
Duane retraction syndrome (DRS) is a congenital 
disorder of ocular motility, which is pan-ethnic and accounts 
for approximately 1% of the total cases of strabismus [1]. Indi-
viduals with DRS typically manifest horizontal eye movement 
limitation, globe retraction with palpebral fissure narrowing 
in attempted adduction. DRS can be classified into types 
I, II, and III, with the presence of abduction, adduction, or 
both, respectively [2]. Occurrence of DRS is usually sporadic. 
Reported familial DRS is mostly bilateral with vertical move-
ment abnormalities and autosomal dominant inheritance 
[3]. In addition, several associated systemic manifestations 
have been described in patients with DRS, most commonly 
involving facial anomalies, hearing dysfunction, vertebral 
column anomalies, and variable degrees of limb malforma-
tions [4-7]. The exact etiology of DRS is still elusive. Electro-
myographic and magnetic resonance imaging (MRI) studies 
suggested that DRS might result from abnormal development 
of the abducent nerve (sixth cranial nerve) [8,9].

Linkage analyses of DRS have successfully mapped its 
associated loci to chromosomes 2q13, 4q27, 8q13, 22q11, and 
20q13 [10-13]. Recently mutations of the sal-like 4 (SALL4; 
MIM# 607343) gene on chromosome 20 have been linked to 
DRS or DRS associated with radial forearm malformations, 
also known as Okihiro syndrome [14-17]. SALL4-related 
disorders include Duane-radial ray syndrome (DRRS, 
Okihiro syndrome) and acro-renal-ocular syndrome (AROS). 
Okihiro syndrome, characterized by radial malformation 
associated with Duane congenital abnormalities, is used inter-
changeably with DRRS. Another SALL-4 related syndrome is 
known as acro-renal-ocular syndrome (AROS), characterized 
by radial ray malformation, Duane abnormality, renal malfor-
mation (mild malrotation, ectopia, horseshoe kidney, renal 
hypoplasia, vesicoureteral reflux, bladder diverticula), and 
coloboma [14]. More than 20 mutations in SALL4 have been 
reported in association with these disorders. The SALL4 gene 
is located in chromosome 20q13–20q13.2, with a length of 
18.14 kb and 4 exons, encoding for a 1053 amino-acid-residue 
protein. SALL4, a new member of the SAL family of proposed 
C2H2 zinc finger transcription factors, plays important tran-
scription roles during human embryogenesis [15,18]. SALL4 is 
actually the first identified disease-causing gene of DRS and 
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likely plays a crucial role in the development of the abducens 
motoneuron. Although several mutations have been reported 
in SALL4, disease phenotypes vary greatly among different 
SALL4 mutations, and the phenotype–genotype correlation 
remains elusive. In this paper, we report for the first time a 
Chinese family with members presenting with isolated DRS 
or DRS associated syndromes in a dominant trait.

METHODS

This study was approved by the Research Ethics Committees 
of the Chinese University of Hong Kong and conducted in 
accordance with the tenets of the Declaration of Helsinki. 
Informed consent was obtained from each participant after 
detailed explanation of the nature of the study.

Study subjects: A three-generation Chinese Han family with 
DRS was recruited at the Department of Ophthalmology, 
Prince of Wales Hospital, Hong Kong (Figure 1). Affected 
status was determined with detailed ophthalmic examinations 
that included visual acuity, refraction, intraocular pressure, 
slit-lamp evaluation, and ocular motility testing. Additionally, 
systemic tests including audiometry and neurologic testing 
were performed. Detailed medical and family histories were 
also documented. Peripheral blood was collected from five 
available members of the family, including I:1, II:1, II:2, III:1, 
and III:2 (Figure 1). Peripheral blood was collected using 
EDTA tubes from five available members of the family, and 
stored in -80 °C before processing for genomic DNA isolation.

Also included in this study was a group of 200 unrelated 
Chinese control subjects (age >40 years) who had under-
gone complete ocular examination and were confirmed to 
be free of major ocular and systemic disorders. Peripheral 
blood samples were collected from each control subject after 
informed consent was received.

Mutation screening: Genomic DNA was extracted from whole 
blood using the QIAmp Blood kit (Qiagen, Hilden, Germany) 
according to the supplier’s instructions. All exons and intron-
exon boundaries of SALL4 were amplified with PCR and 
analyzed with direct sequencing in all study subjects. In total, 
seven pairs of primers, designed by using Primer3 (accessed 
June 1, 2012) referring to the sequence of human SALL4 gene 
from the Ensembl database (accessed June 1, 2012), were used 
(Table 1). Targeted regions were amplified by PCR using 20 
ng of genomic DNA in a 25 μl reaction mixture containing 
0.2 μM primers, 0.2 mM deoxyribonucleotide triphosphate, 
1 U Taq DNA polymerase (Invitrogen, Carlsbad, CA), and 
1.5/2.0 mM MgCl2 (indicated in Table 1). The PCR thermal 
cycling conditions were initial denaturation at 95 °C for 2 
min followed by 45 cycles of 95 °C for 40 s, 58/60 °C for 
40 s (annealing Tm for each primer is indicated in Table 

1), and 72 °C for 40 s, with a final extension step of 72 °C 
for 10 min. Bidirectional sequencing of PCR products was 
performed using the BigDye Terminator Cycle Sequencing 
(v3.1) protocol in an ABI 3130×l Genetic Analyzer automated 
sequencer (Applied Biosystems, Foster City, CA). All muta-
tion descriptions followed the nomenclature recommenda-
tions of the Human Genomic Variation Society (HGVS).

Bioinformatics analysis: Sequences of SALL4 orthologs in 
other vertebrate species were retrieved from the NCBI Refer-
ence Sequence database (accessed June 23, 2012). Multiple 
alignments of SALL4 orthologs from different vertebrate 
species were conducted using a Web-based program, 
T-Coffee (ver. 7.71, provided in the public domain by the 
Center for Genomic Regulation, Barcelona, Spain, accessed 
June 23, 2012).

RESULTS

Clinical characteristics of the study subjects: As illustrated 
in Figure 1, this family is represented by three generations 
of individuals. Five members consented to participate in 
this study, of whom four are affected with isolated DRS or 
combined with bone abnormalities.

The proband (III:1) was a 4-year-old boy, who was 
referred to us by his pediatrician for suspected conver-
gent squint. He was born with an uncomplicated normal 
delivery and enjoyed normal development and visual acuity. 
Ophthalmic examination showed that he had right eye abduc-
tion weakness and noticeable narrowing of palpebral fissure 
on attempted abduction gaze. He also presented with right 

Figure 1. Pedigree of a Chinese family with Duane retraction 
syndrome. Squares: men; circles: women; filled symbols: affected; 
empty symbols: normal individual; arrow: the proband; star: DNA 
samples available for this study.

http://www.molvis.org/molvis/v19/986
http://frodo.wi.mit.edu/
http://asia.ensembl.org/Homo_sapiens/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.tcoffee.org/


Molecular Vision 2013; 19:986-994 <http://www.molvis.org/molvis/v19/986> © 2013 Molecular Vision 

988

esotropia at the primary position of gaze (Figure 2A). Other 
ocular examinations including refraction were unremarkable. 
On physical examination, a surgical scar was noted at the 
medial side of his right thumb, which was created after exci-
sion of his duplicated thumb (preaxial polydactyly; Figure 
3A). Hearing test, cardiac examinations, limb examinations, 
and ultrasound scans of the kidneys were normal.

The proband’s younger sister (III:2), a 6-month-old girl, 
was referred at the same time to our clinic for convergent 
squint. She was born full term, with normal prenatal and 
postnatal checkups. Ophthalmic examination showed that 
she had large angle convergent squint at the primary position 
of gaze. Narrowing of bilateral palpebral fissure was noticed 
on both sides in attempted abduction. MRI was performed to 
rule out any lesion occupying intracranial space causing bilat-
eral sixth nerve palsy. MRI of the brain was normal, except 
the right abducens nerve was absent (Figure 4). The brain 
MRI did not have information on the nuclei. Cycloplegic 
refraction showed mild hypermetropia. Physical examination 
showed no signs of upper limb malformations (Figure 3B). In 
view of the esotropia in the primary position, bilateral medial 
rectus recession was performed. Her preoperative renal func-
tion tests were normal. Their mother (II:2), a 36-year-old 
woman, was found to have similar problems. She had right-
sided DRS (Figure 2B) and left preaxial duplication of the 
thumb. Additional features including hypoplasia of the thenar 
muscle and hypoplasia of the left thumb were also noted 
(Figure 3C). Their grandfather (I:1), a 72-year-old man, had 
a similar clinical presentation as his daughter (II:2; Figure 
2C and Figure 3D). Examination and further history-taking 
revealed no history of cardiac abnormality, hearing prob-
lems, or skeletal malformations. Medical records including 
renal function tests were retrieved for the mother (II:2) and 
grandfather (I-1), which were normal. Other members of the 
family did not have any clinical signs or symptoms sugges-
tive of DRS. In summary, all four affected family members 
have unilateral or bilateral Duane features with or without 

evidence of radial-ray abnormality, and clinical evidence 
of other abnormalities including hearing, cardiac, or renal 
malformation was absent, supporting clinical diagnosis of 
DRRS (Okihiro syndrome).

Mutation analysis: Direct sequencing was performed to cover 
all exons and intron-exon boundaries of the SALL4 gene. A 
heterozygous duplication c.1919dupT (Figure 5) in exon 2 was 
identified exclusively in all affected family members but not 
in any of the unaffected family members. The duplication 
was absent in the 200 unrelated controls. No other variants 
were detected in the controls. The c.1919dupT mutation was 
predicted to cause a frameshift introducing a premature stop 
codon after 73 bp in the messenger RNA, which encodes a 
truncated SALL4 protein (p.M640IfsX25), affecting two zinc 
finger domains.

To evaluate the functional significance of this mutation, 
multiple alignments of SALL4 sequences were applied to 
compare the sequences of human, chicken, zebrafish, rhesus 
monkey, cattle, African clawed frog. The results showed that 
the affected region of SALL4 was highly conserved across 
species and revealed the strong identity of the deleted region 
of protein at SALL4 zinc finger domains (Figure 6).

DISCUSSION

In this study, we identified a novel SALL4 mutation in a 
Chinese family with DRS presenting with variable pheno-
types. The mutation showed complete disease cosegregation 
and is highly likely to be disease-causing, although further 
functional characterization is needed to confirm the muta-
tion’s role in disease etiology. Autosomal dominant DRS has 
a high penetrance, although considerable variability within 
a pedigree also exists. This may explain the wide-spectrum 
phenotypes observed in the family evaluated. Until now, 
several sporadic cases or pedigrees and mutations implicated 
in DRS have been reported in Caucasians. To the best of our 

Table 1. Primer Sequence and Thermal Cycling Condition for Genotyping SALL4

Amplicon Forward Primer (5′ – 3′) Reverse Primer (5′ – 3′) Size (bp) Ta (°C) MgCl2 (mM)
   1 TCAGGGCTCATGATAAATCG AATCTCGGCTCCTGAATTTG 402 58 2.0
   2A GATTATAGATGTGAGCGACGGTGC CTTCCAGCTTTCTGGCTGAG 795 60 1.5
   2B TACAGCAGATCCAGCTCACC GCCACTTTGTCCTGGAACTC 673 60 2.0
   2C TGGGACTGATAGCTCCTTGC ACCCCAAGGTGTGTCTTCAG 672 60 1.5
   2D TCAGAGCTCCCTCAAGATGC CAGGCTCCTTTTTGATGACC 791 58 2.0
   3 ACAAAGCCAGCTCCAGACTC CGGCTTGTGCCAATAAGAAG 471 60 2.0
   4 ATTCTTGGCTTGCCAGTGAG TGTGTCTGCATTGCTCCTTC 522 60 2.0

Ta, Annealing temperature.
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knowledge, this is the first genetic study, and the first pedi-
gree report, on DRS in the Chinese population.

Mutations in the SALL4 gene have been shown to 
cause DRS and DRS-associated disorders, namely, Okihiro 
syndrome, acro-renal-ocular syndrome, Holt-Oram 

Figure 2. Clinical pictures showing 
photos of ocular gazes in proband 
III:1 (A: Four-year-old boy), II-2 
(B. his mother) and I-1 (C. his 
grandfather). All shared similar 
features with limitation in right 
sided abduction, upshooting or 
downshooting of right eye with 
narrowing of palpebral fissure on 
attempted adduction gaze. 
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Figure 3. Phenotypic features 
of patients. A: A 4-year-old boy 
(III:1) with left hand scar at thenar 
prominence at the site of previous 
surgery to excise of duplication of 
thumb. B: A 6-month-old girl (III:2) 
has no signs of limb malformations. 
C: A 36-year-old woman (II:2) with 
residual signs of a previous extra 
left thumb , and left thenar hypo-
plasia and hypoplasia of thumb. 
D: A 60-year-old man (I:1) with 
residual incomplete excision of an 
extra right thumb.

Figure 4. Magnetic resonance imaging of the brain of proband III:2. 
The thin linear structure coursing obliquely from the left pontomed-
ullary region in the left pontine cistern suggests the left abducens 
nerve, which was absent in the right side.
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syndrome, or suspected thalidomide embryopathy [19-22]. 
Several overlapping phenotypes are shared among these 
disorders. Okihiro syndrome, an autosomal dominant 
disorder characterized by radial ray defects combined with 
Duane anomaly, is the most common condition known to 
overlap clinically with DRS. The SALL4 gene consists of 
four coding exons and encodes a protein with three highly 
conserved C2H2 double zinc finger domains, the second 
of which has a single C2H2 zinc finger attached at its 
C-terminal end, as well as an N-terminal C2HC zinc finger 
motif [15,18,23,24]. To date, 22 SALL4 mutations have been 
described in Duane-related syndromes, especially Okihiro 
syndrome [14-17,21,23]. Seventeen are located in exon 2, and 
five within exon 3. These known mutations are nonsense 
mutations, duplications, or deletions (Figure 7).

The c.1919dupT mutation identified in this study was a 
duplication located in exon 2. This mutation is predicted to 
generate a frameshift resulting in a truncated protein denoted 
as p.Met640IlefsX25. Thus, when translated, the premature 

termination codon would truncate the SALL4 polypeptide by 
414 residues, i.e., appropriately 40% of the total length. The 
codon would truncate the second C2H2 double zinc finger 
domain and lead to a complete deletion of the third domain 
due to premature termination. The region containing these 
three functional domains was conserved; our sequence anal-
ysis also showed the deleted residues in the second domain 
of SALL4 to be highly conserved across different vertebrate 
species. This heterozygous c.1919dupT mutation plays a role 
in the disease pathogenesis via haploinsufficiency through 
a pathway known as nonsense-mediated mRNA decay, an 
mRNA surveillance mechanism found in all eukaryotic 
organisms that leads to a degradation of the transcripts with 
introns in the 3′ untranslated region. The mutation subse-
quently prevents the synthesis of truncated proteins that may 
have toxic effects such as dominant negative interactions 
[25,26]. In fact, all the mutations identified thus far in SALL4 
associated with Duane-related syndromes are likely to be 
disease-causing via haploinsufficiency [27]. This proposition 

Figure 5. Sequence chromatographs 
of the novel heterozygous muta-
tion c.1919dupT in SALL4 and the 
respective wild-type sequence.

Figure 6. Multiple alignment 
of the SALL4 protein sequence 
(partial) from different species. 
The box indicates that the deleted 
region affected by the mutation 
(p.Met640IlefsX25) in SALL4 was 
highly conserved.
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was based on the observation that disease-causing deletions 
of all coding exons in two independent families that explicitly 
resulted in haploinsufficiency [16]. The c.1919dupT mutation 
described in our Chinese family with DRS provides further 
evidence supporting that SALL4 mutations affect the disease 
phenotype through nonsense-mediated mRNA decay.

To date, there is insufficient information to correlate 
SALL4 mutations with the severity of the phenotypes of 
DRS and DRS-associated syndromes. Although the muta-
tion p.R865X has been reported to cause either a mild or 
severe phenotype [21], c.1919dupT in this present family 
gives clear variations in clinical features. Varying degrees of 
ocular disorders and limb involvements were manifested in 
the c.1919dupT carriers. Such complex disease manifestation 
might have been modified by local epigenetics or other muta-
tions that have yet to be identified.

Kohlhase et al. demonstrated that the expression of 
SALL4 in human could be detected only in the testis and 
ovary [18]. In animal studies, SALL4 mRNA expression 
has been detected in the embryo and well described during 
different developmental periods; the expression in the prog-
ress zone of the limb buds fitted well with the radial ray 
anomalies in patients with Duane-related syndromes [18]. In 
addition, a reduced dosage of SALL4 in the mid-hindbrain 
region was expected to result in disturbed development of the 
sixth cranial nerve [18]. Two independent studies noted no 
mutations in SALL4 could be detected in isolated DRS cases, 
suggesting other genetic influences in addition to SALL4 
[28,29]. Recently, mutations in CHN1 have been found in 
association with isolated families with DRS [30].

In summary, we have identified a novel heterozygous 
SALL4 mutation cosegregating with DRS in a Chinese 
pedigree. This mutation is predicted to result in a truncated 
SALL4 protein affecting two functional domains, and 

haploinsufficiency due to nonsense-mediated mRNA decay 
may be responsible for the disease pathogenesis. The results 
of this study provide further evidence for understanding the 
genetic causes of DRS and extend its phenotypic and muta-
tional spectra.
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