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The purinergic signalling has a well-established role in the regulation of energy
homeostasis, but there is growing evidence of its implication in the control of food
intake. In this review, we provide an integrative view of the molecular mechanisms
leading to changes in feeding behaviour within hypothalamic neurons following
purinergic receptor activation. We also highlight the importance of purinergic signalling
in metabolic homeostasis and the possibility of targeting its receptors for therapeutic
purposes.
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INTRODUCTION

The purinergic system consists of a ubiquitous and complex network of intracellular and
extracellular components that mediates cell growth and differentiation, neuroprotection,
inflammation, and several neuroendocrine functions including energy homeostasis and food
intake (Coccurello and Volonté, 2020; Jain and Jacobson, 2020). The regulatory role of the
purinergic system is determined by the activity of adenine- and guanine-based compounds, their
converting enzymes, as well as P1 and P2 receptors (Burnstock, 2011; Yegutkin, 2014). Specifically,
P1 include four adenosine (Ado) receptors (A1, A2A-B, A3), whereas P2 receptors bind both
nucleotides and nucleotide sugars (ATP, ADP, UTP, UDP, UDP-glucose) (Fredholm et al., 2011). A1

and A3 metabotropic receptors couple to the Gi/o family and inhibit cyclic AMP (cAMP) production,
whereas A2A and A2B are stimulatory Gs-protein coupled receptors enhancing cAMP production;
P2X1-7 receptors are ligand-gated ion channels that, following ATP binding, open the pore
permeable to Na+, K+, and Ca2+; P2Y1-2-4-11 are metabotropic receptors activating phospholipase
C (PLC)/inositol triphosphate (IP3)/Ca2+ axis via Gq/G11 proteins whereas P2Y12–13–14 are coupled
to Gi/Go (Burnstock, 2020). After being released in the extracellular milieu, ATP is hydrolyzed to Ado
via a sequential series of enzymatic reactions catalyzed by several ecto-nucleotidases: ecto-nucleoside
triphosphate diphosphorylases (CD39), ecto-5′-nucleotidase (CD73), ecto-nucleotide
pyrophosphatase/phosphodiesterases (NPP) and alkaline phosphatases (APs) (Zimmermann
et al., 2012; Losenkova et al., 2018). Extracellular nucleosides are, then, taken up by the cells via
equilibrative nucleoside transporters (ENTs) and concentrative nucleoside transporters (CNTs) and
ultimately interconverted to generate purine nucleotides by de novo synthesis or via the purine
salvage pathway.

The dysregulation of the purinergic signaling has been associated with important
pathophysiological conditions including neurodegenerative diseases, cancer, inflammation and
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metabolic disorders such as obesity (Tozzi and Novak, 2017;
Burnstock and Gentile, 2018; Boison and Yegutkin, 2019).

P1 and P2 receptors are expressed in metabolically active
tissues (e.g., brain, adipose tissue, skeletal muscle, immune
system, pancreas, liver) where they regulate gluconeogenesis,
inflammation, lipolysis/lipogenesis, insulin sensitivity, energy
expenditure, thermogenesis and food intake (Table 1). For an
exhaustive review, (Jain and Jacobson, 2020).

Purinergic receptors are ubiquitously expressed in the central
nervous system (CNS) including the hypothalamus, an integral
part of the limbic system consisting of a complex architecture of
neurons organized in small nuclei that are involved in the
regulation of several neuroendocrine functions (Lechan, 2016),
including the control of food intake (Timper and Brüning, 2017).

Activation of Agouti-related peptide (AgRP) neurons, a small
subset of neurons in the hypothalamic arcuate nucleus (ARC),
potently promotes rapid feeding (Aponte et al., 2011), whereas
ablation of AgRP neurons results in satiety (Gropp et al., 2005).

The abundant expression of purinergic receptors in the ARC,
lateral hypothalamus (LH), paraventricular nucleus (PVN) and,
specifically, in hypocretin/orexin neurons, suggests that the
purinergic system may play a major role in the regulation of
food intake (Florenzano et al., 2006). Anatomically, an abundant
expression of P2X2,4,6 receptors is found in the neurons of the
ARC, whereas a similar receptorial density of P2X1-6 receptors is
expressed in the PVN where ATP release elicits fast excitatory
synaptic transmission (Cham et al., 2006).

Noteworthy, recent studies highlighted the coordinated action
of different brain cells (tanycytes, astrocytes, microglia) as well as
neuronal-glial interactions in the orchestration of energy
homeostasis Andermann, M. L., and Lowell, B. B. (2017).
Toward a wiring diagram under-standing of appetite control.
Neuron, 95 (4),757–778. https://doi.org/10.1016/j.neuron. 2017.

06.014). Astrocytes and microglia are secretory cells that release
neuroactive compounds, including purines, in the extracellular
milieu, thus contributing to regulate synaptic plasticity and cell
adaptation under different stimuli (Peña-Altamira et al., 2018;
García-Cáceres et al., 2019). Beyond their well-documented role
of structural support and neurotransmission, astrocytes and
microglia have been drawing attention for their effect in
nutrients and hormone sensing, by virtue of the expression of
purinergic, GABAergic and Toll-like receptors (Kettenmann et al.,
2011; García-Cáceres et al., 2016). Accordingly, it has been reported
that an hypercaloric diet enhance astrogliosis in the ARC, thus
suggesting a role of these cells in the pathogenesis of obesity
(Balland and Cowley, 2017).

In the present review we illustrate the state-of-the-art of purine
modulation of food intake, by taking into account the complex
interaction between purinergic signaling with hormones and
brain circuits within the hypothalamus and the surrounding
regions.

Role of Purinergic Signalling in Food Intake
Food intake is the result of metabolic, autonomic, environmental
and neuroendocrine factors integrated within the hypothalamus,
the central hub regulating energy homeostasis (Bernardis and
Bellinger, 1996). There is a compelling evidence that purinergic
receptors have highly overlapping expression patterns as well as
binding profiles in hypothalamic regions (Abbracchio et al.,
2009).

Neurophysiologic findings demonstrated that ATP
administration on hypothalamic slices induced a dose
dependent increase in spike frequency of orexin neurons
(Wollmann et al., 2005) and dorsomedial hypothalamic
neurons (Matsumoto et al., 2004) and that the entire
population of orexigenic neurons express the purinergic

TABLE 1 | Purinergic receptors in food intake and cell metabolism.

Receptor Endogenous
agonists

Functional role References

A1 Ado Adipogenesis, lipolysis, lipogenesis, glycogenolysis,
gluconeogenesis, energy expenditure, feeding, obesity

González-Benítez et al. (2002), Barakat et al. (2006),
Faulhaber-Walter et al. (2011), Gnad et al. (2014), Tozzi and Novak
(2017), Wu et al. (2017)

A2A, A2B Ado Thermogenesis, adipogenesis, lipolysis, lipogenesis,
glycogenolysis, gluconeogenesis browning, insulin homeostasis,
hepatic inflammation, regulation of food intake

González-Benítez et al. (2002), Krügel et al. (2003), Yasuda et al.
(2003), Carmen and Víctor (2006), Greenberg et al. (2006),
Johansson et al. (2007), Gharibi et al. (2012), Kusminski et al.
(2016), DeOliveira et al. (2017), Tozzi and Novak (2017), Cai et al.
(2018), Gnad et al. (2020), Sacramento et al. (2020)

P2X2 ATP Metabolic homeostasis (orexigenic effect) Lee et al. (2005), Wollmann et al. (2005), Florenzano et al. (2006),
Colldén et al. (2010), Sun et al. (2012), Li et al. (2015), D’Alimonte
et al. (2017), Wang et al. (2020)

P2X5 ATP Thermogenesis Nascimento et al. (2014)
P2X7 ATP Inflammation, adipocyte hypertrophy, dyslypidemia, obesity (Beaucage et al. (2014), Coccurello and Volonté (2020)
P2Y1 ADP Regulation of food intake, leptin production, glucose-stimulated

insulin response, adipogenesis
Léon et al. (2005), Seidel et al. (2006b), Kittner et al. (2006),
Laplante et al. (2010)

P2Y2 ATP; UTP Release of pro-inflammatory cytokines (MCP-1, CD68,
adipocytokines), glucose homeostasis, obesity, adipogenesis,
insulin sensitivity

Laplante et al. (2010), Tozzi and Novak (2017), Merz et al. (2018),
Zhang et al. (2020)

P2Y4 ATP, UTP Adipogenesis Tozzi and Novak (2017)
P2Y6 UDP Regulation of food intake, glucose uptake, diet-induced obesity,

inflammation, insulin resistance
Balasubramanian et al. (2014), Steculorum et al. (2015a),
Steculorum et al. (2017b), Jain et al. (2020)
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subtype receptor P2X2R (Florenzano et al., 2006). Specifically,
strong P2X2R immunoreactivity is found in cell bodies of
orexigenic NPY/AGRP/GABA neurons in the ARC (Colldén
et al., 2010).

The latest and most specific evidence regarding the potential
therapeutic usage of purinergic compounds in obesity arises from
physiological studies at the receptor level using transgenic mice
and synthetic ligands. Recent evidence of the involvement of the
purinergic system in the regulation of food intake suggest that
also the UDP-activated P2Y6R is expressed in AgRP neurons
(Steculorum et al., 2015b). In obesity, hypothalamic UDP
concentrations are elevated as a result of an increased

circulating source of uridine, and this elevation might
overstimulate feeding via P2Y6-dependent activation of AgRP
neurons (Steculorum et al., 2015b). The development of selective
antagonists for purinergic receptors has corroborated the
evidence that pharmacologic inhibition of P2Y6R signaling in
AgRP neurons reduces food intake and improves systemic insulin
sensitivity in obese mice (Steculorum et al., 2017a).

Functional studies in animal models have produced exciting
discoveries on the role of purinergic signaling in the regulation of
food intake. Changes in feeding conditions, from ad libitum to
intermittent restriction, have proved to alter the hypothalamic
P2Y1 receptor expression in rats (Seidel et al., 2006a).

FIGURE 1 | Schematic representation of purinergic signalling in hypothalamus. In the hypothalamus, purinergic signalling is involved in several complex aspects
regulating food intake. Endogenous appetite stimulants such as ghrelin promotes food intake inactivating the anorexigenic proopiomelanocortin (POMC) neurons
activity, while leptin inhibits the orexogenic signalling of AgRP/NPY neurons. Purinergic receptors are abundantly expressed in the ARC, paraventricular nucleus (PVN),
lateral hypothalamus (LH). Strong P2X2R immunoreactivity is found in cell bodies of orexigenic NPY/AGRP/GABA neurons in the ARC and only occasionally in cell
bodies of neurons expressing anorexigenic peptides. AgRP neurons also express UDP-activated P2Y6R. The ventromedial (VMH) and lateral hypothalamus (LH) are
brain regions with antagonistic functions in the regulation of food intake in which activation of VMH neurons inhibits feeding, whereas stimulation of LH neurons enhances
food intake. Peripheral stimulation of purinergic receptors in brown adipose tissue, pancreatic β-cells or taste buds regulates the circulating levels of leptin, insulin and
other factors involved in food intake. Stimulation of A2A/A2B receptors induces browning of adipose tissue that in turn increases thermogenesis thus preventing fat
accumulation.
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Immunohistochemical staining indicated that P2Y1 receptors
and neuronal nitric oxide synthase (nNOS) co-localize in
neurons of the ventromedial hypothalamic nucleus (VMH)
and LH (Kittner et al., 2006), two functionally antagonistic
regions involved in the regulation of food intake (Timper and
Brüning, 2017) in which activation of VMH neurons inhibits
feeding, whereas stimulation of LH neurons enhances food intake
(Brown et al., 1984; Takaki et al., 1992). A direct coupling between
purinergic signaling and NOS activity during adaptive feeding
processes was tested in rats with microinjections of P2Y1 agonists
into both VMH and LH (Kittner et al., 2006). The authors
demonstrated that ATP/ADP, acting as extracellular signal
molecules in the rat brain, are involved in the regulation of
food intake, plausibly depending on P2Y1-receptor-mediated
nitric oxide production (Kittner et al., 2004) (Figure 1).

It has been very recently reported that adenosine receptors
may play a central role in the management of obesity and
metabolic disorders (D’Antongiovanni et al., 2020; de Oliveira
et al., 2020). Stimulation of A2A and A2B receptors by specific
agonists increased lipolysis and brown adipose tissue (BAT)
thermogenesis, and protected mice from diet-induced obesity
(Gnad et al., 2014). Increasing thermogenesis via the metabolic
activity of BAT has been considered as a pharmacological
intervention able to fight the energy imbalance underlying
weight gain and obesity (Gnad et al., 2014). Therefore, the
thermogenic/lipolytic effects of Ado via activation of BAT and,
subsequently, fat catabolism, could be a promising approach to
address metabolic disorders. An increased expression of A1R in
thermoregulatory neurons has been associated with obesity in
mice, whereas stimulatory doses of the purine alkaloid caffeine, a
non-selective A1R antagonist, was able to decrease body weight
and increase brown adipose tissue (BAT) thermogenesis in rats
fed a HFD (Collden et al., 2010; Wu et al., 2017). Research efforts
have also provided a direct evidence that adenosine receptors in
hypothalamic glia cells could play a role in feeding responses
(Yang et al., 2015). Combined chemical genetics, cell-type-
specific electrophysiology, pharmacology, and feeding assays
demonstrated that stimulation of astrocytes within the medial
basal hypothalamus reduces both basal- and ghrelin-evoked food
intake (Yang et al., 2015). Specifically, activation of A1 receptors
mediated the astrocytic inhibition of food intake and the firing
rate of AGRP neurons suggesting that the glial circuit could be a
novel target for therapeutic intervention in the treatment of
appetite disorders (Yang et al., 2015).

Recent interest on the role of glia cells in food intake focuses
on the roles of hypothalamic tanycytes, chemosensitive glial cells
with a unique morphology. Hypothalamic tanycytes are in
contact simultaneously with the cerebrospinal fluid (CSF) in
the third ventricle and with major neural populations in the
hypothalamic parenchyma (Bolborea and Dale, 2013; Goodman
and Hajihosseini, 2015). Physiologically, tanycytes can sense
nutrients such as glucose and amino acids in the CSF evoking
robust ATP-mediated Ca2+ responses (Frayling et al., 2011;
Orellana et al., 2012). The release of ATP in response of
glucose or amino acids results in the activation of purinergic
receptors in hypothalamic neurons of the arcuate and
ventromedial nucleus (Bolborea et al., 2020). Specifically,

optogenetic studies demonstrated that tanycytes can activate
purinergic receptors in orexigenic NPY-expressing neurons in
the ARC to induce acute hyperphagia when activated by light
(Bolborea et al., 2020). Taken together, tanycytes sense the
elevation of glucose and amino acids in plasma and CSF
following a meal, and in response, they release ATP into
hypothalamic neurons activating anorexigenic pathways to
reduce appetite.

There is a consensus that ATP and adenosine are also involved
in the rewarding effects of feeding in a functionally antagonistic
manner (Krügel et al., 2003; Kittner et al., 2004).

Animal studies demonstrated that stimulation of ADP/ATP
sensitive P2 receptors in the nucleus accumbens (NAc), a primary
site mediating reward behaviour, reinforced their dopaminergic
responses and enhanced food intake (Krügel et al., 2001), while
the blockade of P2 receptors decreased their feeding responses
associated with dopamine release (Kittner et al., 2000). In an
elegant behavioural study where microdialysis was combined with
encephalographic measurements, injections of non-selective P2 and
P1 receptor antagonists in the NAc of rats, PPADS and 8-SPT
respectively, interacted antagonistically in the regulation of feeding
behaviour and feeding-induced changes of EEG activity (Kittner et al.,
2004). Other evidence indicate that adenosine suppressed dopamine
release via agonism of the A2A receptors in the NAc and this was
accompanied with the reduction in food intake (Krügel et al., 2003),
whereas the agonism of the A1 receptor was not involved in feeding
responses (Krügel et al., 2003;Mingote et al., 2008). Thismight suggest
that selective blockage of purinergic receptors in the NAc modulates
the rewarding effects of feeding behaviour. Beyond the established
hypothalamic-mesolimbic pathway circuitry for the regulation of food
intake, a diverse array of detectors in the oral cavity including taste
receptors in the tongue play a pivotal role in the modulation of energy
homeostasis mechanisms (Chaudhari and Roper, 2010; Depoortere,
2014).

Taste buds are a collection of gustatory sensory cells that release
ATP, among other neurotransmitters such as acetylcholine, serotonin,
norepinephrine or GABA in response to gustatory stimulation (Khan
et al., 2020). The release of these molecules enhance the
communication with the gustatory centre of the brain (i.e. the
insular cortex and then hypothalamus) through cranial nerves
including the glossopharyngeal nerve, the facial nerve and the
vagus nerve (Frank and Hettinger, 2005). Specifically, in response
to gustatory stimulation, ATP and neurotransmitters are released to
enable chemical signalling within the taste bud itself or with afferent
sensory nerves that express P2X2/P2X3 receptors on the nerve fibers
innervating the taste buds. (Chaudhari and Roper, 2010).

Taste buds are divided in four morphological subtypes: Types I, II,
III, and IV and among these subtypes, type II cells are the most
characterised (Nelson et al., 2001; Depoortere, 2014). ATP is released
by Type 2 cells in response to sweet, bitter or umami testants (Besnard
et al., 2016) and genetic inactivation of P2X2/P2X3 receptors in nerve
fibres is associated with decreased salty and sour tastes (Finger et al.,
2005). Once released, ATP can also activate adjacent Type 3 cells
triggering the release of serotonin which contribute to prolong the
transmission of the taste signals to the brain (Besnard et al., 2016).

In the obese, the number and density of the taste buds is
reduced by 25% compared to healthy individuals suggesting that
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overeating could be associated with impairments in purinergic
afferent reward-induced signalling (Proserpio et al., 2015;
Coccurello and Maccarrone, 2018; Kaufman et al., 2018).

DISCUSSION

During the past 4 decades, purinergic signalling has received
considerable attention regarding its involvement in the fine
regulation of food intake. The advent of new molecular tools,
conditional knockout strategies targeting specific neuronal
populations as well as animal behavioural models have shed
further light on this function. For example, since when
hypothalamic gliosis was associated with inflammation
resulting from high-fat diet feeding in both rodents and
human (Thaler et al., 2012), several investigations on non-
neuronal cells have since been reported in energy homeostasis
and obesity pathogenesis (Douglass et al., 2017). There are direct
evidence that adenosine receptors, in particular A1R, in
hypothalamic glia cells play a role in feeding responses (Yang
et al., 2015), as endogenous Ado inhibited basal food intake and
counter-regulated the ghrelin-elicited feeding by inactivating the
orexigenic AGRP neurons in the ARC.

Moreover, nutrient sensing tanycytes activate the arcuate
neuronal network releasing ATP and promoting acute
hyperphagia (Bolborea et al., 2020). It has been demonstrated
that the long-term exposure to high fat diet induces hypothalamic
gliosis (Douglass et al., 2017) and given the dramatic increase in
childhood obesity, the question whether homeostasis-challenging
circumstances on purinergic signalling early in life could
predispose to a multifactorial and complex disease in
adulthood, is still a matter of debate.

Purinergic signalling also plays a major role in the regulation
of peripheral sensory pathways of the gustatory system for the
regulation of food intake (Besnard et al., 2016). To date, the
majority of anti-obesity agents targeting signalling pathways in
metabolic tissues such as liver, adipocytes and skeletal muscles
have failed to deliver significant clinical results (Rodgers et al.,
2012). Targeting the gustatory signalling pathways could
represent a promising and effective strategy that can provide
clinically relevant anti-obesity agents.

The protection from diet-induced obesity through the
thermogenic/lipolytic effects of Ado, may be mediated by the
metabolic activity of BAT via the autonomic nervous system
stimuli originating from the dorsomedial hypothalamic nucleus
(DMN) in a loop mechanism.

The multiple roles of the purinergic signalling in the regulation of
food intake are both an opportunity for therapeutic interventions, but
also a concern when considering the risk of side effects of a new
compound. Noteworthy, the translation from studies in mice to
clinical trials in humans is still a big challenge due to many
factors, including the heterogeneity of the cells forming the
neuronal circuits which are difficult to study singularly and
attribute them an univocal function separated from the dynamic
microenvironment, as well as the ubiquitous expression of purinergic
receptors that, in the absence of specific agonist/antagonist, generate
compensatory mechanisms blurring their specific role. The neuro-
anatomical interactions of purinergic signalling within hypothalamic
circuits and the nucleus accumbens might suggest the design of
multifunctional compounds able to target their respective receptors
separately, whichmay result in a greater therapeutic effect for the cure
of obesity and immunometabolic disorders. Among others, P2Y6R,
P2X7R or A1 specific inhibitors may represent novel therapeutic tools
in the management of diet-induced obesity.

Taken together, purinergic signalling between brain regions
involved in motivation, reward and energy homeostasis present a
novel and valid target for the control of feeding behaviour, where
selective pharmacological intervention might produce promising
results.
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