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CGK733 alleviates ovariectomy-induced bone loss
through blocking RANKL-mediated Ca2+ oscillations
and NF-kB/MAPK signaling pathways

Minglian Xu,1,2,5 Dezhi Song,1,2,5 Xiaoxiao Xie,1,2 YiwuQin,1,2 Jian Huang,1,2 ChaofengWang,1,2 Junchun Chen,1,2

Yuangang Su,1,2 Jiake Xu,3,4 Jinmin Zhao,1,2,* and Qian Liu1,2,6,*

SUMMARY

Osteoporosis is a prevalent systemic metabolic disease in modern society, in which patients often suffer
from bone loss due to over-activation of osteoclasts. Currently, amelioration of bone loss through mod-
ulation of osteoclast activity is a major therapeutic strategy. Ataxia telangiectasia mutated (ATM) inhib-
itor CGK733 (CG) was reported to have a sensitizing impact in treating malignancies. However, its effect
on osteoporosis remains unclear. In this study, we investigated the effects of CG on osteoclast differen-
tiation and function, as well as the therapeutic effects of CG on osteoporosis. Our study found that CG
inhibits osteoclast differentiation and function. We further found that CG inhibits the activation of
NFATc1 and ultimately osteoclast formation by inhibiting RANKL-mediated Ca2+ oscillation and the NF-
kB/MAPK signaling pathway. Next, we constructed an ovariectomized mouse model and demonstrated
that CG improved bone loss in ovariectomized mice. Therefore, CG may be a potential drug for the pre-
vention and treatment of osteoporosis.

INTRODUCTION

Bone homeostasis refers to the process through which bone tissue, under its own regulation, keeps the dynamic equilibrium between bone

creation and bone resorption.1 Disruption of bone homeostasis can result from the dysregulation of the metabolic activity of osteoblasts and

osteoclasts. Osteoclasts perform critical roles in the control of bone resorption in both healthy and pathological states.2 Numerous osteolytic

disorders can result from osteoclast hyperfunction.3 As with postmenopausal osteoporosis, estrogen deprivation promotes transitory activa-

tion of osteoclasts, leading to bone loss, microstructural destruction, increased fragility, and increased fracture risk, which is frequently con-

nected with life-threatening mortality and morbidity, and enormous economic consequences to people and society.4

Osteoclasts are the principal bone-resorbing cells in the current understanding.5 Osteoclasts are multinucleated cells that have reached

their final differentiation stage.6 They are descended frommonocytes in the hematopoietic stem cell lineage and are affected by various stim-

uli. These include macrophage colony stimulating factor (M-CSF) and receptor activators of nuclear factor-B (RANK) ligand (RANKL), both of

which could be secreted by stromal cells and osteoblasts.7–9 For RANKL and its receptor RANK, TNF receptor-associated factor 6 (TRAF6)

functions as an adapter molecule.10,11 The I kappa B kinases (IKKs) are responsible for the nuclear factor-kB (NF-kB)-induced production

of proto-oncogene c-Fos (c-Fos), while the mitogen-activated kinases (MAPK) pathway is responsible for the activation of Jun proteins.12

The activating protein-1 (AP-1) complex is formed when the proteins c-Fos and Jun bind to one another.13 NFATc1, which plays an essential

part in controlling the formation of osteoclasts, is mediated by AP-1 and NF-kB.14,15 Furthermore, calcium oscillatory signaling regulates

NFATc1, activating calcium-regulated neurophosphatases that facilitate NFATc1 dephosphorylation and encourage its entrance into the nu-

cleus.16 A series of genes, including the NFATc1 protein itself, can be activated by the transcription factor NFATc1 to produce an auto-ampli-

fying loop.17 Further induction of osteoclast-specific target gene expression consists of matrix metalloproteinase 9 (Mmp9), cathepsin K

(Ctsk), acid phosphatase 5 (Acp5), v-ATPase V0 domain (ATP6V0D2) and dendritic cell-specific transmembrane protein (Dc-stamp).18,19 There-

fore, osteoclast transitional differentiation or its function can be successfully prevented by decreasing the RANKL-induced NFATc1 signaling

pathway, having a therapeutic effect on osteoclast-associated skeletal disorders.
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Figure 1. CG suppresses RANKL-induced osteoclastogenesis in vitro

(A) The chemical structure of CGK733 (CG).

(B) The cell viability of BMMs treated with CG was detected by CCK-8 assay (n = 3).

(C) Flow cytometry was applied to examine the apoptosis of BMMs treated with 3 mM and 6 mM CG for 48 h.
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Currently, the principal treatment approaches for osteoporosis aim to constrain bone resorption and increase bone matrix production.

Bisphosphonates, RANKL antibodies, and selective estrogen receptor modulators are examples of anti-bone resorption medications that

prevent bone resorption.20,21 Teriparatide is one example of a drug that helps build bone.22 There is no denying that these medications

work, but there are some unavoidable side effects, such as bisphosphonates, RANKL antibodies, whichmay lead to jaw bone death and atyp-

ical femur fractures,23 selective estrogen receptor modulators, which may potentially increase the risk of endometrial and breast cancer with

long-term use,24 and teriparatide, which most commonly causes nausea, headaches, and dizziness.25 Therefore, it is critical to investigate

medications that can cure osteoporosis yet have fewer negative effects.

Ataxia telangiectasia mutated (ATM) is a serine-threonine protein kinase that belongs to the phosphatidylinositol 3-kinase-related ki-

nase (PIKK) family. Capillary dilatation, ATM and Rad3-related (ATRs), and DNA-dependent protein kinases (DNAPKcs) are also in this

group.26 Early research found that the ATM/ATR inhibitor increased cellular sensitivity to radiotherapy by inhibiting DNA repair and

cell cycle checkpoints in tumor cells.27 ATM detects ionizing radiation and other DNA-damaging agents by activating multiple effectors

and participating in various signaling pathways.28 In vivo studies have shown that blocking the ATM-dependent NF-kB pathway increases

chemotherapy sensitivity in acute lymphoblastic leukemia.29 ATM deficiency also reduces neural stem cell proliferation via the oxidative

stress-mediated p38 MAPK signaling pathway.30 Current research indicates that this class of drugs can prevent osteoporosis,31 but

studies on the ATM/ATR inhibitor CG are lacking in this regard. Therefore, this study aimed to explore the anti-osteoporosis potential

of CG.

RESULTS

CG reduces RANKL-induced osteoclast production in vitro

First, the toxicity of CG (Figure 1A) on BMMs was examined after 96 h; the CCK-8 assay revealed no cytotoxic impact on BMMs in the

concentration range of 1–6 mM of CG (Figure 1B). Moreover, exposure of BMMs to 3 mM or 6 mM CG for 48 h did not affect apoptosis

(Figure 1C). To find out if CG can prevent osteoclastogenesis, we cultured BMMs with different doses of CG (0, 1, 2, 3, 4, 5, and 6 mM)

and stimulated with RANKL. CG reduced osteoclast formation dose-dependently within the safe range, with the highest impact at

6 mM (Figures 1D and 1E). To learn more about how CG affects the process of osteoclast development at various stages. The results

showed that in BMMs stimulated with RANKL in culture for 7 days, CG had an inhibitory effect on the early and middle stages of the

osteoclast formation process, more notably on the early stages of osteoclast differentiation (Figures 1F and 1G). Podosome belts are

the symbol of mature osteoclasts, and osteoclasts attach to the bone matrix through the podosome belt. To examine how CG affects

the podosome belt of the osteoclast cytoskeleton, we stained mature osteoclasts with rhodamine phalloidin and analyzed the resulting

structural variation in the podosome belt (Figure 1H). Osteoclast function relies on the creation of podosome belts, and these podosome

belts were visible in the Comparison group. In contrast, in the CG-treated group, a significant reduction in the area of the podosome

belt was observed (Figure 1I). In addition, the effect of CG on osteoblast proliferation and differentiation was investigated in this study.

The results showed that CG had no significant effect on the proliferation and differentiation of osteoblasts (Figure S1). According to

the above results, CG inhibited RANKL-induced osteoclast development in vitro without having a discernible deleterious impact on the

osteoclast.

CG inhibits the expression of NFATc1 and osteoclast-specific genes

The upregulation of related specific expression during RANKL stimulation of osteoclast formation boosts osteoclast maturation and bone

resorption function. Thus, qPCR was performed to identify osteoclast-associated genes including Dc-stamp, c-Fos, Mmp9, Ctsk, Acp5,

and Nfatc1. RANKL increased the expression of these genes in mature osteoclasts, while CG decreased it considerably (Figure 2A). Further-

more, the transcription factor NFATc1 is primarily responsible for controlling osteoclast formation. When this transcriptional mechanism is

activated, it functions as amaster switch to control downstream target genes such as Ctsk andAtp6v0d2. We analyzed the protein expression

levels in BMMs following CG addition to learningmore about the part that CG plays in the production of RANKL-induced osteoclasts. After 1,

3, and 5 days of RANKL stimulation of BMMs, CG administration for 3 days significantly suppressedNFATc1 protein expression in comparison

to the control group, but no statistical significance was seen for 5 days. CTSK, ATP6V0D2, and c-Fos protein expression increased with time,

whereas CG dramatically lowered CTSK, ATP6V0D2, and c-Fos protein expression, mostly at 3 and 5 days (Figure 2B). The findings showed

that CG inhibited NFATc1 and c-Fos, which are needed for RANKL-mediated osteoclast formation. Meanwhile, CG blocked its downstream

proteins such as CTSK andATP6V0D2 (Figures 2C–2F). Taken together, CGprevents osteoclasts fromgenerating and functioning via blocking

the activation of NFATc1 and the expression of its downstream proteins.

Figure 1. Continued

(D) TRAP staining images of BMMs cultured with or without RANKL in the presence of indicated concentrations of CG from 0 to 6 mM (scale bar = 400 mm).

(E) TRAP+ osteoclasts were quantified in each well (nuclei R3).

(F) Stage representative images of TRAP+ osteoclasts treated with CG (scale bar = 400 mm).

(G) Quantitative analysis of TRAP+ osteoclasts (nuclei R3).

(H) Representative images of podosome belts in the presence or absence of CG (scale bar = 1000 mm).

(I) The podosome belt area was quantified by ImageJ software.

All data are presented as mean G SD. Statistical significance was assessed via one-way ANOVA method. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 2. CG inhibits the expression of osteoclast-specific genes and RANKL-induced NFATc1

(A) qPCR was used to detect the expression levels ofNfatc1, c-Fos, Acp5, Dc-stamp, Mmp9 andCtsk relative to b-actin in BMMs stimulated with RANKL for 5 days

in the presence of CG (n = 3). All data are presented as mean G SD. Statistical significance was assessed via one-way ANOVA method.

(B) RepresentativeWestern blot images of the expression levels of NFATc1, CTSK, ATP6V0D2 and c-Fos. BMMswere cultured with or without CG treatment in the

presence of RANKL for 1, 3, and 5 days, and the expression of related proteins was detected by western blot.

(C–F) Quantification of the ratios of band intensity of NFATc1, CTSK, ATP6V0D2, and c-Fos relative to b-actin (n = 3). All data are presented as mean G SD.

Statistical significance was assessed via two-way ANOVA method. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 3. CG blocks RANKL-induced activation of the NF-kB/MAPK signaling pathway

(A) The representative immunofluorescence images of p65 nuclear translocation following RANKL stimulation for 30 min without or with CG (6 mM). (scale bar =

100 mm, the inset enlarged images scale bar = 25 mm).

(B and C) Quantification of nuclear translocation of P65 and nuclear/cytoplasmic Fluorescence ratio (n = 3). All data are presented as mean G SD. Statistical

significance was assessed via one-way ANOVA method.
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CG blocks the NF-kB/MAPK signaling pathways

To further understand the mechanism of CG-mediated suppression of NFATc1 activation, we looked into NFATc1 upstream signaling net-

works, such as NF-kB and MAPK. Immunofluorescence staining revealed a substantial decrease in P65 nuclear translocation after CG treat-

ment compared with the control group (Figures 3A–3C). Following that, we investigated whether CG affected NF-kB/MAPK signaling

pathway using Western blotting. The experimental results revealed that CG reduced P65 phosphorylation at 5 and 10 min and inhibitor of

nuclear factor kappa B alpha (IkBa) degradation at 20 and 30 min (Figures 3D–3F). The findings demonstrated that CG effectively suppressed

P65 nuclear translocation. Additionally, western blotting showed that CGmadeERK, P38, and JNK less phosphorylated (Figure 3G). P38 phos-

phorylation was suppressed by CG at 5 and 10 min, whereas ERK and JNK phosphorylation was considerably decreased at 10 and 20 min

(Figures 3H–3J). In conclusion, CG inhibits osteoclast growth by lowering inhibition of osteoclast formation by dampening stimulation of

the NF-kB/MAPK signaling pathway.

CG suppresses osteoclast bone resorption and the oscillation of intracellular Ca2+

The next step, to see if CG inhibits osteoclast activity in bovine bone chips, hence reducing bone resorption. RANKL matured the BMMs into

osteoclasts, which were then cultured by adding 0, 3 or 6 mMCG. Using scanning electronmicroscopy, bone chips were observed (Figure 4A),

and we used ImageJ to measure the bone resorption area. The data revealed that there was a dose-dependent inhibition of absorption func-

tion byCG (Figures 4B and 4C). Given that calcium signaling can influence various life activity systems such as osteoclastmotility, function, and

apoptosis. We analyzed the impact of CG on RANKL-induced intracellular calcium oscillations to determine the molecular mechanism by

which CG inhibits osteoclast formation and activity. Calcium signaling is triggered in response to RANKL stimulation, resulting in calcium os-

cillations that induce NFATc1 nuclear translocation and self-amplification. RANKL stimulation increased Ca2+ oscillations compared to the

control group, while CG therapy significantly reduced RANKL-induced Ca2+ oscillations (Figures 4D and 4E).

CG prevents estrogen deficiency-induced osteoporosis

Based on the results of in vitro testing, we explored further the potential therapeutic effects of CG. This study used an OVX mouse model to

simulate systemic osteoporosis. After surgery, mice were given intraperitoneal injections of E2 (100 ng/kg), CG (3 or 6 mg/kg), or saline every

other day for 6 weeks (Figure 5A). Throughout the pharmacological treatment period, the mice gained weight steadily with no notable dif-

ferences between groups (Figure 5B). Neither infections nor fatalities were noted in the mice while they were receiving the medication. H&E

staining of the heart, liver, and kidney revealed that CG had no effect on the cell morphology (Figure S2). Additionally, serological index anal-

ysis demonstrated that CG successfully decreased the expression of CTX-1, an osteoclast-specific marker (Figure 5C). Bone loss caused by

OVX was reduced by E2 and CG, according tomicro-CT assay (Figure 5D). The distal femur was analyzed bymicro-CT for BV/TV, Tb.Sp, Tb.N,

and Tb.Th, all of which are bone-related features. When compared with the control group, CG treatment caused significantly less bone loss

(Figures 5E–5H). H&E staining of mice femoral sections provided additional evidence of the improvement in bone volume following CG ther-

apy. The H&E staining and TRAP staining findings revealed that the CG-treated group had considerably more bone trabecular volume and

fewer TRAP-positive osteoclasts than theOVX-treatedgroup (Figures 6A, 6B, 6D, and 6E). Meanwhile, immunohistochemical staining demon-

strated that CG therapy decreased CTSK-positive cell area (Figures 6C and 6F). As expected, CG protected against estrogen deficiency-

induced bone loss.

DISCUSSION

Osteoporosis is a systemic skeletal disorder characterized by decreasing bone mass, degradation of the bone microarchitecture, increased

bone fragility, and an elevated risk of fracture.32 Although it can happen at any age, it is more common in postmenopausal women and older

males. Excessive number and hyperfunction of osteoclasts are the primary causes of various osteolytic disorders, such as osteoporosis and

periprosthetic joint replacement.33 The current drugs for osteoporosis are effective but havemany side effects and are less effective in tumor-

related bone loss. The main clinical application of CG is tumor sensitization, however, its potential in preventing bone loss is unknown.

This work shows howCG inhibits NF-kB/MAPK signaling pathway andCa2+ oscillations, which prevents NFATc1 activation, to impact oste-

oclast development and function in vitro. The present research also showed that CG worked very well in the OVX mouse model of bone loss

caused by a lack of estrogen.

RANKL signaling and osteoclast development are closely connected processes. Through its receptor RANK, RANKL starts a signaling

cascade.34 Next, TRAF6 and adhesion molecules engage the NF-kB and MAPK signaling pathways, which in turn activate transcriptional

Figure 3. Continued

(D) Representative western blot images of the effects of CG on P65 phosphorylation and IkBa degradation induced by RANKL. BMMs starved for 3 h with or

without CG pretreatment were stimulated with RANKL (50 ng/mL) at series time points (0, 5, 10, 20, 30, 60 min). The expression of total and phosphorylated

proteins was detected by western blot.

(E and F) Quantification of the ratios of band intensity of p-P65 relative to P65 and IkBa relative to b-actin. (n = 3).

(G) Representative Western blot images of the effects of CG on MAPK pathway. The effect of CG on RANKL-induced activation of P38, ERK, and JNK was

detected by Western blot.

(H–J) The ratios of phosphorylated and non-phosphorylated forms of P38, ERK and JNK were quantified (n = 3).

All data are presented as mean G SD. Statistical significance was assessed via two-way ANOVA method. *p < 0.05, **p < 0.01, ***p < 0.001.
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regulators and cause the development of bone breakdown processes. NF-kB activators control osteoclast development, and bone resorp-

tion, which are essential for preserving calcium homeostasis.35,36 It has been shown that when NF-kB subunits p50 and p52 are deleted at the

same time in mice, osteoclast formation is limited, which leads to osteosclerosis.37 The macromolecular IkB kinase complex (IKK) phosphor-

ylates IkBa protein in the conventional pathway of NF-kB activation, followed by fast ubiquitination and subsequent destruction of IkBa pro-

tein via the ubiquitin-mediated proteasomal degradation pathway. When IkBa is degraded, the NF-kB protein is able to translocate from the

cytoplasm to the nucleus and attach to its cognateDNAbinding site, controlling transcription of downstream target genes.38,39 Overaction of

NF-kB in osteoclasts is associated with a set of osteolytic diseases.40,41 Here, we found that CG blocks NF-kB pathway activation by prevent-

ing P65 nuclear translocation, P65 phosphorylation, and IkBa degradation. TRAF6 recruits RANKL and RANK binding to activate the MAPK

pathway, which includes ERK, JNK, and p38.42 When it comes to osteoclast differentiation and survival, ERK signaling is crucial.43,44 One study

found that cells from JNK1-deficient bone marrow did not differentiate into osteoclasts, indicating that JNK1 activation plays an essential

regulatory function in osteoclast formation.45 p38 is also critical in the formation of osteoclasts.46 Our further research revealed that CG could

also decrease the phosphorylation of ERK, JNK, and P38, which has an impact on how the MAPK signaling pathway is activated by RANKL.

NFATc1 is a dominant transcription factor in osteoclastogenesis.47–49 There is a large body of evidence demonstrating that embryonic

stem cells lacking NFATc1 fail to develop into osteoclasts. furthermore, NFATc1 knockout mice have severe osteosclerosis.50–52 It regulates

various osteoclast-specific genes, including Acp5, Mmp9, Ctsk, and Dc-stamp, through binding to MITF and c-Fos, which is critical for the

formation of osteoclasts. c-Fos is an essential part of the AP-1 activator protein, which functions as a transcription factor.17,53 c-Fos is

Figure 4. CG attenuates Ca2+ oscillations and bone resorption activity of osteoclasts in vitro

(A) Representative images of bone resorption areas formed by osteoclasts that were treated with CGwere obtained by scanning electronmicroscopy (scale bar =

200 mm) and representative images of TRAP-stained cells (scale bar = 2000 mm, the inset enlarged images scale bar = 400 mm).

(B and C) The area of bone resorption pits and TRAP-positive cells per well was quantified using ImageJ software (n = 3).

(D) Line chart of Ca2+ oscillatory fluorescence intensity from negative control, positive control, and CG (6 mM) treated groups.

(E) Quantitative analysis of changes in Ca2+ oscillation intensity in each group (n = 10 cells per group). The values of intensity change were calculated by the

maximum peak intensity minus the minimum intensity and then comparing it to the average value.

All data are presented as mean G SD. Statistical significance was assessed via one-way ANOVA method. *p < 0.05, **p < 0.01, ***p < 0.001.
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considered a direct regulator of NFATc1 since it is recruited to the NFATc1 promoter during early osteoclast formation. Mice deficient c-Fos

developed osteosclerosis.54 In this research, the transcriptional activity of NFATc1 and c-Fos as well as the expression of their downstream

transcription factors were both considerably repressed by CG. Specifically, NFATc1 and its downstream proteins ATP6V0D2, MMP-9, and

Figure 5. CG treatment prevents bone loss induced by ovariectomized in vivo

(A) Diagram of the process and grouping of animal experiments was created by https://www.biorender.com/. ELISA, enzyme-linked immunosorbent assay; IHC,

immunohistochemistry.

(B) Weight curve of mice following OVX surgery at various time periods (n = 6 mice per group).

(C) CTX-1 levels in serum were measured using an ELISA kit (n = 6 mice per group).

(D) Representative of Micro CT images showed that the bone loss was prevented by CG administration (n = 6 mice per group).

(E–H) Quantitative analysis of parameters relating to bone microstructure, including volume/tissue volume (BV/TV), the trabecular number (Tb. N), the trabecular

separation (Tb. Sp), and the trabecular thickness (Tb. Th) (n = 6 mice per group).

All data are presented as mean G SD. Statistical significance was assessed via one-way ANOVA method. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 6. CG ameliorates osteoclast activity in a mouse model of osteoporosis induced by ovariectomized

(A) Representative images of histological analysis of the left femur stained with H&E.

(B) Representative images of histological analysis of the left femur stained with TRAP.

(C) CTSK-positive cells were marked as brownish-yellow (scale bar = 300 mm, the inset enlarged images scale bar = 120 mm).
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CTSK were significantly elevated in response to RANKL activation, whereas CG significantly curbed the expression of these proteins. This

could be a result of CG disrupting the NF-B/MAPK signaling pathway.

Calcium (Ca2+) is vital for the regulation of osteoclast development and function. Ca2+ oscillations are a bone resorption and osteoclasto-

genesis phenomenon caused by RANKL via calcium-regulated neurophosphatase.55,56 RANKL activates NFATc1 gene transcription and pro-

tein expression by inducing sustained calcium oscillations in BMMs, which in turn activates ATP6V0D2,MMP-9, and CTSK, thereby promoting

acid secretion and organic matter degradation by osteoclasts and accelerating bone loss.57 We discovered that RANKL-induced Ca2+ oscil-

lations were reduced by CG treatment, implying that CG affects the auto-amplification of NFATc1, at least in part by inhibiting Ca2+ oscilla-

tions, and thus inhibits the bone resorption function of osteoclasts. Considering the intimate relationship between osteoblasts and osteo-

clasts as well as the crucial function that osteoblasts also perform in bone remodeling. The effects of CG on the generation of osteoblasts

were also studied by ALP, and the results showed that CG did not influence osteoblasts.

Finally, we used the OVX mouse model to examine whether CG has in vivo a healing effect on osteoporosis. Micro-CT scans revealed a

severe bone loss in mice after OVX surgery, which CG reversed in a dose-dependent manner, similar to the effect of E2. Specifically, the OVX

group had the lowest TV/BV, and this index increased significantly with the use of CG; Tb.N and Tb.Th exhibited a similar pattern. Conversely,

the OVX group had the highest Tb.Sp, and CG significantly decreased this index. Consistent with the results of the Micro-CT scan, CG signif-

icantly decreased osteoclasts in vivo and increased bone mass, as evidenced by the TRAP and H&E staining results of bone tissue. Immuno-

histochemical analysis of bone tissue revealed that CG significantly inhibited CTSK expression in the OVX mouse model. Furthermore, CG

had no significant toxic effects on the heart, liver, or kidneys of mice.

In conclusion, our findings show that CG inhibited NFATc1 through the RANKL-induced Ca2+ oscillations signaling and NF-kB/MAPK

pathway, which suppressed osteoclast formation and its bone resorption function (Figure 7). CG was also found to improve bone loss in

OVXmice. Therefore, CGmay be an efficient treatment option for the treatment of osteoclast-mediated osteolytic diseases like osteoporosis.

Limitations of the study

Our research is mainly conducted in vitro and in vivo. In vitro, we found that CG inhibited osteoclast differentiation and its bone resorption

function by inhibiting RANKL-mediated Ca2+ oscillations and the NF-kB/MAPK signaling pathway. And further sequencing is needed to

search for a more specific molecular mechanism by which CG regulates osteoclast differentiation and function. In vivo, we constructed an

Figure 7. A proposed scheme depicting the inhibition of CG on RANKL-induced NFATc1 activation during osteoclast differentiation

Our findings demonstrate that CG suppresses NFATc1 activation and downregulates osteoclast-specific genes such as Mmp9, Dc-stamp, Ctsk, and Acp5 via

inhibiting the calcium signaling pathway and the RANKL-induced NF-B/MAPK signaling pathway. NFATc1, nuclear factor of activated T cells 1; Mmp9, matrix

metallopeptidase 9; Ctsk, cathepsin K; Dc-stamp, dendritic cell-specific transmembrane protein; Acp5, tartrate-resistant acid phosphatase; RANKL, receptor

activator of nuclear factor-kB (NF-kB) ligand; NF-kB, nuclear factor-kB; MAPKs, mitogen-activated protein kinases.

Figure 6. Continued

(D) BV/TV was quantitatively analyzed in tissue sections (n = 6 mice per group).

(E) TRAP-positive osteoclast surface per trabecular surface (OC. S/BS) was quantitatively analyzed (n = 6 mice per group).

(F) The level of CTSK was quantitatively measured in the left femur (n = 6 mice per group).

All data are presented as mean G SD. Statistical significance was assessed via one-way ANOVA method. *p < 0.05, **p < 0.01, ***p < 0.001.
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OVX mouse model to verify that CG ameliorates bone loss in estrogen deficiency, and it may be necessary to verify the role of CG in amelio-

rating bone loss in a different model of osteoporosis.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

NFATc1 antibody Santa Cruz Cat# sc-7294; RRID:AB_2152503

CTSK antibody Santa Cruz Cat# sc-48353; RRID:AB_2087687

P65 antibody Santa Cruz Cat# sc-8008 Alexa Fluor� 546; RRID:AB_628017

c-Fos antibody Abcam Cat# ab134122; RRID:AB_2848208

ATP6V0D2 antibody Abcam Cat# ab236375

b-actin antibody Abcam Cat# ab6276; RRID:AB_2223210

JNK antibody Cell Signaling Technology Cat# 9252; RRID:AB_2250373

p-JNK antibody Cell Signaling Technology Cat# 4668; RRID:AB_823588

P65 antibody Cell Signaling Technology Cat# 8242; RRID:AB_10859369

p-P65 antibody Cell Signaling Technology Cat# 3033; RRID:AB_331284

IkBa antibody Cell Signaling Technology Cat# 4812; RRID:AB_10694416

ERK antibody Cell Signaling Technology Cat# 4695; RRID:AB_390779

p-ERK antibody Cell Signaling Technology Cat# 4370; RRID:AB_2315112

p38 antibody Cell Signaling Technology Cat# 8690; RRID:AB_10999090

p-P38 antibody Cell Signaling Technology Cat# 4511; RRID:AB_2139682

Secondary antibodies Thermo Fisher Scientific Cat# SA535571; RRID:AB_2556775, Cat# SA535521;

RRID:AB_2556774

Biological samples

Murine bone marrow isolates Guangxi Key Laboratory of Regenerative Medicine N/A

Chemicals, peptides, and recombinant proteins

CGK733 (CG) Med Chem Express CAS: 905973-89-9

DMSO Solarbio D8371

a-MEM Thermo Fisher Scientific 12561–056

FBS Thermo Fisher Scientific 10099141 C

P/S Thermo Fisher Scientific 15140–122

RANKL R&D Biotechnology 462-TEC-500

M-CSF R&D Biotechnology 416-mL-500

PFA Solarbio P1110

E2 Solarbio E8140

PBS Solarbio P1020

BSA Solarbio A8020

Triton X-100 Solarbio T8200

DAPI Solarbio C0065

Trizol Thermo Fisher Scientific 15596018

SYBR Green Master Roche 04913914001

Fluo-4, AM Thermo Fisher Scientific F14201

RIPA Sigma-Aldrich R0010

Loading buffer Beyotime P0015L

DMEM Thermo Fisher Scientific 11054–001

Tribromoethanol Nanjing Aibei Biotechnology M2910

(Continued on next page)
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Lead contact

Requests for further information, reagents and resources may be directed to our lead contact, Qian Liu (liuqian@gxmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data: All data used to generate the figures in this manuscript and supplemental information will be shared by the lead contact upon

request.

d Code: This study does not report original code.

d Additional information: Any additional information required to reanalyze the data reported in this paper is available from the lead contact

upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

The C57BL/6Jmice used in this study were purchased fromGuangxi Medical University. 6-week-old C57BL/6J femalemice were the source of

bone marrow macrophages in vitro. 10-week-old C57BL/6J female mice were used in the OVX mouse model in vivo. All experimental pro-

cedures for the mouse study were carried out in accordance with the Guangxi Medical University Laboratory Animal Care Protocol and by

the Animal Care and Welfare Committee. (SYXK 2020-0004, 202103048).

Bone marrow macrophages extraction

BMMswere isolated from the tibias and femurs of six-week-old C57BL/6J femalemice andwere the target cells of our in vitro experiment. The

mice were firstly executed by cervical dislocation, and the tibias and femurs were disinfected with 75% alcohol before being stripped to re-

move other surrounding soft tissues. Bone marrow cells were flushed from the tibial and femoral medullary cavities. The cells were then

cultured in a-MEM medium containing 10% fetal bovine serum, 1% penicillin/streptomycin and 25 ng/mL M-CSF at 37�C and 5% CO2 for

3 days to obtain BMMs.

OVX model

The 10-week-old C57BL/6J femalemicewere randomly divided into 5 groups. After anesthesia, bilateral ovariectomywas performed to estab-

lish theOVXmodel. The ovaries of the sham-operated group were exposed and returned. After one week of recovery, themice in each group

underwent intraperitoneal injection of the corresponding drugs.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Cell Counting Kit-8 Med Chem Express Cat. No.: HY-K0301

Reverse transcription kits Thermo Fisher Scientific 01182505

Alkaline Phosphatase Assay Kit Beyotime Biotechnology C3206

Annexin-V-FITC Apoptosis Detection Kit BD Biosciences Pharmingen 556547

Mouse CTX-I ELISA Kit Sangon Biotech D721204

Experimental models: Cell line

MC3T3-E1 Fuheng Biology FH0384

Experimental models: Organisms/strains

C57BL/6J mouse Guangxi Medical University’s experimental animal N/A

Oligonucleotides

Primers for qPCR, refer to Table S1 This paper N/A

Software and algorithms

ImageJ National Institutes of Health https://imagej.net/

GraphPad Prism 9 GraphPad http://www.graphpad.com/
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METHOD DETAILS

Materials and reagents

CGK733 was acquired from MedChemExpress (MCE, Shanghai, China) at 98% purity, dissolved in dimethyl sulfoxide (DMSO) to 20 mM, and

diluted to 100 mM in a-MEM. The purchase of MC3T3-E1 was made at Fuheng Biology Company (Shanghai, China). Gibco (Thermo Fisher

Biotechnology Institute,MD, USA) provided the alphamodificationminimumnecessary penicillin/streptomycin (P/S), alpha-modifiedminimal

essential medium (a-MEM) and fetal bovine serum (FBS). M-CSF and RANKL came from R&D Biotechnology Company (Minneapolis, MN,

USA). MedChemExpress (MCE, Shanghai, China) provided the Cell Counting Kit-8 (CCK-8). Thermo Fisher Biotechnology (Shanghai, China)

supplied reverse transcription kits and immunoblotting test reagents. Alkaline Phosphatase Assay Kit was given by Beyotime Biotechnology

(Shanghai, China). b-Estradiol (E2) was given by Solarbio (Beijing, China). Santa Cruz Biotechnology provided NFATc1 (sc-7294), CTSK (sc-

48353) and fluorescent antibodies for P65 (#sc-8008 Alexa Fluor 546) (Dallas, CA, United States). Abcam offered c-Fos (ab134122),

ATP6V0D2 (ab236375) and b-actin (ab6276) (Cambridge, United Kingdom). JNK (#9252), p-JNK (#4668), P65 (#8242), p-P65 (#3033), IkBa

(#4812), ERK (#4695), p-ERK (#4370), p38 (#8690) and p-P38 (#4511) were all specific primary antibodies obtained from Cell Signaling Technol-

ogy (United States; Boston suburb).

Animal ethics

All experimental procedures for mouse studies were carried out in accordance with Guangxi Medical University’s experimental animal care

regulations and were approved by the Animal Care and Welfare Committee (SYXK 2020-0004, 202103048).

Cell culture

6-week-old C57BL/6J mice were utilized to separate bone marrow macrophages (BMMs). The tibia and femur bone marrow were extracted

using a sterile syringe of 1 mL, and bone marrow macrophages (BMMs) were then cultured at 37�C in 5% CO2 with complete medium and

M-CSF at a concentration of 25 (ng/mL). After 48 h, the media was once again changed, and the final follow-up experiments were performed

using adherent cells.

Cytotoxicity assay

In 96-well plates, 83103 BMMswere seeded into eachwell. The next day, the cells were subjected toCGat a variety of concentrations, ranging

from 0 to 6 mM, and they were then cultured for 96 h. A multimode microplate reader was used to analyze the absorbance at 450 nm (Biotek,

United States) of each well 2 h after 10 mL CCK-8 was added. Annexin-V-FITC Apoptosis Detection Kit was applied to evaluate CG-induced

apoptosis. BMMswere seeded into 6-well plates, incubated for 24 h to allow cell apposition, and then treatedwith CG (0, 3, 6 mM) for 48 h. The

cells were then digested, cleaned, and resuspended before being incubated with FITC-labeled Annexin V and PI for 15 min and analyzed by

flow cytometry (Becton, Dickinson and Company, United States).

Osteoclastogenesis assay

BMMs were seeded in 96-well plates at a density of 83103 BMMs per well with a-MEM complete medium containing M-CSF. 24 h later, cells

were stimulated by RANKL (50 ng/mL) with or without CG (0, 1, 2, 3, 4, 5 or 6 mM) treatment. BMMs were refed by the above medium every

2 days to ensure the growth of mature osteoclasts. Six days later, cells were fixed with 4% paraformaldehyde (PFA) for 50 min, rinsed with

Phosphate buffer saline (PBS), and followed by tartrate-resistant acid phosphatase (TRAP) staining. Finally, taking 3 images for each group

at 43 magnification was carried out by BioTek (Winooski, United States). To further explore the timeliness effect of CG in the various stages

of osteoclast formation, RANKL-activated BMMs were treated with CG at a concentration of 6 mM throughout the early (1–3 days), middle

(3–5 days) and late (5–7 days) differentiation phases. On day 7, cells were collected, and then PFA fixation, TRAP staining and image acqui-

sition were conducted as the above method.

Podosome belt staining

To examine podosome belt development, BMMs were seeded into 96-well plates with a density of 83103 cells/well. Twenty-four hours later,

cells were treated with CG in varied concentrations (3, 6 mM) and refed every two days until mature osteoclasts were discovered on the 6th day.

These mature osteoclasts were fixed for 30 min with 4% PFA and permeabilized for 10 min with 0.1% Triton X-100, then sealed for 1 h with 3%

bovine serum albumin (BSA)-PBS. Following rinsing three times with 0.2% BSA-PBS, rhodamine-phalloidin (1:500) was added to stain for 1 h,

followed by 4,6-diamidino-2-phenylindole (DAPI) diluted with 0.2% BSA-PBS for 5 min. Cells were photographed with a BioTek microscope

after being washed three times in PBS. ImageJ and GraphPad Prism were used for image quantitative and statistical analyses.

Immunofluorescence staining

The nuclear localization of P65 after RANKL stimulation was observed by fluorescence microscopy. BMMs were seeded on microscope petri

plates overnight for adherence, starved for 3 h in serum-free media, and then activated by RANKL (50 ng/mL) for 30 min after being pre-stim-

ulated for 1 hwith or without 6 mMCG. These cells were first fixed in 4%PFA for 15min, and then 0.1%Triton X-100was used to penetrate them

for an additional 5 min. Non-specific binding sites were blocked for 30 min with 3% BSA-PBS. Three times with 0.2% BSA-PBS washes were
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followed by adding the fluorescent primary antibody of P65 and incubating at 4�C overnight. The nuclei were stained for 5 min with DAPI at

1:1000 in 0.2% BSA-PBS. Finally, images were taken using a BioTek microscope.

Bone resorption assay

The treated bone sections were placed flat on the bottom of a 96-well plate, and BMMs (13104) were added to the well plate until the cells

stuck to the bone sections or bottom.

Cells were stimulated with RANKL-containing medium until mature osteoclasts were detected in control wells, then CG (6 mM)-containing

medium was added. After 2 days, control wells were fixed with 4% PFA and bone mini-slices were fixed with Electron microscope fixative so-

lution. Finally, electron microscopy is used to scan the extent of resorption pits in bone slices.

Intracellular calcium (Ca2+) oscillation assay

Calcium fluorophore Fluo4was used tomonitor calciumoscillation.58 After seeding 13104 BMMs onto 96-well plates, we incubated themwith

RANKL (50 ng/mL) and M-CSF (25 ng/mL) for 24 h in the presence or absence of 6 mMCG. After that, the cells were washed twice with assay

buffer (consisting of 1x HANKS balanced salt solution, 100 mM probenecid, and 1% FBS), and then they were incubated for 45 min with 4 mM

Fluo4 staining solution (consisting of Fluo4-AM dissolved in 20% Pluronic-F127 diluted in DMSO (w/v). After two washes with assay buffer,

samples were observed using a fluorescence microscope (Bioteck) set to 488 nm excitation wavelength for 3 min while taking pictures at

2 s intervals and analyzing them in ImageJ. Change in oscillation intensity was calculated by first determining the minimum intensity and

then comparing it to the greatest peak intensity.

Relative quantitative PCR (qPCR)

BMMs were grown at a concentration of 1.53105 cells per well in 6-well plates and subsequently treated for 6 days with 50 ng/mL RANKL,

either with or without CG. Total RNA was isolated from BMM-derived osteoclasts utilizing Trizol reagent (Thermo Fisher Scientific). RNA

was converted to complementary DNA (cDNA) using a commercial reverse transcription kit, and the cDNA was then used as a qPCR sample.

The qPCRwas conducted using a LightCycler 96 Systemmanufactured by Roche (Switzerland). The analysis was donewith the 2�DDCt method,

and the mean value of the target gene was computed using the cycle threshold (CT) value of b-actin as the reference. Table S1 displays the

precise primer sequences that were used.

Western blot assay

In 6-well plates, BMMs (23105 per well) were treated with or without CG (6 mM). to lyse the treated cells, radioimmunoprecipitation (RIPA) lysis

buffer was used for 30 min at 4�C. The cell suspension was collected and centrifuged at 12000 rpm for 10 min at 4�C, the supernatant dis-

carded, the loading buffer added, and the mixture heated for 15 min at 100�C. Electrophoretically separating the proteins using SDS-poly-

acrylamide gels (SDS-PAGE) and transferring them to nitrocellulose (NC) membranes was the next step. The non-specific binding sites were

sealedwith 5% skimmilk for 1 h, then rinsed three timeswith Tris-Buffered Saline Tween 20 (TBST) before adding the primary antibody (1:1000)

and shaking overnight at 4�C. Following a three-time TBST wash, the membrane was incubated for 1 h at room temperature with the second-

ary antibody. Finally, an infrared imaging systemwas used to scan and image the film. The grayscale value of protein bandswasmeasuredwith

ImageJ.

Osteoporotic ovariectomized (OVX) model mice

The Guangxi Medical University Animal Protection Committee has given its approval to all live animal experiments. Forty C57BL/6J mice (fe-

male, 10 weeks old) were randomly split into five groups (n = 8 per group): Sham + vehicle, OVX + vehicle, OVX + CG (3 mg/kg), OVX + CG

(6mg/kg), andOVX+ E2 (100 ng/kg). Bilateral ovariectomymimicked postmenopausal osteoporosis after 1.25% Tribromoethanol anesthesia.

The sham-operatedmice, on the other hand, had their skin removed but their ovaries left intact. After one week following surgery, mice in the

sham + Vehicle and OVX + Vehicle groups were injected intraperitoneally with 1% DMSO in saline, while the group of drug intervention was

injected with 3 mg/kg and 6 mg/kg of CG, and OVX + E2 group was injected intraperitoneally with 100 ng/kg E2, every two days for 6 weeks.

After 42 days, the femurs of all the mice were removed after they were killed through cervical dislocation so that they could be scanned with a

micro-CT and analyzed histologically.

Micro-computed tomography (Micro-CT)

Each sample of bone tissue underwent a scan using an SCANCOMedical Micro-CT 50 equipment (SCANCOMedical, Switzerland). The scan-

ning parameters were set as follows: source voltage 50 kV, source current 500 mA, 0.5 mmAI filter; The pixel size 9 mm; 180� rotation step. The

left proximal femoral bone was chosen as the region of interest, and a 3D reconstruction was carried out using analog 19.0. The Skysacn CT

program was used to examine many metrics of bone tissue, including the bone volume/tissue volume (BV/TV), the trabecular separation

(Tb.Sp), the trabecular number (Tb. N), and the trabecular thickness (Tb.Th).
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Histological assessment

The left femur was scanned using Micro-CT, decalcified at 37�C for two weeks, fixed in paraffin, and sectioned at a thickness of 5 mm. Hema-

toxylin and eosin (H&E) or TRAP staining was then performed on these sections. The hearts, livers, and kidneys of mice were similarly pre-

treated before H&E staining. In the meantime, immunohistochemical staining was utilized to detect CTSK expression. Using an orthomosaic

microscope, images were magnified and acquired using ImageJ analysis software.

Differentiation of osteoblast precursor

After being thawed,MC3T3-E1 cells were cultured on T-75 cell culture plates usingDMEMsupplementedwith 10% FBS and 1%P/S.When the

cells had settled to cover 95% of the flask bottom, they were digested with DMEM for 3 min before being centrifuged at 1500 rpm for 5 min.

Following the counting of the cells, 53 104 cells were seeded into each well of the 48-well plate. MC3T3-E1 cells were cultured in osteogenic

induction medium containing DMEM,10 mM b-glycerophosphate, 50 mg/mL ascorbic acid and 10 nM dexamethasone, and treated with CG

(0, 3, and 6 mM). The medium was changed every two days. After 7 days of culture, these cells were fixed with 4% PFA and stained for ALP.

Cystatin 5 was used for image acquisition, and ImageJ was utilized for analysis.

ELISA assay

After collecting the ocular blood from the aforementioned animal model mice rest at room temperature for 1h, it was centrifuged at 4 �C at

1000 rpm for 20 min. The supernatant was subsequently used in further experiments. The concentration of serum C-terminal cross-linking

telopeptide of type I collagen (CTX-1) wasmeasuredwith the use of an ELISA kit (Sangon Biotech, Shanghai, China), which was used following

the instructions provided by the manufacturer. After obtaining the optical density (OD) value of every well using a Multimode Microplate

Reader set to 450 nm, the data was analyzed with GraphPad Prism 9.0.

QUANTIFICATION AND STATISTICAL ANALYSIS

The experimental data acquired in this research were taken from three or more duplicate trials and were presented as meanG standard de-

viation (SD). GraphPad Prism 9 (Software, Inc., USA) was used to statistically analyze the data. The data were compared using one/two-way

ANOVA. P-values less than 0.05 were deemed statistically significant.
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