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Abstract: The need to recycle and develop nanomaterials from waste, and use them in environmental
applications has become increasingly imperative in recent decades. A new method to convert the
mill scale, a waste of the steel industry that contains large quantity of iron and low impurities into a
nanoadsorbent that has the necessary properties to be used for water purification is presented. The
mill scale waste was used as raw material for iron oxide nanopowder. A thorough characterization
was performed in each stage of the conversion process from the mill scale powder to magnetic
nanopowder including XRD (X-ray diffraction), SEM (scanning electron microscopy), TEM (transmis-
sion electron microscopy), BET (Brunauer, Emmett and Teller) and magnetization properties. Iron
oxide nanoparticles were approximately 5–6 nm with high specific surface area and good magnetic
properties. These are the necessary properties that a magnetic nanopowder must have in order to be
used as nanoadsorbents in the heavy metal removal from waters. The iron oxide nanoparticles were
evaluated as adsorbents for the removal of Cu, Cd and Ni ions.

Keywords: innovative nanomaterials; synthesis; characterization; mill scale; water decontamination

1. Introduction

The management of wastes resulting from the hot metal and steel industry is a critical
issue due to strictly imposed environmental regulations. The waste management caused
by steel industry gained major consideration as a result of these new environmental
regulations. Mill scale (MS) is an unavoidable waste in steel production because MS is the
result of the surface oxidation of steel during thermal and plastic deformation processes.
MS is regularly washed away from the steel surfaces and removed as powders consisting of
agglomerated particles of various sizes. Because of the repeated oxidation process during
steel reheating, MS is mainly composed of iron oxides (>95%), metal oxides, carbon and
oil [1].

Handling this type of waste can be expensive and most mineral processing plants
are unable to recover the entire iron content [2]. For this reason, the reuse of this waste
in the form of nanomaterials could be an economically and technically feasible method.
Moreover, some of the steel-works companies dump mill scale wastes in landfills. This is a
real threat to the environmental because the heavy metals from MS leach directly into the
soil and groundwater [3]. In a world that is increasingly facing environmental pollution
problems, it is crucial to find eco-friendly solutions with economic benefits in order to
resolve them. Recycling and conversion of various ferrous wastes into smart materials can
be the key for an enhanced state of environment. The continuing need for uncontaminated
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landfills highlights and strengthens the demand for more effective alternatives for large
scale MS use.

The literature indicates the wastes resulting from finishing/cleaning operations of the
finished products from rolling mills as iron source [4]. This type of waste amounts to about
35–40 kg/t rolled product, which can be used as precursor in the synthesis of iron oxide
nanoparticles and thus solve the problem of its storage.

Mill scale generated from the steel industry during the milling process consists of iron
oxides (>95%), which are formed under the strong oxidation process of hot-rolled iron
products. The waste is recycled into process or valorized, in order to reduce raw material
content and to protect the environment [5]. The literature indicates that about 13.5 million
tons/year of mill scale are generated in the world [6]. MS represents a peculiar surface
of hot rolled steel, with a porous, hard and brittle aspect being a mixture of iron oxides
(predominantly FeO and Fe3O4). The formation of mill scale can also lead to appearance of
some corrosion product mixture, such as FeOOH, Fe2O3, etc. [7]. Usually, FeO is found at
the metal surface and Fe2O3 is in the outer layer [8].

These oxides are formed during the fabrication of steel structures and the wastes can
be converted into a valuable secondary material due to its high iron content (up to as high as
93%), low impurities, and stable chemical composition [9,10]. Usually, a reduction process
is applied due to the high content of iron, either via hydrogen, by microwave heating, or by
applying solution-based techniques [6,11]. MS iron waste has been used a as precursor for
pigment preparation [10]. Legodi et al. [12] studied the potential of mill scale iron waste
to obtain pigments based on iron oxides. They obtained pigments (from mill scale) under
<0.1 mm, with a high surface area. In the case of corrosion product appearance, mill scale
has a poor color, exposed hardness, and it is difficult to use as a pigment. Until now, this
type of waste obtained from mill scale has not been reported as low-cost nanoadsorbent
for waste decontamination. Some countries like Greece consider MS as waste suitable for
reuse in the cement industry, steelworks, and the chemical industry [13].

Heavy metals released in water bodies result from various industrial effluents, such
as metal plating, electronics, or the power generation industry. Their toxicity and non-
biodegradability induce hazardous effects on food chain, with subsequently effects on
living organisms [14]. They can be accumulated at low concentrations and can be quickly
linked by protein nucleic acids and metabolites, causing the alteration of biological func-
tions [15].

Conventional methods, such as sedimentation, chemical precipitation, solvent extrac-
tion, ion exchange, or membrane separation, are well-known for their performances in
removing heavy metals from water and wastewater [15]. However, these methods have
some disadvantages, such as a large quantity of sludge or solid wastes, chemical reagents,
incomplete treatment process, expensive equipment and monitoring requirements. In
addition, adsorption has been employed more and more for water treatment, including
heavy metal removal. This method is simple, cost-effective, with a simple design and
operation [16]. There are a large number of adsorbents that are effective in removing
heavy metals, such as carbon-based materials, such as powder or granulated activated
carbon [17,18] or carbon nanotubes [19], different synthetic porous materials [20], natural
inorganic minerals [21,22], and functionalized polymers [23].

Nanotechnology has provided a new approach to nanomaterial processing [24–26].
The application of nanotechnology for water treatment, using nanoadsorbents to remove
heavy metals, solves many of the environmental problems, and magnetite and maghemite
nanoparticles are very popular. It is well known that for the successful synthesis of Fe3O4,
the use of Fe-containing compound precursors, such as FeCl2, FeCl3 and FeSO4 is manda-
tory, which also means a high consumption of reagents [27–30]. Unfortunately, there is not
much information in the literature regarding the recycling and reuse of iron compounds.

Along with development and performance of nanotechnology for water decontami-
nation, nanoadsorbent materials have been designed in terms of a high surface area with
high reactivity, most of them being used as powders, which are often functionalized or
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decorated to improve their properties. A disadvantage of these materials is shown in
separation and regeneration after heavy metal removal from water. New research has
focused on magnetic nanostructured materials to be used as adsorbents for heavy metals
due their high reactivity and the ability to use a magnetic field to remove them from water,
with the possibility of regeneration [17]. The most well-known magnetic nanoparticles
are magnetite (Fe3O4) and maghemite (γ-Fe2O3), which have highly magnetic proper-
ties [31,32] and are easily separated. There are different methods to synthesize magnetic
nanoparticles, such as co-precipitation, hydrothermal synthesis, thermal decomposition,
and microemulsion. All of these synthesis methods are effectively controlled and exhibit
high productivity [33–35]. The capability and reactivity of these magnetic nanomaterials to
remove pollutants are different, where pH values are a determining factor for anions’ (i.e.,
Cr(VI) as CrO4

2− or Cr2O7
2−) and cations’ (i.e., Cu(II), Pb(II), Cd(II) and Ni(II)) selective

adsorption [36]. The use of magnetic nanoparticles at specific pH values facilitates the
separation and recovery of heavy metals. Regarding an actual approach to the circular
economy, one way to capitalize on ferrous waste as a valuable added product is to convert
it into low-cost adsorbents with cost-effective and environmental benefits [37]. Taking the
economic and environmental considerations into account, the conversion of ferrous wastes
into nanoadsorbents for water decontamination has become a challenging task.

Silva et al. [15] reported a method for the production of iron oxide nanoparticles
resulting from acid mine drainage. The method is based on the selective precipitation of
iron as ferric hydroxide, the dissolution of iron with acid, reduction of Fe3+ to Fe2+ and
changing the ferric/ferrous hydroxides into magnetite [15]. Another method for recovering
magnetite and kaolinite from waste iron ore tailing was reported by Giri et al. [2]. They
synthesized iron oxide nanoparticles from waste iron ore tailings using acid leaching,
followed by precipitation of ferric hydroxide.

Other possible valorization of ferrous wastes is the obtaining of ferrous sulfate hep-
tahydrate from pickling solutions by cooling and evaporating the solution to 5 ◦C, followed
by crystallization of FeSO4 at 0 ◦C [6]. Ferritic nanoparticles could be obtained by microbial
oxidation of ferrous sulfate to Fe (III), from pickling solutions, followed by extraction
into an organic acid and solvothermal synthesis in the presence of another metal, e.g.,
Ni or Zn [38,39]. Pickling solutions have been used as precursors for the obtaining of
nano-magnetite by ultrasonic treatment-assisted co-precipitation [40].

In order to valorize the potential of this material, the main objective of this research is
to obtain a magnetic nanoadsorbent for water decontamination, asses the synthesis methods
available in the literature and evaluate the performance of magnetic nanostructures as
adsorbents for heavy metals (Figure 1).
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Figure 1. Illustration of the recycling process from mill scale waste to absorbent for the removal of
heavy metal ions from waters.

A magnetic nanoadsorbent was obtained using acidic dissolution, followed by co-
precipitation and washing in order to obtain nanosized iron oxides (ION). According
to Dehsari et al. [41], iron oxide magnetic nanoparticles obtained by classical chemical
synthesis are usually a mixture of two phases: magnetite and maghemite. Because a mixture
of magnetite and maghemite was obtained in our work and used as a nanoadsorbent for
heavy metals, we will refer to it as ION.
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Preliminary adsorption studies have been performed in order to evaluate the capability
of ION to remove the heavy metals from aqueous solutions. Adsorption capacity, efficiency
and the Langmuir isotherm model are presented in detail.

2. Materials and Methods
2.1. Steps for MS Converting into ION

In order to obtain a valuable product with potential use for wastewater treatment, the
following steps (presented in Figure 2) have been developed.

Materials 2021, 14, x FOR PEER REVIEW 4 of 17 
 

 

Dehsari et al. [41], iron oxide magnetic nanoparticles obtained by classical chemical syn-
thesis are usually a mixture of two phases: magnetite and maghemite. Because a mixture 
of magnetite and maghemite was obtained in our work and used as a nanoadsorbent for 
heavy metals, we will refer to it as ION. 

Preliminary adsorption studies have been performed in order to evaluate the capa-
bility of ION to remove the heavy metals from aqueous solutions. Adsorption capacity, 
efficiency and the Langmuir isotherm model are presented in detail. 

2. Materials and Methods 
2.1. Steps for MS Converting into ION 

In order to obtain a valuable product with potential use for wastewater treatment, 
the following steps (presented in Figure 2) have been developed. 

 
Figure 2. Steps involved in MS conversion into ION, characterization and evaluation as nanoad-
sorbents. 

Materials and methods applied for this converting process from waste to a low-cost 
magnetic adsorbent are described as follows. The mill scale (MS) was purchased from a 
hot rolling steel factory from Romania. MS classified as waste was used as the raw mate-
rial in the preparation of ferrous Fe(II) and ferric precursors Fe(III) for the obtaining of 
ION. The ferrous precursor MS-preparation steps consisted of acidic dissolution in order 
to obtain a ferric and ferrous precursor as an intermediate product (MS-ION) and a co-
precipitation step for obtaining ION as a final product. 

2.1.1. Acidic Dissolution Step for MS-ION Preparation as Precursor 
In a 600 mL glass beaker, 30 g of MS were treated with 150 mL H2SO4 conc. (analytical 

grade). The mixture was heated on a hot plate until dry. The resulting white-yellow 
muddy solid material with dark solid particles as the intermediate product (MS-ION) was 
used as starting material for the preparation of magnetite (Fe3O4) and maghemite (γ-
Fe2O3). This intermediate product was partially soluble in cold water, but with slight heat-
ing, the remaining fine dark particles completely dissolved in water and the remaining 
traces were removed by a decantation. A qualitative test for product solubility in warm 
water was applied and after dissolution in warm water, 1 mL NaOH was added to give a 
dark blue/green sediment, which is characteristic of Fe(OH)2 in solution [42]. This inter-
mediate solid product (MS-ION), after solubility testing, was cooled and stored in air at 
23 °C. A homogenous yellow fine solid product was observed after 5 days of exposure. In 
addition, its solubility in warm water was maintained, and after 1 mL NaOH was added, 
a rust-colored sediment was observed. This behavior is also characteristic of the presence 
of Fe(OH)3 [42]. These qualitative tests were further validated by quantitative analyses for 
the Fe(II) and Fe(III) species. 

2.1.2. Coprecipitation Method for ION Preparation 
Iron oxides as IONs were obtained from 40 g MS-ION dissolved in 250 mL of distilled 

water. After filtration in a Buchner funnel, the liquid solution was stirred at 200 rpm with 
60 mL NaOH 40% for 30 min. The pH value was raised at 12 and a dark brown solid 
product resulted, i.e., ION. The mixture was aged at room temperature for 1 day, then 
filtered and washed with ultrapure water until pH 7. ION was dried at 60 °C and prepared 

Figure 2. Steps involved in MS conversion into ION, characterization and evaluation as nanoadsorbents.

Materials and methods applied for this converting process from waste to a low-cost
magnetic adsorbent are described as follows. The mill scale (MS) was purchased from a hot
rolling steel factory from Romania. MS classified as waste was used as the raw material in
the preparation of ferrous Fe(II) and ferric precursors Fe(III) for the obtaining of ION. The
ferrous precursor MS-preparation steps consisted of acidic dissolution in order to obtain a
ferric and ferrous precursor as an intermediate product (MS-ION) and a coprecipitation
step for obtaining ION as a final product.

2.1.1. Acidic Dissolution Step for MS-ION Preparation as Precursor

In a 600 mL glass beaker, 30 g of MS were treated with 150 mL H2SO4 conc. (analytical
grade). The mixture was heated on a hot plate until dry. The resulting white-yellow muddy
solid material with dark solid particles as the intermediate product (MS-ION) was used
as starting material for the preparation of magnetite (Fe3O4) and maghemite (γ-Fe2O3).
This intermediate product was partially soluble in cold water, but with slight heating,
the remaining fine dark particles completely dissolved in water and the remaining traces
were removed by a decantation. A qualitative test for product solubility in warm water
was applied and after dissolution in warm water, 1 mL NaOH was added to give a dark
blue/green sediment, which is characteristic of Fe(OH)2 in solution [42]. This intermediate
solid product (MS-ION), after solubility testing, was cooled and stored in air at 23 ◦C. A
homogenous yellow fine solid product was observed after 5 days of exposure. In addition,
its solubility in warm water was maintained, and after 1 mL NaOH was added, a rust-
colored sediment was observed. This behavior is also characteristic of the presence of
Fe(OH)3 [42]. These qualitative tests were further validated by quantitative analyses for
the Fe(II) and Fe(III) species.

2.1.2. Coprecipitation Method for ION Preparation

Iron oxides as IONs were obtained from 40 g MS-ION dissolved in 250 mL of distilled
water. After filtration in a Buchner funnel, the liquid solution was stirred at 200 rpm with 60
mL NaOH 40% for 30 min. The pH value was raised at 12 and a dark brown solid product
resulted, i.e., ION. The mixture was aged at room temperature for 1 day, then filtered
and washed with ultrapure water until pH 7. ION was dried at 60 ◦C and prepared for
characterization and preliminary adsorption tests as nanoadsorbent material. The balance
of materials was calculated and it was found that about 250 g of ION (Fe3O4, γ-Fe2O3)
could be obtained from 1 kg of MS precursor.
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2.2. Characterization and Composition of MS, MS-ION and ION

The composition of mill scale (MS) obtained from the hot rolled steel line was estab-
lished with a wavelength dispersive X-ray fluorescence (XRF) spectrometer (AXS S8 Tiger,
Bruker, Billerica, MA, USA). Previously, 10 g of MS were ground to a manageable fine
grain size of about 4 µm using a Retsch PM 100 type ball mill, containing WC balls. The
MS powder was then mixed with boric acid as a binder and pressed at 40 tons using a
Pellet-Press machine Retsch PP 40, Retsch GmbH, Düsseldorf, Germany.

To obtain a comprehensive understanding of the MS waste from compositional and
structural point of view, and how it could be used as a precursor for ION synthesis, several
characterizations were carried out, including MS-ION characterization. X-ray diffraction
(XRD) analysis was performed to investigate the phases, structure and purity using a
PANalytical X’Pert PRO MPD spectrometer with a Cu anode. In order to determine
the crystallite size of the nanoparticles, the Debye-Scherer equation (Equation (1)) was
used [43]:

D =
KxλCu−Kα

cos θx FWHM
(1)

where D is the crystallite size; K = 0.89 is the dimensionless shape factor, λCu-Kα is the
radiation wavelength for the X-ray tube; FWHM is the width at half of the maximum
diffraction (in radians), and θ is the diffraction angle.

The morphology and size of the MS, MS-ION, and ION were investigated via scan-
ning electron microscopy (SEM, Quanta Inspect F type), with field emission gun, 1.2 nm
resolution, coupled with energy dispersive spectra (EDX). The size was validated by high
resolution transmission electron microscopy (HRTEM) (TECNAI F30 G2 with linear reso-
lution of 1 Å and point resolution of 1.4 Å) with selected area electron diffraction (SAED)
capability. Additional, quantitative analysis of the soluble MS-ION precursor was achieved.
Thus, 1.95 g MS-ION were dissolved in 100 mL warm water. The water solution was
then analyzed by spectrophotometry to determine the Fe (III) amount in the solution. The
ortho-phenanthroline method was applied to analyze Fe (III) content, which was based on
a red-orange compound formation. The compound was measured at λ = 510 nm using a
molecular absorption spectrometer (Cintra 220 GBC) with a spectral domain between 190
and 1000 nm. These results obtained for Fe (III) were compared to XRF analysis and atomic
absorption spectrometry (AAS) to determine the total dissolved Fe (Fe II + Fe III) content.
Thus, an atomic absorption spectrometer (ContraAA800D Analytik Jena) equipped with a
Xe lamp, flame, and double beam optical system, with a spectral range between 185 and
900 nm, was used.

2.3. Magnetic Properties and BET Surface Analysis

Magnetic properties were studied using a vibrating sample magnetometer (VSM
880—ADE Technologies, Westwood, MA, USA) at room temperature. Additionally, the
specific surface area used for identification of pore volume and the surface characteristics
were measured by BET (Brunauer, Emmett and Teller) using a NOVA 2200e-Quantachrome
Analyzer, Quantachrome, Boynton Beach, FL, USA in order to establish heavy metal
adsorption mechanism.

2.4. Adsorption Tests

Preliminary adsorption tests were developed in order to establish future working
protocols for mechanism, kinetic and thermodynamic studies for ION applications as
nanoadsorbents. All the reagents used in the adsorption test were of chemical grade,
purchased from Merck, with quality certificates. Adsorption tests were applied to validate
the heavy metal removal efficiency using ION as nanoadsorbent in a ternary-heavy metal
system aqueous solution. In this regard, a multicomponent solution of 1000 mg/L of each
element (Cd, Ni, Cu) was diluted in order to obtain a working solution of 50 mg/L of
each element. Thus, 100 mL of solution was put into contact with 0.1 g ION, at a pH 2.5,
with a contact time of between 10 and 100 min. The aqueous solutions were initially
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stirred at 200 rpm to allow for the adsorption of heavy metals ions onto the ION particles.
After stirring for 10 min, 1 mL aliquot of supernatant was sampled with the help of an
external magnet. Then, stirring was continued and sampling of the solution was repeated
every 10 min. All the experiments were performed twice for data analysis. The ION
nanoadsorbent was extracted and recovered from the system using an external magnet.
Schematically, the steps for the ternary system preparation are presented in Figure 3.
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aqueous system.

Testing of the ION adsorption capacity was validated by heavy metals concentration
analysis, before (C0) and after (Ct) contact with ION. The concentrations were measured
using an atomic adsorption spectrometer (ContraAA800D Analytik Jena, Jena, Germany),
with a Xe lamp, flame and double beam optical system, and a spectral range between 185
and 900 nm. Specific wavelengths for the heavy metal ions investigated in this study were
established at: 228.8 nm, 232 nm, and 324.7 nm for Cd, Ni, and Cu, respectively.

The removal efficiency (%) that indicated the quantity adsorbed onto ION surface as
mass balance between concentrations values was calculated using Equation (2):

η (%) =
(C0 − Ct)

C0
× 100 (2)

where C0 and Ct are the initial and final concentrations of heavy metals (mg/L).
In order to evaluate possible forces of attraction between the solute molecules of heavy

metals from the solution onto the solid ION surface, Langmuir isotherm models were
applied as a preliminary investigation of the adsorption mechanism.

The Langmuir equation describes heavy metal behavior at a constant temperature
(25 ◦C) on the adsorption capacity, based on Equation (3) [44]:

Ce

qe
=

1
Qmax × b

+
Ce

Qmax
(3)

where Ce is the equilibrium concentration of the adsorbate (mg/L); qe is the adsorbed metal
amount (mg/g), Qmax is the maximum adsorption capacity (mg/g), and b is the Langmuir
constant, L/mg.

The Langmuir equilibrium constant, KL, can be expressed as: KL = Qmax x b. In
addition, separation factor RL, defined by Equation (4) [45,46], was used for evaluating the
nature of the adsorption process.

RL =
1

(1 + b× C0)
(4)
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A favorable adsorption process has RL values between 0 and 1, while for RL > 1 the
adsorption process is unfavorable; for RL = 1 a linear adsorption take place and RL = 0
represents an irreversible adsorption process [47].

The adsorbed metal amount at equilibrium was calculated by Equation (5):

qe =
(C0 − Ce)

V
×m (5)

where C0 is the initial concentration, mg/L; Ce is the equilibrium concentration, mg/L; V
is the volume of the solution, L; m is the adsorbent quantity, g. Based on the Langmuir
model results, future experiments will be developed for heterogeneous surface study in
accordance with the Freundlich isotherm.

3. Results and Discussion
3.1. Characterization and Composition of MS

The XRF analysis of MS was achieved using pellets obtained after grinding and
compressing the MS powder. The elemental composition is shown in Table 1. The average
content of Fe was about 77%, as a major element of MS, followed by O, Ca, Si, and Mn. The
values are an average of five replicates of MS.

Table 1. Chemical composition of mill scale waste.

Element Average Content, wt.%

Fe 77.06 ± 0.04
O 13.35 ± 0.15
Ca 4.50 ± 0.26
Si 1.90 ± 0.88

Mn 0.83 ± 0.41
Na 0.71 ± 5.72
Al 0.64 ± 1.87
Mg 0.22 ± 4.40
P 0.18 ± 2.51
Cr 0.04 ± 2.26
Ti 0.03 ± 4.01

XRD analysis of MS indicated that morphological phases of this material are repre-
sented by a mixture of iron oxides as can be observed in Figure 4.
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X-ray diffraction spectrum of the MS indicated as first phase Fe2O3 (35%) as hematite,
followed by Fe2.67O3 (34%) and Fe3O4 (31%). These oxides were identified in accordance
with the ICSD data sheet. The crystallite size was calculated using Equation (1) and was
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about 135 nm. In addition, the structure, aspect and size of MS particles were identified by
SEM coupled with EDX, as can be seen in Figure 5.
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Figure 5. SEM image of the MS powder at 10,000× and EDX associated.

From Figure 5, the agglomeration of MS particles can be seen, together with different
shapes, and of the analyzed MS. Using the EDX technique, spectra indicated the presence
of Fe, Ca, Si, Mn, Al and Mg; this information being in accordance with the XRF analysis.
Mapping information revealed a homogenous distribution of Fe and a concentration of Si
and Ca, other mentioned elements were in the mass of the sample.

3.2. Characterization and Composition of MS-ION

After acidic dissolution and evaporation/drying steps, a white-yellow solid material
resulted, which was used as a precursor (ION-MS). XRD spectra (Figure 6) indicated that
acidification converted MS into a complex major phase as Fe4S5O21, according to the ICSD
data sheet. This compound is characteristic of MS-ION as an intermediate product for ION
preparation. The crystallite size was calculated using Equation (1) and was about 75 nm.
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Figure 6. X-ray diffraction of the MS-ION powder.

Figure 7 presents the SEM-EDX observations performed on the MS-ION material.
Particles are agglomerated, with a well-defined elongated aspect. In addition to these
shapes, there are small and rounded particles of about 200 nm. This size is in accordance
with the small crystallite size of the particles generated by the Debye-Scherrer equation;
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the SEM observations indicate the agglomeration of these crystallites. The round shape is
characteristic of powders obtained by a ball grinding process.
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According to the EDX image, the major elements are Fe, S and O, which compares
well with the XRD spectra. In order to establish Fe speciation from the MS-ION precursor,
a traceability analysis method was developed, which combined XRF and AAS techniques.
The results obtained are presented in Table 2. For 1.95 g MS dissolved in warm water, an
average percentage of 77% Fe could be estimated. This quantity is in accordance with
results indicated in Table 1 for MS analyzed by XRF. This indicated that the initial Fe
content was maintained and a ratio of 1:4 (w/w) of Fe(II): Fe(III) was available as a mixture
in the MS-ION precursor.

Table 2. Fe concentration from the MS-ION precursor.

Fe Concentration, mg/L Analysis Method

Fe tot = 242.93 AAS (liquid)
Fe tot = 247.92 XRF (liquid)
Fe(II) = 50.80 Spectrophotometry (liquid)

The total Fe concentration (sum of Fe(II) and Fe(III)) analyzed using the AAS technique
corroborated with the XRF analysis and spectrophotometry technique and indicated that
about 20% represents Fe(II). With this information, according to the general chemical reac-
tion of iron oxides preparation, the specific molar ratio is settled at 1:2 for FeCl2:FeCl3 [46].
We worked within an excess of Fe(III) that can be explained by the original composition of
the used waste and can be observed by XRD and EDX analyses for MS.

3.3. Characterization and Composition of ION

ION-MS was treated using the coprecipitation method [48,49]. XRD spectra presented
in Figure 8 for ION show a cubic crystal system according to the ICSD datasheet. The
majority phase is represented by a mixture of Fe3O4 and γFe2O3 compounds. The overall
XRD pattern associated with the percentage of compounds indicated that the ION sample
contains a mixture of amorphous and crystalline phases.

The width of the peaks suggests that the crystals are of nanometer dimensions
(Figure 8). Using the Debye-Scherrer formula, a crystallite particle size of 9.3 nm was
calculated. The nanometric size of ION was confirmed by TEM coupled with the scanning
area electron diffraction (SAED) technique, as shown in Figure 9.

The HRTEM images (Figure 9) show the crystalline nature of the ION sample. Diffrac-
tion analysis (SAED) confirmed the presence of Fe3O4, as shown in the inlet in Figure 9. The
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SAED image shows clear rings with interplanar spacings associated with the corresponding
(h k l) Miller indices for Fe3O4. Additionally, X-ray microanalysis in dispersive energy
(EDX) confirms that the sample contains Fe and O, with a Cu presence being associated
with the Cu grid used for sample analysis (Figure 10).
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The average particle size of the iron nanoparticles was 5.25 ± 19 nm, with an average
of 100 nanoparticles in the TEM image. The histogram presented in Figure 11 shows that
the most nanoparticles were around 6 nm, but not below 3 nm. The low frequency of
nanoparticles of 8.05 nm confirms that most nanoparticles had dimensions around the
average of 5.25 nm.
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3.4. Magnetic and Surface Properties Investigations

The magnetic properties of ION are the key factor in the use of nanomaterials as
sorbents for water and wastewater treatment of heavy metal ions [50]. Adding magnetic
properties to nanoparticles allows for nanoadsorbents to be magnetically separated. Our
research group developed a solenoid column for the removal of heavy metal ions using
magnetic nanoparticles [51]. Therefore, the magnetic properties of ION nano-powders are
as important as their adsorption properties for water treatment applications.

Figure 12 presents the magnetization curve function of the magnetic field strength,
H, measured in the range of H ∈ [−10, 000,+10, 000] Gauss. Because the hysteresis
curve area is null, the ION nanoparticles exhibit superparamagnetic behavior at room
temperature. Additionally, the shape of the magnetization curve indicates the nanomaterial
characteristics of the powder.
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According to Ilyushenkov et al. [52], the saturation magnetization of “bulk” ION is
about 70 emu/g. Since the saturation magnetization decreases with the decrease in particle
size, the nanosized dimension of the particles can be accounted for and the saturation
magnetization of 55 emu/g obtained for ION nanoparticles. The results indicated a mixture
between Fe3O4 and γFe2O3 with the possibility of having nanoparticles with a magnetite
core covered by a maghemite layer.

Specific surface assays performed by BET analysis (Figure 13) were used to calculate
the specific surface for monolayer adsorption. The following assumptions were made: ad-
sorption occurs on a homogeneous surface and there are no interactions between molecules.
The isotherm obtained for the ION sample suggests a multilayer adsorption.
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Figure 13. Specific surface area of the manometric magnetite.

The results obtained from the adsorption isotherm have shown that the ION sample is
a mesoporous powder with an average pore size of <5 nm and a pore specific surface area
of 146.559 m2/g. The sample is characterized by a large specific surface area of 301.54 m2/g
and an average particle size of 6.6 nm. Compared to other data from the literature, the
ION powder shows a good adsorption capacity of about 8 nm for which the BET surface
is 95.3 m2/g [53]. Future investigations will be developed. In accordance with other
results obtained with the nanostructured iron oxides used for the removal of heavy metals
from wastewaters [49,51], the use of MS for ION preparation led to a porous and active
nano-adsorbent with promising results for heavy metal removal.

3.5. Adsorption Tests

The research regarding the adsorption of heavy metals was conducted by adding
0.1 g of ION as an adsorbent for heavy metals from a ternary solution system according to
the procedure presented in Figure 3. To study the kinetics of the adsorption process, the
ternary system solution was kept in contact for different periods of time (between 10 and
100 min), starting at pH 2.5 as the initial pH value of the aqueous solution. The separation
of the ION adsorbent was performed using a magnet and the sampled supernatant was
analyzed from 10 to 100 min by AAS in order to establish the final concentration of heavy
metal, after contact with the ION adsorbent.

The removal efficiency of Cd, Cu, and Ni of magnetite nanoparticles can be observed
in Figure 14, which shows good yields for the removal of heavy metals, with a retention
efficiency of more than 95% for Ni and over 90% for Cu and Cd. The maximum efficiency
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was reached after 10 min and was maintained approximately the same under all of the
times tested. The difference in removal efficiency for Ni(II), Cu(II) and Cd(II) could be
influenced by a number of factors, such as hydration radii and solubility of the cations.
Thus, the hydration radii values of the cations are rHNi2+ = 4.04 Å, rHCu2+ = 4.19 Å
and rHCd2+ = 4.26 Å [54]. The smallest cations should ideally be adsorbed faster and in
larger quantities compared to larger cations, since the smaller cations can pass through the
micropores and channels of ION that was used as an adsorbent.
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Figure 14. Removal efficiency of Cd, Ni and Cu for ION.

A decrease in the heavy metal concentration was observed after the first 10 min in
the order of: Cd < Cu < Ni. Increasing the contact time to 100 min did not improve
the metal adsorption onto magnetite nanoparticles. Based on the efficiency results, the
maximum adsorption capacity (qe) was calculated in accordance with the concentration
values at equilibrium (Ce) for each heavy metal ion. In order to validate these data, the
Langmuir isotherm model was applied for ternary system solutions. The collected data
are in accordance with the Langmuir model calculated using Equation (3), for monolayer
adsorption, as shown in Figure 15.
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According to the Langmuir isotherm, the qe values are: 9.44 mg/g (Ni), 11.12 mg/g
(Cu) and 19.15 mg/g (Cd). The correlation factor (R2) indicates a good fitting of the results
for Ni (0.99), followed by Cd (0.98) and Cu (0.97). Further models can be explored in
the future to evaluate the adsorption process. The preliminary results indicated that the
heavy metal ions were adsorbed in accordance with Langmuir relation, where the solid
(adsorbent) surface exposes a specific number of sites that, once occupied, permit no further
adsorption to occur [55]. In addition, separation factor RL, calculated with Equation (4)
indicates a favorable process for ternary solution systems. Thus, because the RL values are
between 0 and 1, we can assume that the process describes a favorable adsorption process.

4. Conclusions

Iron oxide nanoparticles, noted here as ION, have been synthesized from mill scale
waste and thoroughly characterized to explore their use as nanoadsorbent for heavy metals
from aqueous solutions. The MS converted into iron oxide nanopowders were characterized
by X-ray, SEM, TEM, EDX, BET, and magnetic properties. The iron oxides nanoparticles
(as mixture of Fe3O4 and γ-Fe2O3) obtained from the MS powder were about 6 nm in size
and presented superparamagnetic behavior and a large specific surface area. All these
properties of the magnetite nanopowder synthesized from the MS powder highlighted their
potential for use as nanoadsorbents for heavy metal removal from wastewaters. Preliminary
studies regarding heavy metals ions (Ni, Cu, Cd) from ternary aqueous solution systems
were performed with good removal efficiency, i.e., over 90% after 10 min, which was
maintained for about 100 min. Additionally, the data are well fitted with the Langmuir
isotherm, thus futures studies will be developed in order to establish the adsorption
mechanisms and chemistry surface of ION as a product resulting from industrial waste
(MS). Additionally, the technology proposed in this paper, which can convert 1 kg of mill
scale powder to 250 g of nanomagnetic iron oxides (Fe3O4, γ-Fe2O3) points to an efficient
recycling and reuse technology of mill scale, a waste from steel production.
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