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Abstract

The polo-like kinase 1 (Plk1) is a critical regulator of cell division that is overexpressed in many types of tumors. Thus, a
strategy in the treatment of cancer has been to target the kinase activity (ATPase domain) or substrate-binding domain
(Polo-box Domain, PBD) of Plk1. However, only few synthetic small molecules have been identified that target the Plk1-PBD.
Here, we have applied an integrative approach that combines pharmacophore modeling, molecular docking, virtual
screening, and in vitro testing to discover novel Plk1-PBD inhibitors. Nine Plk1-PBD crystal structures were used to generate
structure-based hypotheses. A common pharmacophore model (Hypo1) composed of five chemical features was selected
from the 9 structure-based hypotheses and used for virtual screening of a drug-like database consisting of 159,757
compounds to identify novel Plk1-PBD inhibitors. The virtual screening technique revealed 9,327 compounds with a
maximum fit value of 3 or greater, which were selected and subjected to molecular docking analyses. This approach yielded
93 compounds that made good interactions with critical residues within the Plk1-PBD active site. The testing of these 93
compounds in vitro for their ability to inhibit the Plk1-PBD, showed that many of these compounds had Plk1-PBD inhibitory
activity and that compound Chemistry_28272 was the most potent Plk1-PBD inhibitor. Thus Chemistry_28272 and the other
top compounds are novel Plk1-PBD inhibitors and could be used for the development of cancer therapeutics.
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Introduction

The Polo-like kinase (Plk) family of serine/threonine kinases are

critical regulators of the cell cycle that are evolutionarily conserved

from yeast to humans [1]. Plks are characterized by an N-terminal

catalytic domain (kinase domain) and one or two C-terminal

regions of similarity, termed polo-box domains (PBDs) [2]. PBDs

are unique to Plks and are essential for regulating Plk phosphor-

ylation activity through intramolecular interactions with the

catalytic domain, binding to substrates and controlling Plk

subcellular localization in a spatial-temporal manner [3]. These

features make PBDs amenable to inhibition and are an ideal

domain to explore the feasibility of inhibiting kinase phosphory-

lation activity by interfering with its intracellular localization and/

or ability to bind substrates rather than targeting the conserved

ATP binding site [4].

Humans express four Plk isoforms (Plk1-3 are closely related

and Plk4 is distantly related) with apparently distinct expression

patterns and physiological functions [5]. Plk1 is a mitotic kinase

that regulates centrosome maturation and separation, mitotic exit

and cytokinesis [6], Plk1 has been the focus of extensive studies

due to its strong association with oncogenic transformation of

human cells. Plk1 is overexpressed in many types of human

cancers and plays a critical role in cellular proliferation from yeast

to mammals [5]. Depletion or inhibition of Plk1 in cancer cells

leads to mitotic arrest and subsequent apoptotic cell death [7].

Thus, Plk1 is an attractive target for anticancer therapy [8]. Over

the years, efforts have been made to generate anti-Plk1 inhibitors,

yielding several ATP-competitive inhibitors that inhibit Plk1

kinase activity [8]. These include BI2536 and GSK461364A,

which are currently being evaluated for their anti-proliferative

properties in clinical trials and numerous others that are in pre-

clinical development [7]. However, their specificity and limited in

vivo efficacy remain major concerns [9].

The Plk1-PBD plays a critical role in Plk1 subcellular

localization, substrate binding and phosphorylation and is

required for proper cell division [10]. Thus the Plk1-PBD has

emerged as a candidate for therapeutic intervention and an

alternative to targeting the Plk1 ATPase domain. The Plk1-PBD

consists of two conserved polo boxes (PB1 and PB2), each of which

exhibits folds based on a six-stranded b sandwich and an a helix,

which associate to form a 12-stranded b sandwich domain [11].

Phosphoserine/phosphothreonine containing peptides comprising

an S-(pT/pS)-(P/X) motif bind along a positively charged cleft

formed between PB1 and PB2. The negatively charged phosphate

groups of phospho-Ser/Thr residues interact with key amino acid

residues at the PB1 and PB2 interface that include His538 and

Lys540 from PB2 to form pivotal electrostatic interactions. The

unique physical properties of the Plk1-PBD make it an attractive

target for designing inhibitors with great specificity and potency.
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Indeed, in vitro screening efforts have already isolated small

natural compounds, like Poloxin and Purpurogallin, and peptide-

derived inhibitors like MQSpTPL that inhibit the Plk1-PBD from

binding to substrate proteins [2,7]. Although they are currently

being evaluated for their antiproliferative properties in vitro, their

lack of potency and issues associated with their solubility and

delivery has limited their therapeutic potential [2,7]. Additionally,

to date there has been no attempts to generate a pharmacophore

model of the Plk1-PBD-substrate interaction that would be

instrumental for developing specific and potent inhibitors to this

interaction.

Structure-based pharmacophore modeling has been successfully

applied to designing of novel drugs with potent biological activity

to many therapeutic areas. Structure-based pharmacophore

models are generated by extracting the interaction between a

protein and its ligand, which enables medicinal chemists to design

new sets of ligands with the potential to be specific and potent

drugs [12]. Even more powerful, pharmacophore models can be

coupled to pharmacophore-based virtual screening and molecular

docking studies to generate an integrative workflow for the

discovery and development of novel inhibitors. Here, we have

applied this type of integrative approach to better understand the

Plk1-PBD-ligand interaction and to design novel Plk1-PBD

inhibitors. Our study lends insight into the structural requirements

crucial for inhibiting the Plk1-PBD and has discovered novel Plk1-

PBD inhibitors, which can be used in designing and developing

Plk1-PBD targeted therapies.

Methods and Materials

Selection of Plk1-PBD-ligand complex structures from the
protein data bank

To generate structure-based Plk1-PBD pharmacophore models,

we selected nine crystal structures, namely, 1Q4K [11], 1UMW

[13], 3FVH [8], 3HIK [8], 3P34 [14], 3P37 [14], 4E9C [15],

4E9D [15], and 4HAB [16], based on their level of resolution and

deposition date in the protein data bank (PDB, www.rcsb.org/

pdb).

Generation of receptor/structure based pharmacophore
models

The Plk1-PBD structure-based pharmacophore models were

derived from the critical interactions between the residues present

in the active site of the receptor and the ligands. The biochemical

data was used to identify the key residues that were important for

substrate and/or inhibitor binding. To do this, LigandScout [17]

was used to find the interactions between the inhibitors and critical

residues in the Plk1-PBD binding site. It was also used for

generating automatic hypotheses and visualization of pharmaco-

phore models. The software utilized Plk1-PBD X-ray 3D crystal

structures from PDB files to extract and interpret receptor-ligand

interactions such as hydrogen bonds, charge transfers and

hydrophobic regions within the macromolecular environment.

Stepwise interpretation of the functional group patterns were

performed for ligands: planar ring detection, assignment of

functional group patterns, determination of the hybridization

state and finally the assignment of Kekule pattern. Multiple

chemical features and excluded volume spheres were detected and

generated as structure-based pharmacophore models, which were

used to screen small molecules for their ability to inhibit Plk1-PBD

function. Subsequently the hypothesis generated by LigandScout

(hypoedit) was subjected into Discovery Studio v 3.1 (DS, www.

accelrys.com, chm file format) and converted into a suitable

format for screening the multi-conformational 3D drug-like

database.

Drug-like database generation and virtual screening
Many drug candidates fail to perform well in pre-clinical and

clinical settings. This is mainly due to their lack of potency against

the intended drug target as well as pharmacokinetic and toxicity

issues. Therefore, it is important for the drug design process to sort

or remove the compounds that fail to satisfy the drug-like

properties early on in the study. We initiated our study with a

chemical database containing 159,757 diverse drug-like com-

pounds that were subjected to energy minimization using dynamic

simulations (DS). Next, we removed the compounds that did not

pass the absorption, distribution, metabolism, excretion and

toxicity (ADMET) properties [18] as well the rule of five properties

[19]. The use of these filters resulted in 32,374 compounds that

were used for virtual screening. The pharmacophore based virtual

screening technique is a fast and cost effective computational tool

to discover novel leads from database searches. In our study, the

Hypo1 pharmacophore model was used for virtual screening of the

drug-like database. While searching the pharmacophore against

the database, we modified the parameters based on the number of

chemical features present in Hypo1. The Fast Flexible search

method from Ligand Pharmacophore Mapping implemented in

DS was used to retrieve hits from the drug-like database. We

changed the different Maximum Omitted Features option for

Hypo1 to select compounds that matched a maximum of 4

chemical features. Database searching was performed based on

feature mapping with every compound in the database and sorting

according to highest fit value scores. The compounds that matched

the atoms or functional groups and the geometric constraints

between the small molecules and the query hypothesis were

subjected to molecular docking studies.

Molecular docking using LigandFit
Molecular docking is a computational tool used to predict

protein-ligand interaction geometries and binding affinities.

LigandFit [20] is a molecular docking program that was used

to identify the suitable binding mode of the ligands within the

Plk1-PBD and to predict their binding affinities. The crystal

structure of the Plk1-PBD (PDB: 3P34) complex was retrieved

from the PDB and used as the receptor protein. Initially, the

Plk1-PBD was prepared for the docking process by removing all

the water molecules and the CHARMm force field [21] was

applied using the simulation tool. The protein active site is

represented as a binding site for ligands that can be identified by

applying two methods: (i) eraser algorithm which is based in the

receptor shape and (ii) volume occupied by known ligand in the

active site. Here, we employed the second strategy to identify the

protein active site. The quality of the docking method was

assessed by their ability to reproduce the binding mode of

experimentally resolved protein-ligand complexes. To evaluate

the accuracy of docking programs, co-crystal molecules were

sketched and docked into the protein active site. The docked pose

was superimposed on the co-crystal bound conformation to

calculate the RMS deviation. An RMSD below 2 Å is generally

considered a successful prediction. Herein a maximum of 10

poses for each ligand were selected and the RMS and the score

threshold were set to 1.50 Å and 20 kcal mol-1, respectively. The

scoring functions were based on the assumption that the binding

affinity can be described as a sum of independent terms. The

scoring functions included piecewise linear potential 1 (PLP1),

piecewise linear potential 2 (PLP2), potential of mean force 04

(PMF04), dock score, Jain, Ligscore1, Ligscore2 and LUDI.

Pharmacophore Modeling for Plk1-PBD Inhibitors
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Fluorescence polarization assay for evaluation of putative
Plk1-PBD inhibitors

Plk1-PBD-substrate peptide binding assays was performed

according to the protocol published by Reindl et al. [22]. The

screening of the 93 candidate compounds was performed in 384-well

plates (EK-30091) by incubating 67 nM recombinant human Plk1-

PBD (Sigma SRP0360) with 8 nM fluorescein-labeled substrate

peptide 5-carboxyfluorescein-GPMQSpTPLNG and 100 mM of

each compound. After 1 hour incubation at room temperature, the

fluorescence emission parallel (Intparallel) and perpendicular

(Intperpendicular) to the plane of excitation at 535 nm was read on a

384 well plate reader (Tecan M1000). The fluorescence polarization

(mP) was then calculated as: mP = (Intparallel - Intperpendicular) /

(Intparallel + Intperpendicular) 60.99861000. The percent inhibition

was calculated by normalizing the data to the DMSO only control.

For calculation of IC50, we determined the fluorescence polarization

of Plk1-PBD and the 5-carboxyfluorescein-peptide with a 12-point-

2-fold-titration (from 49 nM to 100 mM) of each compound. The

CDD (Collaborative Drug Discovery) software was used for

generating IC50 values.

Figure 2. Integrative workflow for designing and virtual screening of polo-box domain inhibitors. Integrative workflow combines,
pharmacophore modeling, generation of a drug-like database, virtual screening and molecular docking approaches to define the Plk1-PBD-ligand
interaction and to identify Plk1-PBD inhibitors.
doi:10.1371/journal.pone.0101405.g002

Figure 1. Plk1 kinase architecture. A) Plk1 has a modular domain
structure with an N-terminal kinase domain and two C-terminal polo
box motifs that make the polo-box domain (PBD). B) 3D co-crystal
structure of the Plk1-PBD-ligand complex (PDB ID: 3P34). The Plk1-PBD
and ligand are shown in secondary structure (ribbon and helix) and
stick representation, respectively. Note the ligand-binding site is in a
cleft formed by the two polo boxes.
doi:10.1371/journal.pone.0101405.g001
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Figure 3. Generation of a common structure-based pharmacophore hypotheses using LigandScout. Hypo1 represents the five common
chemical features present in all 9 hypotheses. Green, magenta, blue, red and cyan represents hydrogen bond acceptor, hydrogen bond donor,
positive ionization, negative ionization and hydrophobic, respectively.
doi:10.1371/journal.pone.0101405.g003

Figure 4. The five common chemical features in Hypo1 with their geometric constraints. Green, magenta and cyan represent hydrogen
bond acceptor, hydrogen bond donor and hydrophobic, respectively. Edges represent distances in Angstroms.
doi:10.1371/journal.pone.0101405.g004
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Compound information
The top 93 compounds (at .90% purity) were acquired from

commercial sources. See Table S1 for compound structure and

vendor information.

Results and Discussions

Generation of a consensus structure-based
pharmacophore model

The polo like kinase 1 (Plk1) has two potential sites of inhibition:

its N-terminal ATPase domain and its C-terminal protein-binding

domain, polo box domain (PBD) (Figure 1A). The Plk1-PBD is an

attractive cancer target due to its unique structural properties that

allow for the development of specific inhibitors targeting the

protein-protein binding interface (Figure 1B). However, currently

there is a lack of pharmacophore models describing the Plk1-PBD-

ligand interaction, which would be beneficial for designing

inhibitors. This prompted us to devise an integrated workflow

for generating such a model (Figure 2). To do this, we first selected

nine different Plk1-PBD X-ray crystal structures (1Q4K [11],

1UMW [13], 3FVH [8], 3HIK [8], 3P34 [14], 3P37 [14], 4E9C

[15], 4E9D [15] and 4HAB [16]) from PDB as inputs for

structure-based pharmacophore generation. For each Plk1-PBD-

ligand complex, a pharmacophore model hypothesis was gener-

ated based on the critical interactions between the peptides and

key residues in the active site of the Plk1-PBD with their specific

geometric constraints (Figure 3). The common chemical features

present in the all nine hypotheses were selected and named Hypo1

and the remaining chemical features were removed from further

analyses (Figure 4). This approach reveled that five chemical

features namely, 3-hydrogen bond acceptors, 1-hydrogen bond

donor, and 1-hydrophobic were critical for inhibition of the Plk1-

PBD.

Generation of a drug-like database
Next, we sought to define the types of drug-like small molecules

that could conform to the Hypo1 pharmacophore. However, to

minimize downstream toxicity and efficacy issues, we were only

interested in drug-like compounds with a strong potential for

therapeutic use. Thus, we first established a drug-like database

comprised of compounds that satisfied the criteria applied in

ADMET and Rule of 5 that would be used for virtual screening.

Hence an in house chemical library containing 159,757 diverse

compounds was screened using ADMET and Rule of five. In

ADMET, we mainly focused on the blood-brain barrier (BBB)

permeability, solubility and absorption. The compounds were

considered to have good drug-like properties only if they had

values of 3, 3 and 0 for BBB permeability, solubility and

absorption, respectively. After applying the ADMET criteria,

32,505 compounds showed good BBB permeability, solubility and

absorption values. Subsequently these compounds were subjected

to the Rule of 5, which states that the compounds are well

absorbed only when they possess a logP less than 5, molecular

weight less than 500 Da and fewer than 5 and 10 hydrogen bond

donors and hydrogen bond acceptors, respectively. These criteria

resulted in a database of 32,374 drug-like diverse compounds. This

database was then used for subsequent virtual screening.

Structure-based pharmacophore virtual screening
Virtual screening is an important computer-aided drug design

method that is a cost-effective alternative to in vitro high-

throughput screening. The Hypo1 hypothesis was used as a 3D

query to screen the drug-like database of 32,374 compounds for

compounds having 3 or more of the 5 Hypo1 features. This

analysis resulted in 9,327 compounds with a fit value greater than

3. Examples of hit compounds are depicted in Figure 5.

Molecular docking screening
To further analyze the selected compounds as potential Plk1-

PBD inhibitors, they were subjected to molecular docking studies

to determine their ability to bind within the Plk1-PBD and to study

their critical interactions with the vital amino acids present in Plk1-

PBD active site. To do this, we first analyzed the 23 Plk1-PBD-

ligand complex structures deposited in the PDB to identify the

critical residues making contacts with the ligands. Interestingly,

His538 and Lys540 from PB2 were the only residues that

contacted the phosphate groups present in the peptides directly.

Trp414 and Leu491 also formed two important hydrogen bond

interactions with the peptides. Although there were no conforma-

tional changes due to the peptide binding within the Plk1-PDB,

there was a stretch in the b-sheet due to the hydrogen bond

interaction between Asp416 and Met1 of the peptide [11]. Thus,

all the complexes showed conserved hydrogen bond interactions

with Trp414, Asp416, His538, Lys540 and Leu491 residues

Figure 5. Hit compounds with a maximum fit value greater than 3. Representation of six compounds with a fit value greater than 3 identified
through virtual screening. Note that compounds with diverse scaffolds are able to satisfy the geometric constraints of Hypo1 to form similar
interactions. Green, magenta and cyan represents hydrogen bond acceptor, hydrogen bond donor and hydrophobic, respectively.
doi:10.1371/journal.pone.0101405.g005
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(Table 1). Consistently, previous mutagenic analyses of Trp414,

His538 and Lys540 showed that these residues were critical for the

binding of the Plk1-PBD to its substrates. For example, mutation

of Lys540 to Met and/or His538 to Ala impaired Plk1-PBD

binding to phosphorylated Cdc25 and Bub1 [13,23–25]. Similarly,

mutation of Trp414 to Phe abolished the association of Plk1-PBD

with phosphorylated Cdc25 [3].

These five key residues were selected for screening the 9,327

drug-like compounds. To do this, the compounds were docked in

the active site of Plk1-PBD and checked for good hydrogen bond

interactions with the five key residues. This resulted in the

identification of 526 compounds with good hydrogen bonding.

Figure. 6 represents the binding orientation of one hit compound

(Chemistry_6177) within the Plk1-PBD and also how well the

compound fits into Hypo1. To further narrow down the candidate

list we placed an extra filter based on the pose and a docking score

greater than 60. This resulted in the identification of 93 high

confidence compounds likely to inhibit the Plk1-PBD (Table S1).

Figure 6. Docking of hit leads within the Plk1-PBD. A) Overlay of Hypo1 and the critical residues in the active site of Plk1-PDB with hit lead
compound Chemistry_6177. B) Chemistry 6177 forms hydrogen bond interactions with key residues (Trp414, Asp416, His538, and Lys540) in the Plk1-
PBD active site.
doi:10.1371/journal.pone.0101405.g006

Figure 7. In vitro evaluation of the 93 putative Plk1-PBD inhibitors. A) Fluorescence polarization assay to measure the effect of DMSO (green
bar), 100 mM Poloxin (red bar) or 100 mM of each of the 93 test compounds (blue bars) on the percent binding of Plk1-PBD to its substrate peptide 5-
carboxyfluorescein-GPMQSpTPLNG. B) Chemical structure of Chemistry_28272 and Poloxin and their respective IC50s for Plk1-PBD inhibition in
fluorescence polarization assays described in A. C) Overlay of Hypo1 and the critical residues in the active site of the Plk1-PDB with hit lead
compound Chemistry_28272. D) Zoomed view of ligand protein interaction showing that Chemistry_28272 forms hydrogen bond interactions with
key residues (Trp414, Asp416, His538, and Lys540) in the Plk1-PBD active site.
doi:10.1371/journal.pone.0101405.g007

Pharmacophore Modeling for Plk1-PBD Inhibitors
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Interestingly, these compounds have diverse scaffolds that are able

to satisfy the geometric constraints on Hypo1 to form similar

interactions. Indicating that multiple avenues can be taken to

develop therapeutics targeting the Plk1-PBD.

Evaluation of putative Plk1-PBD inhibitors
To evaluate whether the top 93 high confidence compounds

were indeed Plk1-PBD inhibitors, we acquired all 93 compounds

and used a fluorescence polarization assay to test the ability of

each compound to inhibit the binding of the Plk1-PBD to a

fluorophore-labeled peptide that contained its optimal recognition

motif, see Methods and Materials for complete details [22,26]. In

this assay, human Plk1-PBD (67 nM) was incubated with its

substrate peptide 5-carboxyfluorescein-GPMQSpTPLNG (8 nM)

in the presence of control DMSO, 100 mM Poloxin (a validated

Plk1-PBD inhibitor [27]) or 100 mM of each of the 93 test

compounds. The fluorescence polarization was calculated by

analyzing the fluorescence emission at 535 nm with a multi-well

plate reader. The percent inhibition was then calculated by

normalizing the data to the DMSO control. Under these

conditions, 28 out the 93 test compounds inhibited the Plk1-

PBD to .50% inhibition (Figure 7A, Table S1). Interestingly,

Chemistry_28272 showed almost complete inhibition of the Plk1-

PBD similar to Poloxin (Figure 7A). To further analyze the

potency of this top compound, we performed the same assay with

a 12-point-2-fold-titration (from 49 nM to 100 mM) of Poloxin or

Chemistry_28272. This analysis revealed that Poloxin had a half

maximal inhibitory concentration (IC50) of 19.3 mM and Chem-

istry_28272 had an IC50 of 37 mM (Figure 7B). Figure 7C and 7D

show the overlay of Hypo1 and the critical residues within the

active site of the Plk1-PDB that make contact with Chemis-

try_28272, which indicate that Chemistry_28272 forms hydrogen

bond interactions with key residues Trp414, Asp416, His538, and

Lys540. These data indicate that 30% of the 93 compounds

identified computationally as putative Plk1-PBD inhibitors had .

50% Plk1-PBD inhibitory activity in vitro and that Chemis-

try_28272 represents the lead compound.

Conclusions

The recent interest in developing inhibitors to the Plk1-PBD

necessitates a comprehensive analysis of the Plk1-PBD-ligand

interaction. Here, we have successfully developed a consensus

structure-based pharmacophore model that describes the Plk1-

PBD-ligand interaction. This structure-based pharmacophore

model was integrated with virtual screening and molecular

docking approaches to identify 93 potentially novel Plk1 inhibitors,

which meet AMDET and Rule of five properties. The testing of

these 93 compounds in vitro, with a Plk1-PBD-substrate binding

assay, indicated that most of the 93 compounds had Plk1-PBD

inhibitory activity and that Chemistry_28272 was the most potent

compound with an IC50 of 37 mM. Chemistry_28272 represents a

new class of Plk1-PBD inhibitors and could serve as a lead

compound for further therapeutic development.

Supporting Information

Table S1 Lists the top 93 compounds identified and tested in
vitro, their chemical structures, vendor information, and experi-

mental values from in vitro Plk1-PBD substrate peptide binding

assays displayed as the percent binding.
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