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Maturation of beta cells: lessons from in vivo and in vitro models
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Abstract
The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function.
However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is
therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important
features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional
maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These
findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta
cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also
draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on
overlapping regulatory and metabolic networks.
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Abbreviations
AICAR 5-Aminoimidazole-4-carboxamide riboside
ALK5 Transforming growth factor β receptor 1
AMPK AMP-activated protein kinase
BMAL1 Aryl hydrocarbon receptor nuclear

translocator like
BMP4 Bone morphogenetic protein 4
DHAP Dihydroxyacetone phosphate
GSIS Glucose-sensitive insulin release
mTOR Mechanistic target of rapamycin
mTORC mTOR complex
OGC Solute carrier family 25 member 11
OxPhos Oxidative phosphorylation
PEP Phosphoenolpyruvate
PPP Pentose phosphate pathway
SC-islets Stem-cell-derived islets
SIX2 SIX homeobox 2

SIX3 SIX homeobox 3
SLC25A1 Solute carrier family 25 member 1
TCA Tricarboxylic acid
UCN3 Urocortin 3

Introduction

Understanding the mechanisms of beta cell differentiation and
maturation is integral to studies of diabetes pathophysiology,
regenerative therapies and stem-cell-derived models of beta cell
dysfunction and replacement. While the developmental
processes that lead to a stable beta cell identity are relatively
well known, the mechanisms underlying the functional matu-
ration of beta cells are less clear. In simple terms, beta cell
‘differentiation’ defines the acquisition of a terminally differen-
tiated insulin-positive cell identity throughout in utero develop-
ment or in vitro stem-cell-based protocols. Conversely, beta cell
‘maturation’ is a measurement of the phenotypic properties of
beta cells and their ability to respond to, and control, blood
glucose levels through glucose-sensitive insulin secretion
(GSIS). Acquisition of this function occurs postnatally in
rodents [1–3] and humans [4], and therefore is a property of
beta cell development, but one that occurs beyond the attain-
ment of fetal beta cell identity. This divide in cell identity and
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mature functionality is exemplified in early stem-cell-based
differentiation studies that generated beta-like cells with high
expression patterns of canonical beta cell markers but with
limited functional activity [5, 6]. The issue of defining what
constitutes a mature beta cell can be therefore quite problematic
if only certain aspects of beta cell biology are investigated, as
has been recently reported [7]. Some hallmark features of beta
cell ‘identity’ and ‘maturity’ are outlined in the Text box and
will be elaborated upon further throughout this review.

The current understanding of beta cell maturation is
that such a process is a spectrum rather than a binary state
[8–10]. Mature functionality may itself also be a dynamic
process, whereby beta cells flux from active to inactive
states, or be dependent on the interplay of functionally
heterogeneous beta cell pools [11–16]. Functional matu-
ration can be a reversible process, as beta cell dedifferen-
tiation and senescence, with resultant functional deterio-
ration, are known to be associated with the onset of diabe-
tes [17–19]. Therefore, the study of functional maturation
of beta cells is necessary to understand the underlying
mechanisms of dysfunction eventually leading to diabetes,
as well as to improve the efficacy of therapeutic interven-
tions and stem-cell-based islet replacement therapies.

This review will primarily focus on the reported multi-
faceted mechanisms that drive andmaintain beta cell function-
al maturation within in vivo and in vitro models.

Extrinsic triggers and circadian modulation
of beta cell maturation

Nutrient exposure The functional maturation of mammalian
beta cells is known to occur postnatally, and continues to
develop post-weaning [1, 2]. There are many potential
drivers of this response, the most critical ostensibly being
the neonate’s need to adjust to shifting patterns of nutrient
consumption and composition. Mouse studies have impli-
cated the change from high amino-acid-based nutrient
availability in utero (and the high-fat milk diet of
newborns) to pulsatile carbohydrate-based diet post-
weaning as a stimulating factor in postnatal beta cell
maturation [10, 20, 21]. This change in nutrient type
induces a shift in the relative activity of the energy-
sensing pathways of mechanistic target of rapamycin
(mTOR) complex (mTORC) 1 and AMP-activated protein
kinase (AMPK), with functional maturation favouring a
basal activity of AMPK signalling. Conversely, the
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activation of mTORC1 signalling becomes more restricted
to periods of glucose stimulation. Intriguingly, the main-
tenance of a high-fat diet into adulthood retains a more
functionally immature beta cell phenotype [21], while the
transient inhibition of mTOR in stem-cell-derived islets
(SC-islets) improves functional outcomes [20], suggesting
that these pathway shifts are causative and not simply
incidental to beta cell maturation.

The concept of beneficial mTOR signalling in beta cell
differentiation and function is well documented [22].
However, the specific mechanisms driving beta cell matura-
tion through mTOR signalling modulation are still vague.
Beta cell-specific overexpression of a kinase-dead mTOR is
detrimental to function in mice [23], as is beta cell-specific
mTOR knockout [24]. Specific functions of the mTORC1
and -2 complexes have also been implicated in different
aspects of beta cell maturation and function. The raptor
subunit of the mTORC1 complex is necessary for the regula-
tion of beta cell function, autophagy and repression of
disallowed genes [24–26] whereas mTORC2 complexes,
which function through the presence of the rictor subunit,
have been implicated in the mediation of beta cell mass and
proliferation, islet cytoarchitecture and modulation of GSIS
through activation of protein kinase Cα [24, 27, 28].
Postnatal rearrangement of islet cytoarchitecture is another
key process in mature functionality seen in vivo [29, 30] as
well as in recent models of SC-islet maturation in vitro [31].
Modulation of these processes through mTORC2-mediated
signalling may indeed be responsible for islet reorganisation,
prior to downregulation of mTOR signalling, and the onset of
functional maturity.

Another intriguing concept is the coupling of beta cell
glucose sensing to mTOR activity. It has recently been shown
that acute glucose stimulation of mTORC1 activity in beta
cells is only partially dependent on mitochondria-derived
glucose metabolism [32]. In line with this, a study reported
that glycolytically derived dihydroxyacetone phosphate
(DHAP) may signal glucose availability directly to the
mTORC1 complex (albeit in human embryonic kidney cells)
[33]. Metabolic tracing studies by us and others have shown
that SC-islets show strong functional profiles despite limited
mitochondrial metabolism of glucose; furthermore, a glyco-
lytic bottleneck beyond the glyceraldehyde-3-phosphate
(GA3P)/DHAP enzymatic step is present in SC-islets [34,
35]. It is tempting to speculate that such a direct interplay of
glycolytic DHAP generation and mTOR activity may in part
be responsible for strong in vitro SC-islet function, without the
canonical mitochondrial coupling seen in mature adult islets.

Circadian clock In concert with post-weaning feeding cycle
and nutrient composition changes, the entrainment of system-
ic and intrinsic islet circadian clocks has an active role in beta
cell maturation in mammals [36–38]. The core circadian clock

transcription factors clock circadian regulator (CLOCK) and
aryl hydrocarbon receptor nuclear translocator like (BMAL1)
are known to cyclically drive the oscillating expression of
many beta cell genes necessary for secretory function and
regulation of insulin release [39], correlated with the acquisi-
tion of GSIS [36]. Although this review focuses primarily on
beta cell biology, it is worth noting that the core components
of the circadian clock regulate cell-type-specific gene
networks within each endocrine population [40].BMAL1 (also
known as ARNTL) and/or CLOCK deletion within pancreatic
lineages (or beta cells specifically) disrupts the functionality
of beta cells, resulting in an oxidative-stress-induced state [41,
42]. Conversely, the overexpression of Bmal1 was able to
increase the amplitude of circadian oscillations and protect
against obesity-induced glucose intolerance in mice [43].

The ability of the circadian clock to rhythmically induce
genes that enhance the glucose-sensitive function of mature
beta cells may also share some overlap with key components
of metabolic energy-sensing pathways [44, 45] (Fig. 1).
Indeed, the kinase activity of AMPK is an integral constituent
of the clock-cycling mechanism, possibly linking the activity
of mTOR/AMPK signalling with clock activity [46–48], and
BMAL1 itself is a reported target of themTOR-effector kinase
S6K1 [49]. In a recent study wherein rhythmic circadian clock
expression patterns were induced effectively in SC-islets,
circadian entrainment as a mechanism for beta cell maturation
was shown in principle [50]. Stimulation indices, calcium
fluxes and cyclical oxygen consumption were all increased
following entrainment. In agreement with this, following
SC-islet implantation and maturation in vivo, core clock
components BMAL1, RORA and BHLHE41 were all upregu-
lated, showing that enhanced beta cell maturation correlates
with enhanced expression of core clock components [35].
Perhaps most intriguingly, the recent finding that circadian
clock cycling may regulate the alternative splicing of subsets
of target genes within beta cells adds a new dimension to the
concept of circadian control of beta cell maturation and tran-
scriptional regulation [51].

In aggregate, the triggering of beta cell maturation through
the entrainment of circadian clock machinery and the
balancing of energy-sensing pathways following postnatal
development are key aspects of beta cell functional acquisi-
tion. The underlying metabolic shifts that allow for enhanced
glucose sensitivity beyond these signals are discussed further
below.

Metabolic control of glucose sensitivity
during beta cell maturation

The purpose of this review is not to outline an exhaustive list
of all known bioenergetic pathways that couple glucose
metabolism to insulin secretion, as many excellent resources
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already exist for many aspects of beta cell function [52–55].
Instead, our aim is to highlight the interplay between some of
these metabolic pathways and their development during beta
cell maturation.

Oxidative phosphorylationMitochondrial metabolism, partic-
ularly oxidative phosphorylation (OxPhos), is essential for
beta cell function [56, 57]. Classically this is encompassed
by the ‘triggering pathway’ model of GSIS, whereby
mitochondrially generated ATP/ADP ratio shifts inhibit plas-
ma membrane localised KATP channels, resulting in
depolarisation and insulin release [58, 59] (Fig. 1). This acqui-
sition of heightened OxPhos activity during maturation is
mirrored in SC-islet studies that demonstrate increased

abundance of OxPhos-related genes following enhanced
in vitro culture conditions and maturation during murine
engraftment [35, 60, 61]. Proteomics, transcriptomics and
metabolomics studies within rat islets, as they transition from
juvenile-to-adult states, also display enhanced OxPhos gene
network signatures [62, 63].

Tricarboxylic acid cycle-derived metabolites In parallel with
the core OxPhos-mediated triggering pathway model, the
cytosolic cycling of numerous mitochondrial metabolites has
also been implicated in the generation and maintenance of
beta cell function [64, 65]. These proposed metabolite-
coupling factors include the malate–aspartate shuttle [66],
the pyruvate–malate cycle [67], the pyruvate–citrate cycle
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Fig. 1 Overlapping transcriptomic, metabolic and energy-sensing
machinery that enables the functional maturation of beta cells. The ability
of beta cells to derive GSIS is dependent on the synergistic interplay of
many metabolic and regulatory features. The post-weaning maturation of
beta cells is characterised by the re-balancing of the AMPK/mTOR ener-
gy-sensing pathways and their interaction with circadian clock entrain-
ment. Both of these elements further interact with the canonical triggering

and metabolic amplification pathways of GSIS involving NADP-mediat-
ed glutathione redox cycling. The feedback between these metabolic and
nutrient-sensitive control points also trigger/respond to transcriptional shifts
ofmaturation-associated genes,microRNA regulation and epigenetic signa-
tures in beta cells. Dotted arrows with ‘?’ symbols denote indirect or mech-
anistically unknown pathways of regulation. GSH, glutathione; S-AMP,
adenylosuccinate. This figure is available as part of a downloadable slideset
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[68], the pyruvate–isocitrate cycle [69–71], the phosphoenol-
pyruvate (PEP) cycle [72, 73] and the glycerolipid/NEFA
cycle [74, 75] (Fig. 2). The common thread within most of
these cycles is the export and metabolism of tricarboxylic acid
(TCA) cycle intermediates that are coupled to GSIS without
direct inclusion into OxPhos pathway reactions. However, the
extent and importance of each of these cycles in their contri-
bution to beta cell functionality is highly contentious. For
instance, within pyruvate–malate and pyruvate–citrate
cycling, the activity of the cytosolic malic enzyme (ME1)
and the ATP-citrate lyase enzyme (ACLY) are key enzymatic
steps. Nevertheless, the genetic reduction of either of these
enzymes in beta cell models has been shown to be detrimental
to GSIS or to have no detectable effect [67, 68, 76, 77]. A
recent proteomic analysis of juvenile-to-adult islet maturation

did demonstrate an upregulation in both of these genes, corre-
lating with the acquisition of GSIS functionality [62]. In either
case, the unifying concept of malate cycling pathways is the
generation of cytosolic NADPH as the coupling factor that
augments the insulin release response, ostensibly through the
glutathione/redox-mediated modulation of SUMO specific
peptidase 1 (SENP1) activity and its interaction with insulin
granule release machinery [70] (Fig. 1).

Another TCA-derived pathway, the pyruvate–isocitrate
cycle, generates cytosolic NADPH through the activity of
the cytosolic isocitrate dehydrogenase enzyme (IDH1). The
presence and activity of this enzyme are necessary for beta
cell function [69–71]. However, in keeping with the duality of
metabolic reports in beta cell models, opposite findings have
been reported [78]. It is unlikely that eachmetabolic cycle acts
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Fig. 2 Proposed glucose-sensitive metabolic cycles in functionally
mature beta cells. The metabolic processing of glucose into TCA cycle
intermediates with the resultant oxidative phosphorylation pathway is a
core component of canonical GSIS. However, the processing of TCA-
derived metabolites throughout a multitude of mitochondrial–cytosolic
cycling reactions have also been shown to be a component of mature beta
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phoenolpyruvate; αKG, α-ketoglutarate. This figure is available as part of a
downloadable slideset
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in isolation. Indeed, many of the TCA metabolite cycles/
shuttles rely on overlapping enzymes and mitochondrial
carriers (Fig. 2). Mitochondrial citrate export through solute
carrier family 25 member 1 (SLC25A1) and α-ketoglutarate
import through solute carrier family 25 member 11
(SLC25A11, also known as 2-oxoglutarate carrier [OGC])
are both reliant on malate anti-port. All of which fits with
the importance of malate trafficking as a mature metabolic
feature of beta cell function. This trafficking may occur
through either the pyruvate cycling pathways or the malate–
aspartate shuttle function, which ties more directly to OxPhos
activity. Indeed, malate import into mitochondria is important
for beta cell function (perhapsmore important than the cycling
kinetics alone) [79]. Appropriate mitochondrial channel
expression patterns must therefore be key to glucose-
sensitive beta cell function, as repression of either the
SLC25A1 or OGC transporters results in the inhibition of
GSIS [80, 81]. Intriguingly, direct chemical inhibition of
SLC25A1 recapitulates the gene knockdown findings and
reduces GSIS [68] but direct inhibition of OGC does not [82].

Cytosolic redox regulationRegardless of the relative strengths
of each element within these cycles, the core concept relates to
that of cytosolic redox regulation through glutathione cycling
as a key metabolic coupling factor of glucose metabolism
(Fig. 1). Clues relating to this acquisition of glutathione-
based redox signalling are seen in human SC-islet models of
maturation whereby a multitude of glutathione-related genes,
as well as de novo production of glutathione itself, are
increased following extended maturation periods in engrafted
mice and primary islets [35]. This pattern is also true of aspar-
tate and glutamate, possibly demonstrating an underdevel-
oped function of malate–aspartate shuttle activity within
immature SC-islets as well as limited intracellular glutamate
signalling, which has also been implicated as a triggering and
amplifying messenger within GSIS [83, 84]. Interestingly,
metabolic signatures of the pyruvate–isocitrate cycle are pres-
ent within SC-islets without extended maturation periods and
despite low glucose-responsive OxPhos metabolism [35].
Conversely, the presence of the PEP cycle as a mechanism
of GSIS appeared underdeveloped in at least one SC-islet
study [34]. It is tempting to conclude, therefore, that a subset
of these metabolic cycling pathways may be able to compen-
sate for SC-islet functionality without extended maturation
periods, and that each of these pathway cycles may appear
independently and throughout beta cell maturation, as is seen
in rat islet maturation studies [62, 63, 85].

Pentose phosphate pathway The pentose phosphate pathway
(PPP) is involved in the coupling of glucose metabolism to
insulin release through two complementary mechanisms. The
first relates to the cytosolic formation of NADPH from the
initial glucose 6-phosphate dehydrogenase (G6PD) and 6-

phosphogluconate dehydrogenase (6PGDH) reactions, which
may act to fuel the NADPH-dependent cytosolic redox signal-
ling pathway as outlined above [86] (Fig. 1). The second is
through the direct formation of adenylosuccinate (S-AMP)
and other intermediates within the purine synthesis pathway,
downstream from the PPP [87, 88]. The mechanism of
coupling of these intermediates to insulin release is still poorly
understood, although it is hypothesised that these pre-AMP
intermediates may activate AMPK, and therefore modify the
mTOR/AMPK energy-sensing axis. This is an intriguing
possibility, as the AMP mimetic 5-aminoimidazole-4-
carboxamide riboside (AICAR), also an intermediate within
the purine synthesis pathway, has been shown to have both
positive and negative GSIS modulating properties under acute
treatment [89]. AMPK signalling in beta cells has far-reaching
implications for many aspects of metabolic network formation
and glucose coupling during beta cell maturation [90, 91].
Such signalling may act to modulate the extent of certain
metabolic cycling pathways, such as the pyruvate–citrate
cycle and glycerolipid/NEFA cycle, through the AMPK-
driven inhibition of acetyl-CoA carboxylase 1 (ACC1) [92,
93]. Basal AMPK activation under non-stimulatory glucose
concentrations was found to drive the upregulation of mito-
chondrial OxPhos-related genes in a model of neonatal matu-
ration [21], in line with the concept of enhancedmitochondrial
development as an integral factor of mature beta cell function-
ality. Nevertheless, chronic activation of AMPK has also been
shown to have detrimental effects on beta cell functionality
[94]. It remains unclear how these glucose-responsive purine
pathway intermediates would have beneficial effects on acute
GSIS through AMPK activation, if we assume that this acti-
vation suppresses mTOR signalling, supposedly the dominant
signalling cascade during GSIS [20]. Of course, purine path-
way intermediates might not act through AMPK at all; in one
metabolic study, an increase in glucose-stimulated 5-
aminoimidazole-4-carboxamide ribonucleotide (ZMP) (a
phosphorylated form of AICAR) did not result in detectable
changes in AMPK activation [88]. Additionally, direct
glucose-sensing and reactive oxygen species-sensing capabil-
ity of AMPK, independent of the cellular energy state (AMP/
ADP/ATP ratio), may help to explain this discrepancy and
might suggest that glucose-coupled purine synthesis pathways
alter GSIS through alternative mechanisms [95, 96].

In summary, the underlying metabolic networks that derive
beta cell function are multi-faceted and form progressively
throughout beta cell maturation. The specific interplay
between energy-sensing machinery, mitochondrial metabo-
lism and metabolite trafficking networks are highly coupled.
Therefore, we should be mindful that modifying one aspect of
this symphony will have many far-reaching consequences
across the biology of the beta cell. However, the generation
and stability of these metabolic networks are dependent on the
acquisition of appropriate transcriptomic profiles. Candidate
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pathways and genes that mediate these changes during beta
cell maturation are discussed next.

Signalling pathways and gene markers
of beta cell maturation

The extent of beta cell differentiation is generally evaluated,
in vitro and in vivo, through the upregulation andmaintenance
of a set of known beta cell marker genes (including INS, PDX1
[97], NKX6.1 [98], NEUROD1 [99],MAFA [100] and UCN3)
[3]. However, the presence of these genes is not necessarily an
indication of mature beta cell functionality [10, 101]. Indeed,
upregulation of urocortin 3 (UCN3) occurs during the postna-
tal maturation of beta cells [3, 10] but UCN3 itself appears to
be functionally redundant in driving this maturation process
[102]. It is therefore important to understand the difference
between genes that are critical for maintaining beta cell iden-
tity and those that further determine the functional properties
of beta cells, and of course, the intrinsic overlap between these
two groups. The direct transcriptional regulation of beta cell-
specific transcription factors and the influence on metabolic
gene regulation is largely unknown. However, certain regula-
tory patterns have been discovered [103]. For instance, MafA
may help repress ‘disallowed’ metabolic genes while main-
taining expression of specific glucose transporter genes
(GLUTs), glucokinase (GCK) and PGC1α (coding for a regu-
lator of mitochondrial biogenesis and circadian oscillation)
within beta cells [104, 105]. A transcriptional network driven
by oestrogen-related receptor γ (ERRγ) has been shown to
regulate multiple OxPhos-related genes, as well as regulating
the pyruvate–citrate cycle-related enzyme encoded byMDH1,
during beta cell maturation [106]. It has also been reported that
transcriptional regulation through calcineurin–nuclear factor
of activated T cell (NFAT) pathways tailor the expression of
GCK and GLUT2 (GLUT2 is the predominant glucose trans-
porter in murine beta cells) [107, 108]. In contrast, the tran-
scription factor activity of regulatory factor X6 (RFX6) is
linked to regulation of GCK but not GLUT2 [109]. These
overlapping functions in metabolic gene regulation may be
due to the web of beta cell-enriched transcription factors
directly regulating each other, although there is evidence that
the physical interaction of multiple transcription factors is
necessary to maintain metabolically mature states, such as
the co-binding of neuronal differentiation 1 (NEUROD1)
and cAMP responsive element binding protein 1 (CREB1)
in beta cell-specific enhancer regions [110].

Transcriptomics studies comparing healthy and diabetic
beta cell pools offer many clues to the subsets of genes that
may be necessary for maintaining beta cell function, either
through candidate transcription factors or through direct regu-
lation of beta cell metabolism. One example of the latter is the
higher expression of glucose-6-phosphatase catalytic subunit

2 (G6PC2) and 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 2 (PFKFB2) within healthy beta cell samples
[111–116] and the upregulation of these genes during matu-
ration of SC-islet beta cells [35, 61]. Both genes encode
glycolytically linked enzymes that have been shown to have
direct regulatory control over the glucokinase-mediated step
of glycolysis [117–120]. The functional maturation of beta
cells therefore correlates with heightened control over this
initial step of glycolysis, which may regulate the pattern of
downstream metabolism and glucose trafficking. The
governing mechanisms of glycolytic flux within mature beta
cells may also encompass the regulatory effect of cytosolic
citrate and PEP (as products of the TCA metabolite cycles
outlined previously) on phosphofructokinase 1 (PFK1) activ-
ity [112], with the generation of fructose-1,6-bisphosphate as
a possible direct modulator of glucose-sensi t ive
AMPK/mTOR activity [95] (Fig. 2). Even the oligomerisation
state of the glycolytic enzyme GAPDH (rather than expres-
sion level) has been associated with beta cell functional matu-
ration [34]. Some recent findings have also identified the SIX
homeobox 2 (SIX2) and SIX homeobox 3 (SIX3) transcrip-
tion factors as regulators of beta cell functional maturation
[121, 122]; this has been demonstrated in SC-islet knockdown
models of SIX2, wherein GSIS function was strongly
impaired [123]. Interestingly, although SIX2 is necessary for
SC-islet functional acquisition in vitro, SIX3 expression
appears to be important for advanced maturation events and
is not detected in SC-islets in vitro or after extended murine
engraftment [35, 123].

The regulation and temporal sequence of genes within this
context must at some level be run through transcription factor
networks that are responsive to cell lineage signalling and
systemic nutritional cues [101]. The ‘holy grail’ within the
field of SC-islet generation is an optimised cocktail of signal-
ling and patterning factors that would trigger in vitro beta cell
maturation to the same level that is seen post-engraftment.
Therefore, SC-islet generation protocols represent fertile
ground to test candidate maturation signalling molecules,
while simultaneously providing information on processes
occurring during postnatal maturation [9, 124, 125].

A recent study found that non-canonical Wnt signalling,
through Wnt4, may be one such signalling pathway that trig-
gers maturation events within SC-islet beta cells [126]. It has
long been established that Wnt signalling has a variety of
important functions throughout islet organogenesis that are
spatially and temporally controlled [127]. Furthermore, in
SC-islets at earlier stages of differentiation, Wnt signalling
affects the balance and penetrance of pancreatic progenitor
formation [128, 129]. The exogenous application of Wnt4 to
SC-islets increases an assortment of beta cell marker genes as
well as mitochondrial OxPhos responsiveness to glucose
[126], a pattern that is also seen whenWnt4 is added to human
islet and beta cell lines [13]. WNT4 expression has also been
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observed in neonatal rat islets, suggesting a role in postnatal
functional maturation [85]. However, another SC-islet study
was unable to detect any discernible improvement in beta cell
maturation following Wnt4 treatment, and conversely found
that canonical Wnt signalling inhibition improved SC-islet
maturation [130]. Regardless, the interplay of Wnt signalling
in different aspects of beta cell differentiation and maturation
is well founded. Tantalising evidence of Wnt signalling-
derived AMPK/mTOR pathway changes in the regulation of
the Tcf7l2 gene in beta cell proliferation in mice is a clear
demonstration of the holistic interactivity of cell signalling,
energy-sensing machinery and mature beta cell functionality
[131].

Many members of the TGF-β family have also been
connected with beta cell maturation, although again with some
inconsistent findings between research groups. Inhibition of
the transforming growth factor β receptor 1 (TGFBR1, also
known as ALK5) during SC-islet maturation has been shown
to increase many beta cell marker genes, includingMAFA [5].
However, more recent studies have shown either a marked
improvement of SC-islet beta maturation in the absence of
ALK5 inhibitors [132] or, in contrast, an increase in insulin
expression in the presence of ALK5 inhibition [31]. Another
member of the superfamily, bone morphogenetic protein 4
(BMP4), may also aid in the postnatal maturation of beta cell
function following temporally controlled release from islet
pericytes [133]. However, one study found that BMP4 treat-
ment inhibited GSIS through the reduction of calcium currents
[134], again indicating that particular cellular milieus and
developmental timings elicit strong control over specific
signalling outcomes. The thyroid hormone triiodothyronine
(T3) has also been shown to accelerate the postnatal matura-
tion of beta cells and boost MAFA expression in SC-islet
models [105, 135], demonstrating that beta cell maturation is
affected by systemic hormonal exposure.

In parallel with the signalling pathways outlined above,
beta cell maturation may also be self-regulated via the modu-
lation of extracellular ATP release and purinergic receptor-
based signalling, through the activity of ectonucleoside
triphosphate diphosphohydrolase 3 (ENTPD3) [136]. This
has been identified in numerous beta cell transcriptomic stud-
ies [114, 137] and has also been shown to be a marker of beta
cell maturation within SC-islets [31]. An intriguing overlap
between these findings and the model of glucose-sensitive
purine synthesis withinmature beta cells may imply yet anoth-
er nexus point of cellular energy state (through AMPK/mTOR
modulation), metabolic trafficking (ATP production and
release) and the regulation of GSIS in mature beta cells
[138] (Fig. 1).

Another intriguing feature of beta cell functional matura-
tion is the regulatory influence of microRNAs. Shifting
patterns of microRNA expression have been shown to elicit
robust regulatory effects on metabolic gene expression and

beta cell functionality in a nutrient-sensitive manner, as well
as throughout postnatal maturation [139–141]. The upregula-
tion of the miR-129 family in beta cells during postnatal
weaning in mice correlated with enhanced glucose-
responsive insulin release [139]. This mirrors the postnatal
increase in the expression of the miR-29 family, which has
also been shown to repress the ‘disallowed’ genes REST [139]
and SLC16A1 [142]. In contrast, downregulation of the miR-
181 and miR-17 families during postnatal maturation leads to
the upregulation ofGPD2,MDH1 and PFKPmetabolic genes
[139]. Other microRNAs such as the miR-223 family (which
ostensibly maintains PDX1 and NKX6.1 expression through
suppression of forkhead box O1 [FOXO1] and SRY-box tran-
scription factor 6 [SOX6] pathways [143]) and the miR-7
family (which reportedly boosts GSIS and PDX1 levels in
SC-islets [144] while suppressing mTOR signalling and
proliferation [145]) are all enriched in mature beta cells.
However, conclusions about the presence or absence of a
particular microRNA family should be assessed in relative
terms. For example, the miR-375 family is upregulated during
SC-islet maturation [144], yet the forced overexpression of
miR-375 in primary islets was reported to blunt GSIS
responses and reduce glucose-responsive OxPhos [146].
This drop in functional activity could be explained by the
increased expression of PDK4 and reduced PC and MDH1
expression within the primary islets. The shifting patterns
and balance of microRNA family expression is therefore
another key component of the onset and maintenance of beta
cell maturity.

Finally, epigenetic signatures may help explain particular
functional features of mature and immature beta cells. Both
DNA methylation and histone modification are mechanisms
by which beta cell identity and function are maintained,
through tailoring the expression pattern of beta cell-enriched
transcription factors, as well as being regulated by the tran-
scription factors themselves [147, 148]. Some relevant exam-
ples include DNA methylation through the activity of DNA
methyltransferase 3 α (DNMT3A), which has been linked to
the repression of beta cell ‘disallowed’ genes, regulated
through the mTORC1 component raptor [26] and through
the inhibition of Wnt signalling during SC-islet maturation
[130]. Histone methylation involving the activity of the
polycomb repressor complex (PRC2) may act in juvenile
islets to maintain an immature transcriptomic state together
with trithorax group (TrxG) proteins [121, 149]. Evidence
for extensive epigenetic shifts throughout beta cell maturation
has also been seen in SC-islets [50]. All of these aspects of
regulation are intricately tied to the metabolic state of the beta
cell, as each form of epigenetic modification is fuelled by
specific metabolic inputs [150].

In summary, the concept of tracking beta cell maturation
through panels of marker genes is one that should be
approached cautiously. While core beta cell identity genes
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are no doubt important for many facets of beta cell maturation,
the upregulation of one particular gene is not necessarily a
strong argument for predicting functional maturation.
Indeed, much more needs to be uncovered about how signal-
ling pathways fully trigger beta cell maturity and through
which mechanisms they operate. Furthermore, interpreting
expression levels of particular genes, especially those within
core metabolic pathways, should be done carefully so as not to
misconstrue what is necessary for specific beta cell function
and what is key for basal cellular metabolism. Additionally,
overexpression of particular genes within a pathway may not
necessarily trigger systemic maturation events. Full under-
standing of beta cell maturity clearly needs to go beyond
simplistic models of gene and protein expression, and the
regulation and maintenance of epigenetic signatures in beta
cell function and disease must be considered.

Concluding remarks

Beta cell maturation is a multi-faceted process that takes cues
from systemic nutritional and hormonal signals and ultimately
results in a primed transcriptomic and metabolic beta cell state
conducive to drive GSIS (Fig. 1). Recent advances have
uncovered many of the core factors and machinery that are
necessary to achieve functional maturity, and have woven
together how these gene and metabolic networks form and
maintain beta cell function. However, a unified model of the
acquisition of beta cell functional maturation has yet to be
completed. Even so, the vast interconnectedness and synergis-
tic properties of cellular energy-sensing, signalling pathways,
metabolic networks and transcriptional regulation in the
generation of this maturation state is clear. We hope that this
review has highlighted how each element of reported beta cell
function is intricately aligned with many other aspects of beta
cell biology, and that phenotypic outcomes of gene-knockout
or chemical-intervention studies may elicit robust changes
beyond the expression patterns of canonical beta cell markers.
The recent application of sequencing, metabolic tracing and
proteomic assays to probe beta cell maturation and dysfunc-
tion offers an incredible resource with which to better under-
stand the acquisition of beta cell functionality, ultimately
aiding in the understanding of diabetic pathologies and in
the development of novel therapies.
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