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Background. Meningioma is a prevalent type of brain tumor. However, the initiation and progression mechanisms involved in the
meningioma are mostly unknown. This study aimed at exploring the potential transcription factors/micro(mi)RNAs/genes and
biological pathways associated with meningioma. Methods. mRNA expressions from GSE88720, GSE43290, and GSE54934
datasets, containing data from 83 meningioma samples and eight control samples, along with miRNA expression dataset
GSE88721, which had 14 meningioma samples and one control sample, were integrated analyzed. The bioinformatics
approaches were used for identifying differentially expressed genes and miRNAs, as well as predicting transcription factor
targets related to the differentially expressed genes. The approaches were also used for gene ontology term analysis and
biological pathway enrichment analysis, construction, and analysis of protein-protein interaction network, and transcription
factor-miRNA-gene coregulation network construction. Results. Fifty-six upregulated and 179 downregulated genes were
identified. Thirty transcription factors able to target the differentially expressed genes were predicted and selected based on
public databases. One hundred seventeen overlapping genes were identified from the differentially expressed genes and the
miRNAs predicted by miRWalk. Furthermore, NF-κB/IL6, PTGS2, MYC/hsa-miR-574-5p, hsa-miR-26b-5p, hsa-miR-335-5p,
and hsa-miR-98-5p, which are involved in the transcription factor-miRNA-mRNA coregulation network, were found to be
associated with meningioma. Conclusion. The bioinformatics analysis identified several potential molecules and relevant
pathways that may represent critical mechanisms involved in the progression and development of meningioma. This work
provides new insights into meningioma pathogenesis and treatments.

1. Introduction

Meningioma accounts for 30% of primary brain tumors, with
an incidence of 5 cases per 100,000 individuals, and com-
monly occurs between 60 and 70 years of age, and this type
of cancer originates from the cap cells of the arachnoid layer
of the meninges and is usually benign [1–3]; however, malig-
nant tumors have a high tendency to recur [3]. Symptoms are
dependent on the location and can occur when the tumor

presses on nearby tissues [4, 5]. Occasionally, seizures, trou-
ble talking, dementia, vision problems, loss of bladder
control, or sided weakness may occur; however, many cases
never produce symptoms [6, 7]. Meningioma is more com-
mon in adults, with an incidence in females twice as much
as that of men [8, 9]. Surgery is the first choice of treatment,
and in recent decades, the treatment of meningioma has
improved; yet, an understanding of the underlying molecular
mechanisms behind its initiation and progression is lacking.
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Therefore, the pathogenesis of meningioma needs to be
explored to improve the diagnosis, treatment, and prognosis.

Transcription factors (TFs) are DNA-binding proteins
that inhibit tumors or act as oncogenes [10] and play an
essential role in the regulation of gene expression, apoptosis,
and cell growth [11]. Previous studies have revealed that
altered expression levels of several transcription factors
contribute to the aggressive development [12, 13] and malig-
nancy [14] of meningioma.

MicroRNAs (miRNAs) are short noncoding RNAs com-
posed of 18-25 nucleotides that regulate protein translation
of mRNA [15]. Mature miRNAs recognize and bind to the
3′ untranslated region of the target mRNA, regulating target
gene expression at the posttranscriptional level via mRNA
translation inhibition or degradation [16]. In meningioma,
numerous miRNAs act as tumor-promoting agents (onco-
genes) [17] and contribute to the development of the tumor
[18]. Thus, characterizing the regulatory roles of miRNAs
and TFs may provide valuable information about the under-
lying biological processes.

Recently, bioinformatics analyses were applied to explore
the underlying mechanisms of cancer to identify essential
genes, noncoding RNAs, and TFs involved in initiation and
progression for further experimental verification. Due to
the urgent need for a better understanding of the mecha-
nisms behind meningioma, this study aimed at exploring
the potential transcription factors/microRNAs/genes and
biological pathways associated with meningioma using
bioinformatics approach.

2. Materials and Methods

2.1. Data Collection.We searched several keywords separated
or combined, including “meningioma,” “meningiomas,”
“expression profiling by array,” and “Homo sapiens” in the
Gene Expression Omnibus (GEO) database (http://www
.ncbi.nlm.nih.gov/geo). Four series (GSEs) were selected in
this study, including the gene expression datasets
GSE88720, GSE43290, and GSE54934, as well as the miRNA
expression datasets GSE88721. GSE88721 contains 14
meningioma samples and one control sample, while
GSE43290 contains 47 meningioma samples and four control
samples. GSE54934 contains 22 meningioma samples and
Table 1 three controls samples. The detailed information
for each dataset is summarized in .

2.2. Differentially Expressed mRNA and miRNA Selection.
The raw data for the gene expression datasets were collected
for this analysis. The CEL files were preprocessed with Robust
Multiarray Average. The combat function in the sva package

was applied to remove the batch effects and unwanted sources
of variation in the different datasets. Differentially expressed
mRNAs and miRNAs were identified using the limma
package with the empirical Bayes method. Differentially
expressed genes (DEGs) were obtained from three datasets,
including GSE88720, GSE43290, and GSE54934. The inclu-
sion criteria included P < 0:05 and a fold change ≥1, DEMs
from GSE88721 were analyzed according to the inclusion
criteria P < 0:05 and a fold change ≥1.5.

2.3. Prediction of TFs and miRNA Targets and Construction
of a TF-miRNA-mRNA Network. The Transcriptional
Regulatory Relationships Unraveled by Sentence-based Text
mining (TRRUST, http://www.grnpedia.org/trrust/) data-
base was used to predict TFs that regulated DEGs based on
the existing literature [19] and followed the methods of Chen
et al. [20]. Eighty-five TFs that target DEGs were identified,
and the top 30 TFs were selected for further analysis. Subse-
quently miRWalk 2.0 (http://zmf.umm.uni-heidelberg.de/
apps/zmf/mirwalk2/miRpub.html) was used to predict the
potential target genes of miRNA with validated information
[21]. We identified overlapping mRNAs by intersecting the
DEGs from GSE88720, GSE43290, and GSE54934 dataset
with the mRNAs collected from miRWalk. Finally, a TF-
miRNA-mRNA coregulation network was constructed to
show the potential molecular mechanisms of meningioma
initiation and progression. Cytoscape was used to visualize
the interactions between the TF-miRNA-mRNA coregula-
tion networks.

2.4. Function Enrichment Analysis and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway
Analysis. The codifferential gene functional features in DEGs
were analyzed with Metascape [22]. All statistically enriched
terms (Gene Ontology/KEGG terms) were identified, and the
accumulative hypergeometric P values and enrichment fac-
tors were calculated and used for filtering. The remaining
significant terms were then hierarchically clustered into a tree
based on the Kappa-statistical similarities among their gene
memberships. Then a kappa score of 0.3 was applied as the
threshold to cast the tree into term clusters. Finally, a subset
of representative terms were selected from this cluster and
converted into a network layout. Terms with a similarity
score > 0:3 are linked by an edge. The network is visualized
with Cytoscape.

2.5. Protein-Protein Interaction (PPI) Network Construction
and Identification of Hub Genes. The online database
STRING was applied to construct a PPI network [23]. The
confidence score cutoffs were set as greater than 0.4. The

Table 1: Characteristics of the microarray expression profile datasets.

GEO accession Type Platforms Control Meningioma Country Submission date

GSE43290 Expression profiling by array GPL96 4 47 Spain 2013/1/4

GSE54934 Expression profiling by array GPL6244 3 22 USA 2014/2/12

GSE88720 Expression profiling by array GPL17692 1 14 Turkey 2016/10/13

GSE88721 miRNA profiling by array GPL21572 1 14 Turkey 2016/10/13
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Figure 1: Continued.
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Cytoscape software was then used to analyze the interactive
relationship of the candidate proteins. The Molecular
Complex Detection (MCODE), a plug-in used to score and
find parameters that have been optimized to produce the best
results for the network, was subsequently utilized to find
clusters in the network. The modules in the PPI network
were extracted using the Cluster Finding algorithm in
MCODE with a node score cutoff of 0.1, a k-core of 2, a
maximum depth of 100, and a degree cutoff of 2.

3. Results

3.1. DEGs and Differentially Expressed miRNAs (DEMs). The
three mRNA expression profiles (GSE88720, GSE43290, and
GSE54934), including 83 meningioma samples and eight
normal tissues, were included in this study. The sva package
was used in the following preprocessing to remove the batch
effects (Figure 1(a)). P < 0:05 and ∣logFC ∣ >1 were used as
the cut-off criteria. A total of 235 DEGs (Figure 1(b),

0
Row Z-score

5–5

Color key

(c)

Figure 1: Gene expression values and cluster analysis of the meningioma samples. (a) Gene expression values of each sample after
normalization. (b) Volcano plot of differentially expressed genes between meningioma and normal tissues. (c) Cluster analysis of the
meningioma and normal samples based on differentially expressed genes. Lighter red in the heatmap represents high expression, while
darker green indicates low expression. Black denotes medial expression.
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Supplementary 1) were identified, including 56 upregulated
genes and 179 downregulated genes in the meningioma
samples when compared to those in the normal samples.
DEGs, according to the value of |logFC|, were also visual-
ized on a heatmap (Figure 1(c)). The DEMs of GSE88721
were analyzed using the limma package. Using P < 0:05
and ∣logFC ∣ ≥1:5 as the cutoff criteria, a total of 272 DEMs
(Supplementary 2) were identified, including 246 upregu-
lated and 26 downregulated miRNAs.

3.2. TF-miRNA-mRNA Network. Upon analysis of 235 DEGs
for potential TFs in the TRRUST database, a database of
transcriptional regulatory networks, 86 TFs were identified
(Supplementary 3.). The top 30 enriched TFs were selected
for analysis. Subsequently, miRWalk 2.0 was used to predict
miRNA target genes with validated evidence. One hundred
seventeen overlapping genes were identified from the DEGs
in the GSE88720, GSE43290, and GSE54934 datasets and
from the miRNA target genes predicted by miRWalk. A
TF-miRNA-mRNA interaction network was constructed

based on the TRRUST and miRWalk analyses. The TF-
miRNA-mRNA network in meningioma, as visualized by
Cytoscape, is shown in Figure 2. Finally, the top 20 nodes
ranked by degree were identified by CytoHubba APP in
Cytoscape, including 1TF (NFKB1), 4 miRNAs (hsa-miR-
574-5p, hsa-miR-26b-5p, hsa-miR-335-5p, and hsa-miR-
98-5p), and 15 key genes (IL6, CHRDL1, PTGS2, MTHFD2,
SLC7A11, ADM, CRISPLD2, ROBO1, FHL2, SLC7A5, MYC,
FOSL1, PLLP, HIF1A, and NAV2) (Figures 2 and 3 and
Table 2).

The blue rectangle indicates TFs. The green oval indicates
DEGs, and the red rhombus indicates miRNAs. The sizes of
the oval and rhombus indicate the value of |logFC|.

The oval indicates DEGs, and the rhombus indicates
miRNAs. The color depth and degree are consistent with
the other figures.

3.3. Functional Enrichment of DEGs. GO analysis revealed
235 genes involved in several biological processes (BP),
including leukocyte migration, chemotaxis, and taxis

Figure 2: TF-miRNA-mRNA coregulation network.
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(Figure 4(a)). In terms of cellular components (CC), DEGs
were mostly enriched in the extracellular matrix, collagen-
containing extracellular matrix, and secretory granule lumen
(Figure 4(b)). The DEGs were mainly associated with
calcium ion binding, RAGE receptor binding, and receptor-
ligand activity in terms of molecular functions (MF)
(Figure 4(c)). Additionally, the DEGs enriched into multiple
KEGG pathways, including cell adhesion molecules (CAMs),
IL-17 signaling pathway, malaria, PI3K-Akt signaling path-
way, and TNF signaling pathway (Figure 4(d)). A clustered
tree, based on Kappa-statistical similarities of the significant
terms among their gene membership, is shown in Figure 5.

3.4. PPI Network and Modules. The PPIs with combined
scores greater than 0.4 were selected to construct the PPI net-
works. The entire PPI network was analyzed using MCODE,
and the top 5 modules were chosen (Figure 6). Furthermore,
the KEGG pathway enrichment analysis of the module genes
showed enrichment in the chemokine signaling pathway,
vascular smooth muscle contraction, cytokine-cytokine
receptor interaction, pathways in cancer, and cytokine-
cytokine receptor interaction (Figure 7(a)). The first 25 genes
were chosen by the CytoHubba plugin with the Maximal
Clique Centrality (MCC) method (Figure 7(b), Table 3).

The different colors represent different functional mod-
ules of the PPI network.

4. Discussion

Meningioma is typically a slow-growing tumor that is
derived from the meninges, the membranous layers
surrounding nerve tissue, such as the brain and spinal cord
[9, 17]. As this can become a debilitating disease, exploring
the mechanisms of meningioma is essential to prevent recur-
rence and progression. Therefore, we explored the potential
TFs/miRNAs/genes and biological pathways associated with
meningioma using bioinformatics.

In this study, 235 DEGs were identified from three
mRNA datasets, including 179 downregulated and 56 upreg-
ulated genes. TRRUST databases were used to predict 86 TFs
targeting DEGs, with the top 30 enriched TFs selected for
analysis. Subsequently, a TF-miRNA-target gene coregula-
tion network was constructed to study the potential molecu-
lar mechanisms, and the top 20 nodes ranked by degree were
identified, including 1 TF (NF-κB), 4 miRNAs (hsa-miR-
574-5p, hsa-miR-26b-5p, hsa-miR-335-5p, and hsa-miR-
98-5p), and 15 key genes (IL6, CHRDL1, PTGS2, MTHFD2,
SLC7A11, ADM, CRISPLD2, ROBO1, FHL2, SLC7A5, MYC,
FOSL1, PLLP, HIF1A, and NAV2), which may play signifi-
cant roles in meningioma. Among them, five key genes
are coregulated by at least two key miRNAs or TFs,
including IL6, PTGS2, SLC7A11, CRISPLD2, and MYC.
Once the network was constructed, enrichment analysis

HIF1A

IL6 hsa−miR−98−5p

ADM

PTGS2

MYC
NAV2

NF-𝜅B1

hsa−miR−335−5p
CRISPLD2

hsa−miR−574−5p

MTHFD2

SLC7A5

ROBO1

FOSL1 SLC7A11

CHRDL1

hsa−miR−26b−5p
FHL2

PLLP

Figure 3: The top 20 nodes identified by CytoHubba.

Table 2: Attributes of the top 20 nodes ranked by degree.

Name Degree Trends Type

NFKB1 14 TFs

hsa-miR-98-5p 17 Up miRNA

hsa-miR-574-5p 20 Up miRNA

hsa-miR-26b-5p 39 Up miRNA

hsa-miR-335-5p 41 Up miRNA

IL6 20 Down Gene

CHRDL1 29 Down Gene

PTGS2 18 Down Gene

MTHFD2 13 Down Gene

SLC7A11 15 Down Gene

ADM 22 Down Gene

CRISPLD2 23 Down Gene

ROBO1 15 Down Gene

FHL2 24 Down Gene

SLC7A5 36 Down Gene

MYC 27 Down Gene

FOSL1 14 Down Gene

PLLP 18 Down Gene

HIF1A 17 Down Gene

NAV2 17 Down Gene
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Figure 4: List of the GO enrichment terms for DEGs, including the top 10 clusters, and the top 10 enriched KEGG pathways.
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and PPI analysis were performed to understand the under-
lying functions of these DEGs. Intriguingly, the key genes
IL6, PTGS2, and MYC were also clustered into PPI
module 2 or 3. Module 2 genes were enriched in pathways
related to cancer, while module 3 genes were enriched in
vascular smooth muscle contraction and cytokine-
cytokine receptor interaction.

The results presented in this work provide an insight into
the biology of meningioma. Nonetheless, most of these mol-
ecules have not been studied in meningioma. Previous stud-
ies determined that NF-κB has a crucial role in inflammation
and cancer initiation and progression through its ability to
bind and regulate the target molecule to promote the growth
of the tumor cells, suppress apoptosis, and promote angio-
genesis [24, 25]. It has been reported that NF-κB plays an
essential role in a significant number of human cancers [26,
27], but very few studies have elucidated the function of

NF-κB in the pathogenesis of meningioma. NF-κB was
identified as key TF in this study and interacts with many
DEGs and miRNAs. This may provide new insight in the role
of TFs in meningioma.

The prognostic value of hsa-miR-574-5p, hsa-miR-26b-
5p, hsa-miR-335-5p, and hsa-miR-98-5p in meningioma
has not been reported in previous studies; however, the
importance of these four miRNAs should not be underesti-
mated. We discovered that these miRNAs are relevant to
meningioma. In a previous study, it was demonstrated that
knockdown of hsa-miR-574-5p expression could promote
colony formation and cell invasion in colorectal cancer cells.
The mechanism includes hsa-miR-574-5p negatively
regulating MACC-1 expression to reach suppression in
colorectal cancer [28]. However, several studies indicate
that hsa-miR-574-5p is upregulated in breast cancer and
pilocytic astrocytoma compared to that in control groups

Extracellular matrix
Leukocyte migration
Muscle tissue development
Positive regulation of response to external stimulus
Blood vessel development
Extracellular matrix organization
Calcium ion binding
Regulation of chemotaxis
Blood circulation
Response to growth factor

Learning or memory
Negative regulation of cell proliferation
Head development
Chemokine production
Chemokine-mediated signaling pathway
Regulation of smooth muscle cell proliferation
Secretory granule lumen
Response to inorganic substance
Tissue morphogenesis
RAGE receptor binding

Figure 5: Hierarchically clustered tree of the significant terms based on Kappa-statistical similarities among their gene memberships.
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[29, 30]. It can be speculated that hsa-miR-574-5p has a
versatile role in tumor initiation.

miR-26b plays an important role in the proliferation and
metastasis of various cancer types, such as hepatocellular
carcinoma and prostate cancer [31, 32], and by directly tar-
geting SCL17 to promote apoptosis and inhibit proliferation
of MCF7 cells. It was also stated in another study that upreg-
ulation of hsa-miR-26b-5p is relevant to radiation-associated
breast cancer tissue samples, suggesting it may represent a
radiation marker in breast cancer [33]. hsa-miR-26b-5p is
known to be significantly overexpressed in both peripheral
blood and tumor samples from patients with small-cell oste-
osarcoma, indicating that hsa-miR-26b-5p may be involved
in small-cell osteosarcoma tumorigenesis [34].

Furthermore, an miRNA microarray assay in colorectal
cancer tissues showed that hsa-miR-335-5p significantly
associates with rectal cancer [35], and another study revealed
that hsa-miR-335-5p may influence the recurrence and sur-
vival of osteosarcoma by regulating ceRNA-ceRNA interac-
tion modules, indicating that hsa-miR-335-5p may be
considered a potential novel therapeutic target in osteosar-
coma [36].

Moreover, researchers found that hsa-miR-98-5p is
upregulated in two NSCLC cell lines. Epigallocatechin-3-
gallate (EGCG) can inhibit hsa-miR-98-5p. After the inhibi-

tion of hsa-miR-98-5p, the efficacy of cisplatin on NSCLC
cell lines was enhanced. The findings indicate that hsa-
miR-98-5p could be a potential target in clinical cisplatin
treatment of NSCLC [37].

Our analysis also predicted MYC, PTGS2, and IL-6 in
both the TF-miRNA-mRNA coregulation network and PPI
network, with a high degree of interaction. This result indi-
cates that they may act as independent factors associated with
meningioma prognosis. Members of the MYC family of pro-
tooncogenes are the most commonly deregulated genes in all
human cancers. MYC proteins drive an increased cellular
proliferation and facilitate multiple aspects of tumor initia-
tion and progression, thereby controlling all hallmarks of
cancer [38]. A previous study has reported that MYC is a
hub gene in meningioma, which is consistent with our results
[39]. Another molecule predicted is PTGS2, which encodes
the COX-2 enzyme and is expressed in many tumor types
[40, 41]. COX-2 expression also has a strong association with
tumoral grade and recurrence in meningioma [42, 43]. These
findings indicate that the positive association of COX-2 with
meningioma represents a potential area for therapeutic inter-
vention with selective COX-2 inhibitors, either as an adjunct
or in combination with radiation therapy. The final molecule
predicted is IL-6, which belongs to the chemotactic cytokine
family and correlates with occurrence, invasion, and
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metastasis of cancer [44]. Recent evidence suggests that, of
the proinflammatory cytokines, IL-6 is a central player link-
ing chronic inflammation to cancer by driving tumor initia-
tion and subsequent growth and metastasis. A few studies
have shown the role of IL-6 in meningioma. However, it is
recently proposed that IL-6 contributes to antitumor immu-
nity by mobilizing T cell responses as a pleiotropic cytokine,
besides being a critical driver of cancer [45].

5. Conclusions

We constructed a TF-miRNA-mRNA coregulation network
to analyze the potential molecular mechanisms of meningi-
oma and identified 1 TF, 3 key genes, and 4 miRNAs. Though
the indicated key genes are associated with meningioma, the
functions of the miRNAs have not been previously evaluated.
The results from the KEGG function analysis show that
module genes mainly enrich in the chemokine and
cytokine-signaling pathway. Among them, the NF-κB/hsa-
miR-98-5p/IL6 coregulation pair is predicted to be most
relevant to the pathogenesis of meningioma. These TFs, miR-
NAs, and key genes which are related to meningioma may
serve as biomarkers for the detection, prognosis, monitoring,
and prediction of therapeutic responses in meningioma and
may provide a novel direction for further experiments.
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