an intracellular regulator that functions to inhibit the
proliferation of colorectal cancer cells (Módis et al., 2014). The
other depleted pathway is pyruvate fermentation to acetate and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
lactate ii. This pathway ferments fiber into acetate, which may
play an important role in the turnover of the colonic epithelium
to maintain the normal homeostasis (Eslami et al., 2020).
Therefore, the inactivity of these two pathways may serve as
future targeted therapies of CRC.

Taken together, the differential abundance analysis based on
the taxonomic and functional profiling indicated that the
structural alteration of gut viruses, mainly bacteriophages, was
substantial in CRC cohorts. Although most bacteriophages were
enriched in CRC groups and consequently caused more active
expression of fatty acid biosynthesis, some were observed to
decrease in the CRC groups potentially inactivating the
protective inhibition process of immune regulation. These
results can further expand our understanding of the potential
contribution of the gut virome in CRC.

Interkingdom Association Between Viral
Families and Bacterial Species
Since most viruses in human gut are bacteriophages that either
lyse their hosts or alter their functions, we then characterized the
relationship between bacteriophages and their hosts by assessing
the correlation between their abundance and alpha diversity
A B

D E

C

FIGURE 2 | Principal coordinates analysis of all samples based on Bray–Curtis distance. (A) PCoA plot of gut samples of CRC subjects and healthy controls in each
dataset. R2 values and p-values were calculated by PERMANOVA. (B) Boxplots of the first principal coordinates (PCo1) in each dataset. (C) Boxplots of the second
principal coordinates (PCo2) in each dataset. BH adjusted p-values were calculated using the two-tailed Wilcoxon rank-sum test. ns:p> 0.05, *p< 0.05, **p< 0.01,
***p< 0.001, ****p< 0.0001. (D) Forest plot showing effect sizes from a meta-analysis on PCo1. (E) Forest plot showing effect sizes from a meta-analysis on PCo2.
RE Model: Random effect model.
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(Norman et al., 2015; Zuo et al., 2019). To identify differentially
abundant bacterial species, we performed differential analysis on
each dataset (Supplementary Table S8) and found 27 bacterial
species significant in all 7 datasets. Although the bacterial
richness (Supplementary Figures S11B, D) did not show
consistent differences among datasets (meta-analysis
I2=81.81%, Q test p-value <0.0001), we did find that the
bacterial alpha diversity substantially decreased in CRC in
most datasets (Supplementary Figures S11A, C, meta-analysis
I2=73.31%, Q test p-value =0.0029), which may have been the
result of the expansion of the viral community. Figure 4A
showed a positive bacterium-virus correlation in terms of
diversity and richness in both control and CRC groups. While
the direction of the correlation between diversity and richness
within a kingdom remains the same in the control and CRC
groups, the positive interkingdom association was weaker in the
CRC group, especially for the association between viral alpha
diversity and bacterial richness.

The decrements of the association between bacteria and viruses
in CRC could be further quantified by the correlation between viral
families and bacterial species. Figure 4B showed similar patterns of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
virus-bacterium associations in both control and CRC groups.
Posi t ive corre la t ions included Bicaudavir idae and
Methanobrevibacter smithii, Tectiviridae and Clostridium_M
clostridioforme, and negative correlations with Bicaudaviridae
and Clostridium_M clostridioforme, Myoviridae and Gemella
morbillorum. In the CRC group, however, the positive
correlations between Podoviridae and several bacterial species as
well as the negative correlations between Myoviridae and most
bacterial species were markedly decreased. Altogether, these results
revealed a complex alteration of virus-bacterium relationship in
CRC. The reduction in these correlations implies a shrinkage of
symbiotic network and highlights the importance of virus-
bacterium equilibrium in the maintenance of intestinal stability.

Random Forests Classifiers Accurately
Predict CRC Status Based on Human Gut
Virome Profiles
We next built random forest models using either gut viral
taxonomic profiling or viral functional profiling to distinguish
between healthy controls and CRC subjects. Despite the ethnic
difference and the heterogeneity of sequencing techniques,
A

C

D

B

FIGURE 3 | Differential abundance analysis on taxonomic and functional viral profiles. (A) UpSet plot showing the number of shared differentially abundant viral
species determined by species-level TMM normalized abundance and DESeq2. Only viral species differentiated in at least 5 datasets were displayed. (B) UpSet plot
showing the number of shared differentially abundant viral pathways determined by HUMAnN3 pathway abundance and DESeq2. (C) Heatmap showing the log
transformed TMM normalized abundance of viral species differentiated in all 7 datasets. (D) Heatmap showing the log transformed HUMAnN3 pathway abundance of
pathways differentiated in at least 3 datasets.
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classifiers achieved high AUROC with gut viral profiles in both
within-study and cross-study predictions. Figure 5 showed that
AUROC scores of within-study cross validation range between
0.65 and 0.92 on GPD genome-level abundance. Classification
models had weaker performance in the Vogtmann and Thomas
datasets. Compared with the AUROC scores of within-study
prediction, the AUROC scores of cross-study slightly dropped.
The highest decrease came from the models trained on the Feng
and Yang datasets, which indicates weaker generalization of
these two datasets. The overfitting within the Feng dataset was
also observed in a whole gut microbiome study by Wirbel et al.
(2019). The performances of random forest classifiers using
other taxonomic levels such as species, genus and family
abundance (Figures 5B, C and Supplementary Figure S12)
were lower than that based on genome-level abundance,
suggesting the loss of viral signature when tracing upward the
taxonomic tree. However, gene-family abundance with more
functional units (more than 400,000) did not necessarily enhance
the overall performance of the random forest model, reflecting
the redundant nature of the information provided by viral
functional profiles.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Increasing the size of training set generally improves the
prediction ability of machine learning models. Therefore, we
further estimated the diagnostic ability of the random forest
classifier by the leave-one-dataset-out validation (LODO)
(Thomas et al., 2019; Wirbel et al., 2019). The LODO results of
GPD genome-level models again outperformed all other models
trained on other type of abundance (Figure 5D and
Supplementary Figure S12D). The LODO results of GPD
genome-level models had a stable AUROC range from 0.75 to
0.85, with the Vogtmann and the Thomas datasets regarded as
outliers. The lower AUROC in the Vogtmann dataset suggested
that the long-time (>25 years) freezing before sequencing altered
the viral community structure in fecal samples (Vogtmann et al.,
2016; Wirbel et al., 2019). In addition, the weak prediction result
of the Thomas dataset was potentially due to the relatively
shallow sequencing depth compared to other datasets
(Supplementary Figure S1).

Bacterial signatures of the human gut have been shown to be
predictive of CRC status (Thomas et al., 2019; Wirbel et al., 2019;
Gao et al., 2022). To study whether the viral signatures can
further enhance the prediction performance of this disease, we
A

B

FIGURE 4 | Correlations between viral families and bacterial species. (A) Random effect size of Spearman’s correlation coefficients between the diversity and
richness of bacteria and viruses in healthy controls and CRC subjects. Correlations with BH adjusted p-values <0.05 are displayed. (B) Random effect size of
Spearman’s correlation coefficients between the abundance of all 24 viral families and that of 27 differentially abundant bacterial species. Correlations with BH
adjusted p-values <0.05 are displayed. The size and color of circles indicate the extent of correlation.
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combined both bacterial and viral abundance profiles together
and re-run the random forest model. The results are shown in
Supplementary Figure S13, which does not show a better
performance when this combination is used. The bacterial
abundance profile itself shows a high AUROC (>0.8). The
combination of bacterial and viral species abundance profiles
did not increase the AUC scores compared to the bacterial
abundance profile alone. Moreover, adding the viral genome
abundance can even reduce the prediction performance of the
random forest model using bacterial abundance profile. This is
due to the much higher dimension of viral genome abundance,
which mitigates the effect of bacterial signatures. One potential
explanation for this observation is that the human gut virome
does not independently contribute to CRC development, but
rather interacts with the prokaryotes to impact CRC, resulting in
high correlation between the gut viral abundance profile and
bacterial abundance profile.

On the whole, the LODO analysis revealed the random forest
models trained on these heterogeneous datasets have solid
generalization and robustness to make accurate predictions on
other metagenomic CRC studies. The prediction ability
(AUROC >0.80) achieved based on gut viral signatures was
competitive with that of whole gut microbial signatures
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
(AUROC >0.83) (Thomas et al., 2019; Wirbel et al., 2019; Gao
et al., 2022). Although it can not further enhance the
performance of the bacterial signatures, the prediction reuslts
still show the important role of viruses in the homeostasis of
gut microbiota.
DISCUSSION

Analysis of the composition of the gut microbiome provides new
insight in the understanding of the etiology and pathophysiology
of many gastrointestinal diseases. The development of colorectal
cancer is complex and involves genetic and environment factors
such as the gut microbiome (Frank et al., 2017). Despite the fact
that many studies have demonstrated specific microbial
signatures in CRC, much remains to be explored in the
structure of the gut virome. To our knowledge, this study is
the most comprehensive analysis of the association between gut
virome and CRC using the largest collection of datasets to date.
Although there is technical heterogeneity among different
datasets, we found some consistent patterns and prediction
abilities among these datasets, including the viral diversity,
A

D

B C

FIGURE 5 | Prediction performances of random forest classifiers based on gut viral abundance. (A) Within and cross study AUROC matrix obtained by using GPD
genome-level abundance. The diagonal refers to results of cross validation within each dataset. Off-diagonal values refer to prediction results trained on the study of each
row and tested on the study of each column. (B) Within and cross study AUROC matrix obtained by using species-level abundance. See Supplementary Figures
S12A, B for genus-level and family-level AUROC. (C) Within and cross study AUROC matrix obtained by using gene-family abundance. See Supplementary Figure
S12C for pathway AUROC. (D) LODO results with the x axis indicating the study left out as the validation set and other studies combined as the training set.
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CRC-associated viral species, metabolic pathways as well as
robust and accurate diagnostic models.

The alpha diversity of gut viruses was found to be much
higher in the CRC cohorts at the species, genus and family levels.
Combined with results of previous studies (Coker et al., 2019;
Cheng et al., 2020), we demonstrate that the dysbiosis of the
intestinal microbiota is highly associated with CRC, perhaps
the enrichment of viral species results in more lytic infections in
the host, thus significantly depleting the gut bacterial organisms
and prompting the development of CRC. In addition to the alpha
diversity, the principal coordinate analyses with Bray-Curtis
distance and the PERMANOVA test further unraveled the
separation between healthy controls and CRC subjects.

The presence of 11 viral species and 10 viral genera was
commonly associated with CRC in the majority of the 7 datasets
employed in this study. At the family level, Myoviridae,
Podoviridae, Siphoviridae, Drexlerviridae from Caudovirales
order and Inoviridae from Tubulavirales order were increased
in the CRC groups. Among these enriched families, Myoviridae,
Podoviridae and Siphoviridae were frequently reported to be
associated with CRC (Hannigan et al., 2018; Sánchez-Alcoholado
et al., 2020) and other human diseases such as IBD (Clooney
et al., 2019) and autoimmune diseases (Tomofuji et al., 2022),
which substantially validate our results. We also discovered that
the viral family Herelleviridae significantly was significantly
depleted in CRC groups. As a relatively new viral family
(Barylski et al., 2020), Herelleviridae contains phage species
that may have therapeutic potential for gastrointestinal
infections (Núñez-Sánchez et al., 2020). Phages in the
Herelleviridae family typically infect members of the
Firmicutes phylum (Barylski et al., 2020) and have been shown
to display Ig-like domains on their virions that contribute to the
integrity and heath of intestinal barrier function serving as a
potential treatment targeting the intestinal epithelium (Núñez-
Sánchez et al., 2020). Therefore, the depletion of this family may
lead to intestinal epithelial dysregulation permissive to the
development of tumors. Moreover, several metabolic pathways
were identified in subjects with CRC in this study. Five metabolic
pathways related to fatty acid biosynthesis were found to be more
active in CRC. These pathways have been shown to increase risk
of CRC in prior studies (Chen et al., 2016; Serini et al., 2018; Kim,
2019). Furthermore, two other pathways namely L-methionine
biosynthesis iii and pyruvate fermentation to acetate and lactate
ii were inactive in CRC. pathways Both have been evinced to be
firmly linked to inhibiting the proliferation of tumors (Módis
et al., 2014; Eslami et al., 2020). Such pathways may serve as
potential therapy targets in the future.

Our correlation analysis further reveals the interkingdom
association in CRC. Although the alpha diversity demonstrates
a positive correlation between viral families and bacterial species
in both healthy controls and CRC, the reciprocity between them
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
considerably weakened in CRC, especially in the network
between Podoviridae, Myoviridae and most displayed bacterial
species. These relationships are important in the virus-bacterium
interaction and their effect on the intestinal health.

Finally, the diagnostic models we built based on the viral
abundance and random forest algorithm outperformed all other
prior studies of the gut virome (Nakatsu et al., 2018; Gao et al.,
2021). Despite the high performance of distinguishing CRC
being achieved with the whole gut microbiome (Thomas et al.,
2019; Wirbel et al., 2019), our virome-based classifiers had
competitive results in both within-study and cross-study
validations. Remarkably, the LODO experiment showed that
the diagnostic models are quite robust, which suggests that the
combination of heterogeneous datasets can substantially
improve the sensitivity and accuracy for detecting CRC cases
in other independent datasets.

In conclusion, we performed a comprehensive gut virome
case-control study, revealing the significant contribution of the
gut virome in CRC. The detected gut virobiota, which links the
virome and bacteriome as combined diagnostic models, unveil a
new perspective of the gut virome in the pathogenesis of CRC.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
AUTHORS CONTRIBUTIONS

FS designed and supervised the study. WZ did all analyses and
visualization. WZ drafted the manuscript. SM provided clinical
implications of the results. SM and FS polished the manuscript
and all authors contributed to finalize the manuscript. All
authors read and approved the final version of the manuscript.
FUNDING

This work was partially supported by the National Institutes of
Health [NIH Grants R01GM120624 and 1R01GM131407].
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcimb.2022.
918010/full#supplementary-material
REFERENCES
Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z. J., et al.

(2021). A Unified Catalog of 204,938 Reference Genomes From the Human
Gut Microbiome. Nat. Biotechnol. 39 (1), 105–114. doi: 10.1038/s41587-020-
0603-3

Anderson, M. J. (2001). A NewMethod for Non-Parametric Multivariate Analysis of
Variance. Austral Ecol. 26 (1), 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x
June 2022 | Volume 12 | Article 918010

https://www.frontiersin.org/articles/10.3389/fcimb.2022.918010/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2022.918010/full#supplementary-material
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zuo et al. Gut Phage Signatures in CRC
Barylski, J., Kropinski, A. M., Alikhan, N.-F, Adriaenssens, E. M.Consortium, I. R
(2020). Ictv Virus Taxonomy Profile: Herelleviridae. J. Gen. Virol. 101 (4), 362.
doi: 10.1099/jgv.0.001392
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