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Abstract: Since the fuzzy local information C-means (FLICM) segmentation algorithm cannot take
into account the impact of different features on clustering segmentation results, a local fuzzy clustering
segmentation algorithm based on a feature selection Gaussian mixture model was proposed. First,
the constraints of the membership degree on the spatial distance were added to the local information
function. Second, the feature saliency was introduced into the objective function. By using the Lagrange
multiplier method, the optimal expression of the objective function was solved. Neighborhood
weighting information was added to the iteration expression of the classification membership degree
to obtain a local feature selection based on feature selection. Each of the improved FLICM algorithm,
the fuzzy C-means with spatial constraints (FCM_S) algorithm, and the original FLICM algorithm
were then used to cluster and segment the interference images of Gaussian noise, salt-and-pepper
noise, multiplicative noise, and mixed noise. The performances of the peak signal-to-noise ratio and
error rate of the segmentation results were compared with each other. At the same time, the iteration
time and number of iterations used to converge the objective function of the algorithm were compared.
In summary, the improved algorithm significantly improved the ability of image noise suppression
under strong noise interference, improved the efficiency of operation, facilitated remote sensing
image capture under strong noise interference, and promoted the development of a robust anti-noise
fuzzy clustering algorithm.

Keywords: fuzzy clustering; image segmentation; feature selection; neighborhood information

1. Introduction

1.1. Image Segmentation Algorithms

Existing image segmentation methods are mainly divided into the following categories:
the edge-based image segmentation methods, the region-based image segmentation methods, and the
image segmentation methods based on a specific theory. Cluster segmentation, as a typical unsupervised
segmentation method, has attracted the attention of many scholars and has been widely used and
studied in many fields [1,2].

Clustering algorithms can be divided into hard partition clustering algorithms and soft partition
clustering algorithms. Hard partition clustering algorithms are used for image segmentation.
Their principle is to directly divide an image according to the similarity of pixels in terms of qualities
such as grayness, color, and texture. The optimal solution or partition can be obtained by minimizing
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the objective function for algorithms such as the H-means algorithm [3,4], the global K-means algorithm,
and the K-means algorithms, where K-means clustering is one of these methods [5,6]. This clustering
algorithm has the advantages of fast segmentation, clear structure, and good usability [7,8], but it is
also prone to fall into local minima in the process of optimizing the segmentations. Soft partitioning
clustering algorithms use the degree of belonging or the probability of pixels to indirectly partition
the similarity of pixels and search for an optimal decomposition in the process of minimizing the
likelihood function of the objective function or maximizing the parameter [9,10]. For example, Dunn [4]
proposed the fuzzy C-means clustering algorithm in 1947. In 1981, Bezdek [5] proved and compared
the measurement theory of mean clustering and fuzzy mean clustering, and proved the convergence of
the fuzzy mean clustering algorithm, established fuzzy clustering theory, promoted the development
of the fuzzy clustering algorithm, and developed the fuzzy mean clustering algorithm such that it
became an important branch of fuzzy theory. The theory was introduced into the clustering algorithm
to improve the adaptability of the algorithm, which has been widely used [11,12].

1.2. Fuzzy Clustering Algorithm Based on Feature Selection

At present, the research of clustering analysis focuses on the scalability of the clustering method,
the validity of clustering for complex shapes and data types, high-dimensional clustering analysis
technology, and the clustering method for mixed data. Among them, high-dimensional data clustering
is a difficult problem in clustering analysis, and solving the clustering problem with high-dimensional
data is difficult for the traditional clustering algorithm. For example, there are large numbers of invalid
clustering features in high-dimensional sample spaces, and the Euclidean distance is used as a distance
measure in the FCM algorithm [13], but it cannot take into account the correlation of each feature
space in high-dimensional space. At present, the problem of high-dimensional data is mainly dealt
with using feature transformations and feature selection. The method based on feature selection can
effectively reduce the dimension and has been widely applied. A subspace-based clustering image
segmentation method is proposed in the literature. By defining search strategies and evaluation criteria,
effective features for clustering are screened. The original data sets are clustered in different subspaces
to reduce storage and computation costs [14].

The existing supervised feature selection method achieves the goal of dimensionality but reduces
the operational efficiency. To achieve clustering segmentation using adaptive feature selection,
a similarity measurement method for high-dimensional data, which takes into account the correlation
between high-dimensional spatial features and effectively reduces the impact of a “dimensional
disaster” on high-dimensional data, is proposed in the literature. However, there is a lack of theoretical
guidance on how to select the similarity measurement criteria. To avoid any combination search and to
apply the method to unsupervised learning, the concept of feature saliency is proposed in the literature.
Considering the influence of different features on the clustering results, the Gaussian mixture model is
used for clustering analysis to improve the performance of the algorithm [15].

The fuzzy Gaussian mixture models (FGMMs) algorithm replaces the Euclidean distance of the
FCM algorithm with the Gaussian mixture model, which can more accurately fit multipeak data and
achieves better segmentation of noiseless complex images. Traditional fuzzy C-means clustering
analysis treats the different features of samples equally and ignores the important influence of key
features on clustering results, which leads to the difference between the clustering segmentation results
and the real classification results. According to the theory of feature selection, the concept of feature
saliency is used to assume that the saliency of sample features obeys a probability distribution, and the
clustering analysis is carried out by using the Gaussian mixture model. Ju and Liu [16] proposed an
online feature selection method based on fuzzy clustering, along with its application (OFSBFCM), and a
fuzzy C-means clustering method combined with a Gaussian mixture model with feature selection
using Kullback–Leibler (KL) divergence (FSFCM) is proposed in this paper [16,17].

In short, the advantages of the feature-based selection of the GMM-based fuzzy clustering
algorithm are as follows:
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(1) By using the Gaussian mixture model as a distance measure and by accurately fitting multifront
data, compared with the FCM algorithm, the FCM algorithm can manage complexly structured
data sample sets.

(2) The Gaussian hybrid model algorithm for feature selection assumes that different features of
samples play different roles in pattern analysis. Some features play a decisive role in model
analysis and overcome the limitations of the FCM algorithm. The algorithm treats the different
features of samples equally for clustering analysis, ignoring the important influence of key
features on the clustering results, which leads to a certain gap between the clustering results and
the real classification results.

(3) KL divergence regularization clustering can be widely used in the clustering analysis of class
unbalanced data.

The problems of the feature-based GMM-based fuzzy clustering algorithm are as follows:

(1) The parameters need to be adjusted to increase the running time of the algorithm.
(2) Like the FCM algorithm, it only clusters a single pixel without considering the influence of spatial

neighborhood pixels on each central pixel. For different types of noisy images, the algorithm
does not have good robustness against noise.

2. Algorithm Analysis

2.1. FLICM Algorithm

The FCM algorithm uses the fuzzy membership degree and nonsimilarity measure to construct
the objective function; it also finds the corresponding membership degree and clustering center
when the objective function is the smallest in the iteration process to realize the sample classification.
Its structure is simple and easy to simulate, and the convergence is fast. However, it does not consider
the interference from neighborhood information on the central pixel, and the results of the image
segmentation with noise interference are unsatisfactory. To improve the robustness against the noise
of the algorithm, Chens et al. [17]. proposed the neighborhood mean and neighborhood mean fuzzy
C-means algorithms FCM-S1 and FCM-S2. Later, the Greek scholars Krinidis et al. [18,19]. proposed a
neighborhood local fuzzy C-means segmentation algorithm (FLICM), which combines neighborhood
pixel spatial information, gray information, and fuzzy classification information to improve the
anti-noise performance of the algorithm. Its objective function expression is as follows [20,21]:

J =
N∑

i=1

C∑
j=1

zm
ij [

∥∥∥xi − v j
∥∥∥2

+ Gi j]
′ (1)

Gi j =
∑
β∈Ni

1

d̃iβ
(1− zβ j)

md2(xβ, v j). (2)

Specifically, xi = (xi1, xi2, xi3, xi4, . . . , xiD)
T is the first sample. xi1, xi2, xi3, xi4, . . . , xiD represent the

different attributes of the first sample. C is the number of clusters. zi j denotes the fuzzy membership

of the first pixel in the jth category; the clustering center is v j( j = 1, 2, . . . , C). d̃iβ is the Euclidean
distance of the spatial position between the pixel point and the neighboring pixel xβ. Ni represents a
set of neighborhood spatial pixels xβ of pixel point xi; the neighborhood window size is 3× 3 or 5× 5.
The optimal iteration expressions of the classification membership degree and the clustering center are
as follows [22,23]:

zi j =
c∑

k=1

[

∥∥∥xi − v j
∥∥∥2

+ Gi j∥∥∥xi − v j
∥∥∥2

+ Gik

]

−1
m−1

, (3)
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v j =

N∑
i=1

zm
ij xi

N∑
i=1

zm
ij

. (4)

2.2. Local Neighborhood Robust Fuzzy Clustering Image Segmentation Algorithm Based on an Adaptive
Feature Selection Gaussian Mixture Model

2.2.1. Improved FLICM Algorithm

The FLICM algorithm does not strictly follow the Lagrangian multiplier method to solve the
optimal expression of the objective function. Furthermore, it runs too long and falls into local minima.
To solve these problems, the unconstrained expression of the objective function is solved using the
Lagrangian multiplier method as follows [24,25]:

JM =
N∑

i=1

C∑
j=1

zm
ij [

∥∥∥xi − v j
∥∥∥2

+ Gi j] +
N∑

i=1

λi(1−
C∑

i=1

zi j). (5)

The partial derivative of JM with respect to the membership degree zi j and clustering center v j is
obtained, and its partial derivative is 0:

∂JM

∂zi j
= mzm−1

i j [
∥∥∥xi − v j

∥∥∥2
+ Gi j] − λi = 0, (6)

∂JM

∂v j
=

N∑
i=1

zm
ij [−2(xi − v j) −

∑
β ∈ Ni
β , i

2(xβ − v j)(1− zβ j)
m

d̃iβ + 1
] = 0. (7)

By solving Equations (6) and (7), the following solution is obtained:

zi j =
N∑

i=1

[

∥∥∥xi − v j
∥∥∥2

+ Gi j

‖xi − vk‖
2 + Gik

−1
(m−1)

, (8)

v j =
C∑

k=1

[

∥∥∥∥∥∥xi +
∑

β∈Ni,β,i
(d̃iβ + 1)

−1
(1− zβ j)xβ

∥∥∥∥∥∥
N∑

i=1
zm

ij (1 +
∑

β∈Ni,β,i
(d̃iβ + 1)

−1
(1− zβ j)

m)

. (9)

Compared with the iteration expressions in the literature, the iteration formula of the clustering
centers needs to consider the central pixel xi values. Furthermore, the influence of the neighborhood
pixels xβ on the clustering center v j and the degree of classification membership also have some
influence on the clustering center v j. To accurately compare the influence of the neighborhood pixels on
the central pixels, this section describes the use of neighborhood spatial classification membership zβ j
to restrict the Euclidean distance diβ of the spatial position between pixel xi and pixel xβ, and redefines
the ambiguity factor Gi j to be [26,27]:

Gi j =
∑
β=N1

1

zβ jd̃iβ + 1
(1− zβ j)

md2(xβ, v j) (10)
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zi j =
N∑

i=1

[

∥∥∥xil − v jl
∥∥∥2

+ Gi j

‖xil − vkl‖
2 + Gik

−1
(m−1)

(11)

zi j =
C∑

k=1

[

∥∥∥∥∥∥xi j +
∑

β∈Ni,β,i
(zβ jd̃iβ + 1)

−1
(1− zβ j)xβi

∥∥∥∥∥∥
N∑

i=1
zm

ij (1 +
∑

β∈Ni,β,i
(zβ jd̃iβ + 1)

−1
(1− zβ j)

m)

(12)

2.2.2. Local Neighborhood Robust Fuzzy Clustering Algorithm Based on an Adaptive Feature
Selection Gaussian Mixture Model

The FLICM algorithm introduces neighborhood spatial information into the objective function of
the algorithm to enhance the anti-noise performance of the algorithm; however, the algorithm treats
the different features of the samples equally for clustering analysis, ignoring the important impact
of key features on the clustering results, which results in unsatisfactory segmentation results. In this
section, the idea of feature selection is introduced into the improved FLICM algorithm, KL divergence
is introduced as a regularization term to realize feature selection constraints, and a new objective
function is obtained as follows [28,29]:

J =
N∑

i=1

C∑
j=1

zi j(d(xi, v j) + Gi j) + λ
N∑

i=1

C∑
j=1

zi j log
zi j

π j
+ γ

N∑
i=1

C∑
j=1

D∑
l=1

zi j(si jl log
si jl

ρl
+ (1− si jl) log

1− si jl

1− ρl
) (13)

Further, di j =
D∑

l=1
(si jl(xil − µ jl)

2 + (1− si jl)(xil − ε)
2,

Gi j =
∑
β∈Ni

(1− zβ j)
m

zβ jd̃ + 1
dβ j, dβ j =

D∑
l=1

(sβ jl(xβl − µ jl)
2 + (1− sβ jl)(xβl − εl)

2) (14)

di j is the weighted Euclidean distance between the first sample and the center µi j of class J.
The Euclidean distance dβ j is the spatial position between pixel point xi and pixel point xβ. si jl is
the influence degree of the first characteristic attribute xil on the jth class in the fist sample. εl is the
eigenvalue corresponding to the mean of all samples. ρl is the weight factor of the first dimension
feature attribute of the sample. Gi j is used as a fuzzy factor.

In the literature, the membership degree has been obtained strictly according to the Lagrange
multiplier method after finding an unconstrained solution of the objective function but the clustering
center of the formula solution is directly calculated using the traditional fuzzy C-means clustering
cluster center expression, which is not strictly obtained via the Lagrange method, resulting in an
inconsistency between Equation (4) and the clustering objective function. In this section, the objective
function of clustering is optimized strictly using the Lagrange multiplier method, and the iterative
optimization expression is solved. The process is as follows [30,31]:

Finding the partial derivatives of object functions with respect to si jl:

∂L
∂si jl

= zi j[(xil − µ jl)
2 +

∑
β∈Ni

1− zβ j

zβ jd̃iβ + 1
(xβl − εl)

2] + γzi j(si jl log
si jl

ρl
− log

1− si jl

1− ρl
).

Let the partial derivative be zero:

si jl =
ρl exp(ti j/γ)

1− ρl + ρl exp(ti j/γ)
. (15)
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The unconstrained expression of the objective function obtained using the Lagrange multiplier

method is given by Lm = L−
N∑

i=1
ηi(

N∑
i=1

zi j − 1). Finding partial derivatives of the formula with respect

to zi j:

∂
∂zi j

Lm = d(xi, v j) + Gi j + λzi j log
zi j

π j
+ λ+ γ

D∑
l=1

zi j(si jl log
si jl

ρl
+ (1− si jl) log

1− si jl

1− ρl
) − ηi (16)

Bring the local ambiguity factor Gi j into the formula and set the formula equal to zero:

λ log
zi j

π j
=

D∑
l=1

{si jl [(xil − u jl)
2 +

∑
β∈Ni

1− zβ j

zβ j d̃β j + 1
(xβl − µ jl)

2 + γ(log
si jl

ρl
] + (1 + si jl)[(xil − εl)

2 +
∑
β∈Ni

1− zβ j

zβ j d̃β j + 1
(xβl − εl)

2

+ γ log
1− si jl

1− ρl
)]} − λ+ ηi (17)

Constraints of membership degree
c∑

j=1
zi j = 1.

The iteration expression of the subordinate degree zi j is solved by introducing Equation (15) into
Equation (17), as follows.

zi j =
π j exp(−ηi j/λ)
c∑

k=1
π exp(−ηik/λ)

(18)

Therefore:

ηi j =
D∑

l=1
{

ρl exp(ti j/γ)
1−ρl+ρl exp(ti j/γ)

[(xil − u jl)
2 +

∑
β∈Ni

1−zβ j

zβ j d̃β j+1
(xβl − µ jl)

2 + γ(log
ρl exp(ti j/γ)

1−ρl+ρl exp(ti j/γ)
] +

1−ρl
1−ρl+ρl exp(ti j/γ)

[(xil − εl)
2

+
∑
β∈Ni

1−zβ j

zβ j d̃β j+1
(xβl − εl)

2+γ log 1
1−ρl+ρl exp(ti j/γ)

)]}

Finding the partial derivatives of the object functions with respect to µ jl gives:

∂
∂µ jl

= zi jsi jl(xil − µ jl) + zi j

∑
β∈Ni

1− zβ j

zβ jdβ j + 1
si jl(xβl − µ jl), (19)

µ jl =
1

M jl

N∑
i=1

zi jsi jlxil (20)

where M jl =
N∑

i=1
zi jsi jlxil.

Finding the partial derivatives of the object functions with respect to εl gives:

∂
∂εl

= zi j(1− si jl)(xil − εl) + zi j

∑
β∈Ni

1− zβ j

zβ jd̃β j + 1
(1− si jl)(xβl − εl) (21)

Let the partial derivative be zero and obtain the expression of εl as follows:

εl =
1
Fl

N∑
i=1

C∑
j=1

zi j(1− si j)xil (22)

Fl =
1
Fl

N∑
i=1

C∑
j=1

zi j(1− si jl) (23)
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For the objective function with respect to ρl, the partial derivative is obtained, and the partial
derivative is set to 0. The iterative expression is as follows.

ρl =
1
N

N∑
i=1

C∑
j=1

zi jsi jl (24)

Using the Lagrange multiplier method, the partial derivative of the objective function with respect
to π j is set to 0:

∂
∂π j

[L−
N∑

i=1

ηi(
C∑

j=1

π j − 1)] = 0 (25)

The iterative expression of π j is obtained from the above formula:

π j =
1
N

N∑
i=1

zi j (26)

2.2.3. Postprocessing Method of the Clustering Membership Degree

To further enhance the robustness against noise, the neighborhood weighting information is added
to the membership degree of the iteration expression. Combined with the idea of the non-Markov
random field (MRF) space-constrained Gaussian model in the literature, this section constructs a
neighborhood weighting function by using the classification membership degree and the postprocessing
clustering membership degree. The function considers the corresponding median to be a probability
by classifying the membership degree of neighborhood pixels in ascending order, which is expressed
as follows [32,33]:

Hi j = median{zβ j} (27)

A indicates that the neighborhood window sizes are 3× 3, 5× 5 for the classification membership
of neighborhood pixels. Ni represents the set of classified membership degrees of neighborhood pixels.
According to the Bayesian theorem, the weight factor of the neighborhood information function is
added to Equation (18), and the new expression of the membership degree is given in Equation (27):

zi j =
π j(Hi j)

α exp(−ηi j/λ)
C∑

k=1
πk(Hik)

α exp(−ηik/λ)
(28)

In this equation, α is the weight factor and the selection range is. a value of 2.0 is usually
chosen. Its function is similar to the fuzzy weight factor m in the traditional fuzzy C-means clustering
objective function.

The improved membership degree of the sample classification in this chapter has the following
properties [34,35]:

(1) Neighborhood weighted membership still satisfies the constraints
C∑

i=1
zi j = 1.

(2) The membership degree of the current pixel xi in class J is proportional to the probability that the
neighborhood pixel xβ belongs to class J.

As the probability increases, the degree of membership increases. Conversely, when neighborhood
pixel xi belongs to class j, the probability tends to zero, and thus, the membership degree of the current
pixel xi in class j decreases.
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In addition, ϕi j = (Hi j)
α, such that:

zi j =
π jϕi j exp(−ηi j/λ)

C∑
k=1

πkϕik exp(−ηik/λ)
(29)

The derivative is obtained, as follows:

∂zi j

∂ϕi j
=

π exp(−ηi j/λ)
c∑

k=1, j,k
πϕik exp(−ηik/λ)

(
C∑

k=1
πkϕik exp(−ηik/λ))2

� 0 (30)

It is proved that the weighted neighborhood membership degree can be found using the
neighborhood information.

The monotone incremental function of ϕi j, which uses the ϕi j number to restrict the membership
degree of classification, improves the performance of the sample classification to a certain extent and
enhances the robustness of the algorithm against noise. To achieve image segmentation, the local fuzzy
clustering algorithm based on feature selection in this chapter needs to solve the iterative optimization
expression. The detailed steps are as follows [36,37]:

Step 1: Transform the image pixel value into sample eigenvector xi, where
xi = (xi1, . . . , xiD)(i = 1, 2, . . . , N), N is the total number of pixels, and C is the number of clusters.

The termination condition threshold is δ, the maximum iteration number is τmax, the regularization
parameter is λ, and the feature selection parameter is γ.

Step 2: Initialize the feature attribute weight coefficients ρl = 1/D and π j = 1/C( j = 1, . . . , C) to
find the prior probability of sample classification.

Step 3: The central vector of the sample classification class is obtained using FCM clustering,
where µ j = (µ j1, . . . ,µ jD). Class variance matrix is σ2

j = (σ2
j1, . . . , σ2

jD). Sample eigenvalue mean vector

is ε = (εl, . . . , εD). Eigenvalue variance matrix is ν2 = (ν2
l , . . . , ν2

D). Given the improved adaptive
spatial neighborhood information, in this section, the initial values of the Gaussian mixture fuzzy
clustering algorithm are selected as follows: µ j(0)σ2

j (0)ε(0)ν
2(0).

Step 4: Compute the adaptive spatial neighborhood information function Hi j using Equation (26).
Step 5: Use Equation (15) to calculate the eigenweight function si jl.
Step 6: Calculate the membership function zi j using Equation (28).
Step 7: Update µ j, σ2

j , ε, ν2,π j,ρl using Equations (20) to (26).

Step 8: If the number of iterations is τ = τmax or the convergence condition {
∣∣∣∣z(τ+1)

i j − z(τ)i j

∣∣∣∣} ≺ δ is
satisfied, the iteration will stop; otherwise, the iteration returns to step 4.

Step 9: The image pixels are classified and segmented according to the principle of the maximum
membership degree using the zi j values obtained when the algorithm’s iterations have been completed.

3. Experimental Results and Analysis

To verify the good segmentation performance and anti-noise ability of the improved algorithm,
high-resolution remote sensing images, including common ground objects in remote sensing
images (such as forest farmland, bare land, and grassland), synthetic images, standard images,
and high-resolution medical images were selected, as is shown in Figure 1. The improved algorithm
and the FCM-S, FLICM, kernel-weighted FLICM (KWFLICM), and local data and membership relative
entropy-based FCM (LDMREFCM) algorithms were used to segment gray images with different
noises [36,37]. The peak signal-to-noise ratio (PSNR) and the error misclassification rate (MCR) were
used to compare the segmentation performance and anti-noise performance of the algorithms [38,39].
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Generally, the MCR is often used to quantitatively evaluate the performance of segmentation algorithms,
which is defined as:

MCR = [1− (
C∑

j=1

C j)
−1
· (

C∑
j=1

A j∩C j)] × 100% (31)
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Figure 1. Original images.

The efficiency of the algorithms was compared using the running time after convergence and the
number of iterations n. A Dell OptiPlex 360 (Intel Core 4, 8 GB of memory) running a Windows 7
system with the MATLAB 2013a (MathWorks, Natick, MA, USA)programming environment comprised
the evaluation platform. The maximum number of iterations Tmax of the algorithm was set to 300.
The cluster numbers C for each noise was chosen to be 2, 3, and 4. The regularization parameters and
characteristic parameters were selected separately to be λ = 103 and γ = 103, respectively. The iteration
threshold was δ = 10−4, and the neighborhood window size was set to 3× 3.

3.1. Image Segmentation Test with Gaussian Noise

3.1.1. Segmentation Performance Test

Gaussian noise was added to two remote sensing images with a mean value of 0 and mean
variances of 57 and 80. Gaussian noise was added to images containing four artificial categories, brain
CT (Computed Tomography) images, and camera images with a mean value of 0 and mean variances
of 140 and 161. The number of clusters was set to 3, 4, 2, and 2. The results were compared using the
results from the FLICM, FCM_S, LDMREFCM, and KWFLICM algorithms and the improved algorithm.
The original image is shown in Figure 1, and the experimental results are shown in Figures 2–5 (b–f).
The error rate and PSNR of the segmentation results are shown in Tables 1 and 2, and the iteration time
and the number of iterations are shown in Table 3 [40,41].
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Table 1. Comparison of the peak signal-to-noise ratio (PSNR) (dB) for the anti-noise and Gaussian
noise after using each algorithm.

Split Image FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image 1 (57) 13.5301 13.0150 14.0443 15.4893 15.9516

Remote sensing image 2 (80) 8.1045 6.8466 9.3648 8.9022 9.4914

Brain slice image (140) 13.7431 11.6259 13.9768 16.1645 16.2804

Cameraman (161) 9.4264 8.0588 10.0477 12.5087 13.2316

Table 2. Comparisons of the misclassification rate (MCR) (%) against Gaussian noise using
different algorithms.

Split Image FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image 1 (57) 17.13 19.60 14.93 11.00 9.84

Remote sensing image 2 (80) 15.47 20.60 11.57 12.88 11.24

Brain slice image (140) 4.22 6.88 4.01 2.42 2.40

Cameraman (161) 12.29 13.07 9.89 5.61 4.75

Table 3. Comparison of the iteration times and number of iterations.

Split Image
Iteration
Time and
Number

FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image
1 (57)

ts(s) 26.442 2.855 15.4893 1465.473 760.046
n 47 18 137 57 56

Remote sensing image
2 (80)

ts(s) 13.728 1.014 189.209 1265.792 226.326
n 40 16 56 88 28

Brain slice image (140) ts(s) 8.284 1.498 60.017 248.337 180.134
n 22 17 2 15 19

Cameraman (161) ts(s) 15.179 1.389 181.138 226.937 180.611
n 41 16 51 13 19

3.1.2. Test Result

Comparing the segmentation results of the five algorithms in Figures 2–5 for four images with
different degrees of Gaussian noise interference, we can see that the segmentation results of the FCM_S,
FLICM, and LDMREFCM algorithms still contained many noise points; the KWFLICM algorithm
contained fewer noise points; while the improved algorithm has the fewest noise points. Table 1
shows that the improved algorithm had the highest signal-to-noise ratio compared with the other
four algorithms, which shows that the improved algorithm had the strongest anti-Gaussian noise
ability. Table 2 shows that the segmentation result of the improved algorithm was the smallest of all
the algorithms, which shows that the segmentation result of the improved algorithm was closer to
the ideal segmentation result and had a better segmentation performance. Comparing the PSNR and
iteration time of each algorithm in Table 3, the average PSNR of the improved algorithm was 0.7 dB
higher than that of the KWFLICM algorithm, and the average iteration time of the improved algorithm
was 500 s less than that of the KWFLICM algorithm [42,43]. The iteration times of the FCM_S and
FLICM algorithms were the lowest, but the difference between the improved algorithm results and
the PSNR was 2–5 dB. The anti-noise ability of the FLCM and FCM_S method was poor. Combining
the PSNR test results and the iteration time, the improved algorithm had a better anti-Gaussian noise
segmentation performance.
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3.2. Image Segmentation Test of Salt-and-Pepper Noise

3.2.1. Segmentation Performance Test

In this experiment, 20% and 40% salt-and-pepper noise were added to two remote sensing images,
respectively, while 40% and 30% salt-and-pepper noise were added to brain CT images and images
containing four artificial categories, respectively. The experimental results are shown in Figures 6–9.
The number of clusters was set to 3, 4, 2, and 2. The PSNRs and error rates are shown in Tables 4 and 5,
respectively, and the iterative operation time and number of iterations are shown in Table 6.
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3.2.2. Test Result

Comparing the results of image segmentation with the multiplicative noise in Figures 6–9, we can
see that the FCM_S and FLICM algorithms took neighborhood information into account and suppressed
some of the multiplicative noise, but in the case of high noise interference, compared with the improved
algorithm, the segmentation results contained a large amount of noise. As seen from the results of
the artificial segmentation in Figures 6–9, the LDMREFCM algorithm produced the phenomenon of
false segmentation. The KWFLICM algorithm and the improved algorithm could remove a large
number of noise points. From the test results of the PSNR and the error rate (ERR) of the algorithms
in Tables 4 and 5, along with the iteration times of the algorithms in Table 6, it can be concluded
that compared with the PSNR of the FCM_S and FLICM algorithms, the LDMREFCM, KWFLICM,
and improved algorithms had a significantly greater noise suppression ability. Table 6 shows that
the iteration time of the improved algorithm was the lowest. Although the PSNR of the improved
algorithm was 0.7 dB less than that of the KWFLICM algorithm [44,45], the iteration time was 300 s
less than that of the KWFLICM algorithm, and the PSNR of the brain CT image segmentation test
results in Table 6 was 0.7 dB less than that of the KWFLICM algorithm. However, the iteration time
was 45 s less than that of the KWFLICM algorithm. In summary, the proposed algorithm showed a
superior performance compared with the FCM_S, FLICM, KWFLICM, and LDMREFCM algorithms,
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where a large amount of salt-and-pepper noise is suppressed, and the iteration speed of the algorithm
was faster.
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Figure 9. Images containing four artificial categories disturbed by salt-and-pepper noise (a) and the
segmentation results (b–f).

Table 4. Comparison of the PSNR (dB) for algorithms applied to images disturbed by
salt-and-pepper noise.

Split Image FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image 1 (20%) 10.9083 12.1014 17.7271 19.3663 18.5909

Remote sensing image 2 (40%) 10.9748 8.1522 10.3905 13.2863 15.5261

Cerebral section (40%) 9.1041 8.8360 12.6613 18.6563 17.9488

Four artificial categories (30%) 13.3005 15.2344 11.3057 25.4605 25.6753

Table 5. Comparison of the MCR (%) for algorithms applied to images disturbed by
salt-and-pepper noise.

Split Image FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image 1 (20%) 31.21 23.37 6.11 4.50 5.22

Remote sensing image 2 (40%) 7.99 15.30 9.14 4.69 2.80

Cerebral section (40%) 12.29 13.07 5.42 1.36 2.38

Four artificial categories (30%) 38.57 23.36 52.48 1.48 1.43
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Table 6. Operation time and number of iterations for each algorithm.

Split Image
Iteration
Time and
Numbe

FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image
1 (20%)

ts(s) 10.582 2.933 494.152 620.837 332.492
n 20 27 97 24 23

Remote sensing image
2 (40%)

ts(s) 18.549 4.227 165.631 224.407 252.513
n 50 15 45 14 26

Cerebral section (40%) ts(s) 8.58 1.482 213.65 230.743 185.451
n 23 17 13 13 17

Four artificial
categories (30%)

ts(s) 21.481 4.337 580.81 179.561 123.545
n 31 33 78 6 6

3.3. Image Segmentation Test with Multiplicative Noise

3.3.1. Segmentation Performance Test

Multiplicative noise was added to the remote sensing image, the medical image, and the man-made
image with a mean value of 0 and mean variances of 80, 114, 140, and 161. The number of clusters
was set to 3, 4, 2, and 2. The experimental results are shown in Figures 10–13. The error rate of the
segmentation results is shown in Tables 7 and 8. The iteration times and number of iterations of the
algorithms are shown in Table 9 [46–48].
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Table 7. Comparison of the PSNR (dB) for the multiplicative noise resistance of algorithms.

Split Image FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image 1 (80) 17.1948 16.4000 18.5557 17.7491 18.2079

Remote sensing image 3 (114) 16.2157 16.9107 18.8884 17.2875 19.3224

Brain CT (140) 17.2170 17.4349 18.3648 19.2218 19.2364

Artificial, three categories (161) 12.0180 14.5374 20.1556 20.8528 24.1451

Table 8. Comparison of the MCR (%) for multiplicative noise resistance of algorithms.

Split Image FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image 1 (80) 7.48 8.63 5.49 6.62 6.00

Remote sensing image 3 (114) 9.51 8.72 5.09 7.27 4.61

Brain CT (140) 7.60 7.15 3.78 4.43 1.36

Artificial, three categories (161) 25.65 12.06 3.67 2.19 0.81
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Table 9. Iteration time and number of iterations for each algorithm.

Split Image
Iteration
Time and
Numbe

FLICM FCM_S LDMREFCM KWFLICM Improved
Algorithm

Remote sensing image
1 (80)

ts(s) 26.395 2.839 352.08 326.783 341.965
n 50 26 66 14 25

Remote sensing image
3 (114)

ts(s) 17.721 3.495 580.462 1225.57 407.895
n 33 32 105 49 30

Brain CT (140) ts(s) 17.666 1.841 308.691 541.184 407.535
n 33 17 60 24 30

Artificial, three
categories (161)

ts(s) 22.278 1.076 261.068 1116.625 198.809
n 41 10 49 49 14

3.3.2. Test Result

Comparing the results of the image segmentation with multiplicative noise in Figures 10–13,
we can see that the FCM_S and FLICM algorithms took neighborhood information into account and
suppressed part of the multiplicative noise. The KWFLICM and LDMREFCM algorithms could remove
a large number of noise points. Compared with the other algorithms, the improved algorithm contained
the fewest noise points. The edges of the segmentation results were continuous and smooth [49].
Compared with Table 7, the PSNR of the improved algorithm was the largest, which proved that the
improved algorithm had a better robustness against multiplicative noise. Comparing the error rate
of the segmentation results of each algorithm in Table 8 shows that the segmentation results of this
algorithm were closer to the ideal segmentation results and had a better segmentation performance.
Combined with the comparison of the iteration times in Table 9, the segmentation performance and
PSNR of the KWFLICM algorithm were lower than those of the improved algorithm, and the iteration
time of the improved algorithm was much shorter than that of the KWFLICM algorithm. In conclusion,
the improved algorithm not only guaranteed good robustness against noise, but also reduced the
iteration time and improved the operation efficiency of the algorithm.

3.4. Segmentation Performance Test

To test the segmentation efficiency of the algorithm, several real remote sensing images of different
sizes were selected for segmentation. Table 10 shows the segmentation time comparison of the
five real remote sensing images of different sizes (Figure 14a–g, with sizes of 256 × 256, 532 × 486,
350 × 290, 500 × 500, 590 × 490, 700 × 680, 1024 × 768, respectively), among which, the bold value is
the optimal value. It can be seen from this that the segmentation efficiency of the first four comparison
algorithms on each real remote sensing image is lower, and the larger the image scale is, the longer
the segmentation time is; the improved algorithm can achieve less segmentation time for real remote
sensing images of different sizes, and the segmentation efficiency is much higher than other algorithms.
The above analysis shows that the algorithm proposed in this paper has high efficiency, and it has
certain practical significance and reference value for large-scale remote sensing image processing in
practical applications.
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Table 10. Segmentation time of real remote sensing images with different sizes by each algorithm.

Segmentation
Algorithm Figure 14a Figure 14b Figure 14c Figure 14d Figure 14e Figure 14f Figure 14g

FCM_S 2.0428 6.2186 2.1626 5.5815 8.6430 10.248 13.976

FLICM 5.1719 20.7453 5.0523 15.4640 22.2379 24.543 26.787

KWFLICM 5.9442 22.9801 7.0612 23.4308 24.1369 26.453 28.285

LDMREFCM 4.5021 20.6175 5.2836 13.4459 17.5801 19.456 22.167

Improved
algorithm 1.1204 3.2987 1.4128 2.2367 4.2376 6.298 8.213
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3.5. Segmentation Test of Remote Sensing Images Disturbed Using Mixed Noise

Three remote sensing images, including farmland, a stadium, and a river (Figure 15), were
segmented and tested by adding Gaussian noise (mean value was 0, mean square deviation was 25)
and salt-and-pepper noise of different intensities (5%, 10%, and 30%). The number of clusters was set
to 2, 3, and 2, and the segmentation results are shown in Figures 16–18.
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Compared with the other five algorithms, the improved algorithm was more suitable for the
needs of image segmentation disturbed by salt-and-pepper and Gaussian mixture noise, as is shown in
Tables 11 and 12.

Table 11. The PSNR (dB) comparison between different algorithms against mixed noise.

Split Image FLICM FCM_S LDMREFCM KWFLICM Improved Algorithm

Farmland 6.3382 8.9837 9.2103 7.7234 15.7468

Stadium 8.3001 9.4640 9.1565 9.5530 15.1158

Rivers 10.0101 10.0697 10.4482 12.4691 17.4963

Table 12. The MCR (%) comparison against anti-mixed noise between each algorithm.

Split Image FLICM FCM_S LDMREFCM KWFLICM Improved Algorithm

Farmland 46.44 25.34 37.14 24.07 5.34

Stadium 44.82 34.90 41.19 33.99 10.93

Rivers 20.02 19.75 11.37 18.01 3.57

4. Conclusions

The FLICM algorithm combines neighborhood pixel spatial information, gray information, and
fuzzy classification information, which improves the anti-noise performance of the algorithm. However,
the algorithm does not take into account the impact of different features on clustering. Additionally,
the FLICM algorithm does not minimize the objective function strictly according to the Lagrange
method, it easily falls into local optima, and the iteration speed is slow. In this study, the FLICM
algorithm was improved. First, the membership degree was introduced into the local constraint
information of the FLICM algorithm. Considering the influence of features on clustering, the feature
saliency was then introduced into the objective function of the algorithm. Finally, the neighborhood
weighting function was constructed using the classification membership degree, and the membership
degree was processed to obtain the feature-based membership. The local fuzzy clustering algorithm
was selected. The improved algorithm was compared with the existing robust clustering segmentation
algorithm in a clustering segmentation test of noisy images. The segmentation results were objectively
compared based on the PSNR and error rate, which proved the effectiveness and practicability of the
proposed algorithm.
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