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Abstract: The application of machine learning (ML) in bioprinting has attracted considerable attention recently. Many have 
focused on the benefits and potential of ML, but a clear overview of how ML shapes the future of three-dimensional (3D) 
bioprinting is still lacking. Here, it is proposed that two missing links, Big Data and Digital Twin, are the key to articulate 
the vision of future 3D bioprinting. Creating training databases from Big Data curation and building digital twins of human 
organs with cellular resolution and properties are the most important and urgent challenges. With these missing links, it is 
envisioned that future 3D bioprinting will become more digital and in silico, and eventually strike a balance between virtual 
and physical experiments toward the most efficient utilization of bioprinting resources. Furthermore, the virtual component of 
bioprinting and biofabrication, namely, digital bioprinting, will become a new growth point for digital industry and information 
technology in future.
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1. Introduction
Recently, there is surge in scientific publications 
regarding the application of machine learning (ML) to 
bioprinting-relevant researches such as medical imaging 
and segmentation, optimization of bioinks or bioprinting 
process as well as in vitro parametric studies, which are 
well reviewed in Yu and Jiang[1], Ng et al.[2]. Both recent 
articles focused on the benefits and potential of ML but 
missed a clear portrait of what future bioprinting looks 
like. This perspective article is, therefore, written as 
an extension of previous reviews, focusing on a vision 
of future three-dimensional (3D) bioprinting enabled 
by ML.

ML is a collection of computational methods of 
discovering approximate mathematical functions of the 
real world based on historical data (Figure 1). Given a 
set of input (X) and output (Y) data, humans are usually 

able to find a relationship between X and Y as a function 
of Y(X). If the input has multiple variables ranging from 
X0 to Xn and the output Y0 to Yn, humans will be easily 
overwhelmed by the complexities. However, computer 
algorithms can replace human to “inspect” the input and 
output and “guess” an approximate function among them. 
This approximate function generated by the algorithms is 
called ML model. The more input and output data there are, 
the more accurate the ML model becomes. This approach 
is known as mapping or supervised learning. In contrast, 
in grouping or unsupervised learning, the output (Y) is not 
given, the computer algorithms must figure out the output 
on its own, such as a pattern, a cluster, or a relationship 
in the input data (X0, X1,… Xn). Therefore, this approach 
is best for uncovering hidden patterns or relationships 
in data. Another approach in ML is reinforcement 
learning, in which both input (X0, X1 … Xn) and output 
(Y0, Y1… Yn) are known, the algorithms (or agent) are 
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to find the functions between X and Y like in supervised 
ML, but through a dynamic interaction with another 
test algorithm called environment. The environment 
rewards or punishes the agent’s trial and error learning 
so that the ML model becomes more and more accurate 
in predication by maxing the reward. Another similar 
method is deep learning, in which the trained learning 
algorithms have multiple hidden layers and are always 
applied to new datasets instead of dynamically adjusting 
agent’s actions from the continuous feedback. Above are 
example methods in ML. In fact, learning is quite a broad 
topic and several techniques have already been used in 
3D printing in general[3,4].

2. Complexities in bioprinting
In general, ML models are preferred when complexities 
arise, because they can account for factors or conditions 
not considered in traditional mathematical models, that 
is, they tend to be more robust in the real-world context 
in terms of predication. Bioprinting coming across 
ML is inevitable for the reason of complexities. The 
complexities of bioprinting span across the entire process 
chain, namely, pre-processing, processing, and post-
processing (Figure 2). In pre-processing, it is challenging 
to perform segmentation of tissue images at a single cell 
level and reconstruct them into a 3D tissue model with 
cross-scale cellular resolution and tissue properties. ML 

is, therefore, needed because of multiscale complexities of 
representing biological tissue models. In addition, ML can 
also help predict the compatibility of dissimilar materials 
used in bioprinting[5,6]. In processing and post-processing, 
it is almost impossible to perform wet experiments when 
the number of changing parameters exceeds a certain 
number, for example, ten parameters. ML is, therefore, 
needed because of multiparameter complexity of finding 
optimal protocol of bioprinting. Here, it is envisioned that 
ML coupled with Big Data, will solve the multiscale and 
multiparameter complexities and transform present 3D 
bioprinting into future 3D bioprinting, which is “heavily 
virtual” in nature.

3. In silico experiment and big data
In silico, experiment such as digital fabrication and 
computational study is believed to be a key innovation driver 
and play a major role in the new era of tissue engineering[7,8]. 
Although the current challenge is creating more realistic 
virtual experiment with satisfactory accuracy, there are 
various methods such as statistical tools and techniques 
that can be combined with first-principles simulations to 
solve it[9]. In the case of bioprinting, ML has already been 
used to optimize the printability of bioinks and drastically 
reduced the number of experiments from thousands of 
possible combinations[10]. Moreover, various mathematical 
models on bioink printability have been developed as 

Figure 1. Example methods in machine learning.
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recently reviewed in Zhang et al.[11], Schwab et al.[12]. These 
mathematical models are useful for construction of virtual 
bioprinting process. ML models have also been used in 
in vitro study for identification of cell signature genes out 
of complex gene expression profiles among different cell 
groups[13,14]. Another in vitro example is virtual histological 
staining, which bypasses the lengthy and laborious process 
for tissue preparation. Researchers used deep learning to 
transform autofluorescence images of tissue into images 
equivalent to histologically stained tissue[15], and achieved 
blending of multiple stains by assigning each stain at the 
pixel level[16,17]. Furthermore, mathematical models and 
ML models, which help us understand the complexities of 
biological systems and extract new biological knowledge 
from complex experimental datasets, are expected to 
bring tissue engineering much closer to clinical reality[18]. 
Collectively, the above evidence of virtual experiments 
in either processing or post-processing of bioprinting 
suggests that we will see more in silico experiments with 
ML in bioprinting in future.

However, ML cannot be performed without Big 
Data about modern clinical imaging of organs, histology, 
immunohistochemistry, biomechanical properties of 
tissue and organs, molecular profiles of cell, tissue, and 
organs (genomics and proteomics) function and so on. Big 
Data can be structured, unstructured or semi-structured 
and it is much more than traditional databases[19]. For ML 
purposes, the first step is collection of Big Data or Big 
Data curation. The sources of big data for bioprinting are 

huge and diverse, it could be all types of diagnostic images 
stored in hospital databases, all types of experimental 
data in worldwide laboratories and research centers, all 
the “omics” databases already established in past years, 
or simply the vast scientific literature. Standard and open-
access databases with meaningful and valuable training 
datasets specifically targeting for bioprinting must be 
created from Big Data curation. A recent example is 
the construction of a web-based nanomaterial database 
through Big Data curation, which contains 705 unique 
nanomaterials, and the annotation of nanostructures 
generates 2142 nanodescriptors for modeling and ML, but 
more importantly, the database is publicly available[20]. 
Another example is geoscience databases, which is large 
and ideal for ML and automated geoscience analysis[21]. 
In fact, numerous experimental data and various materials 
directly related to bioprinting have been generated over 
past years, making bioprinting a potentially a data-
driven research, but so far there is limited database 
created specifically for bioprinting. In future, we hope 
to see more developments in this area, in line with the 
development of databases for 3D printing. Perhaps it may 
be even possible to predict new bioprinting discoveries 
by exploiting the current literature alone without relying 
on experts’ opinions[22].

4. Digital twin of human organ
On the other hand, design process in 3D bioprinting must 
be organized around the concept of digital twins of organs 

Figure 2. A vision for future bioprinting.
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and virtual shadow. Creating such cell-level twins of 
organs requires high quality tissue specimens and advanced 
imaging and 3D reconstruction methods. Fortunately, the 
Human BioMolecular Atlas Program from Institute of 
Health in the United States[23], which aims to develop an 
open and global framework to create 3D molecular and 
cellular atlas of the human body, may enable the building 
of an integrated tissue map across scales. However, as 
pointed out in Campos and De Laporte[8], digital tissues 
should not only enable architectural replication of native 
tissues but also be biologically functional. This would 
require the capability of assigning fidelitous tissue 
materials to the digital twin and a profound understanding 
of individual and collective behaviors of cells. Cell-
based mathematical models and software[24], which have 
been extensively used in computational biology, may be 
useful tools for modeling cell and tissue properties and 
behaviors to enable the simulation of biological functions 
of the virtual tissue and organs. In fact, from the economic 
point of view, an alternative but efficient method should 
be one that directly converts current magnetic resonance 
imaging (MRI)/confidence interval-based 3D models into 
cell-based models, that is, cells and tissue properties are 
intelligently assigned to a virtual organ model with spatial 
accuracy and material diversity by artificial intelligent 
algorithms. Slicing of the digital twin for layer-by-layer 
bioprinting should also be intact cell-based and matching 
extrusion layer thickness, which is very different from 
common slicing in 3D printing. Another alternative further 
empowering our imagination is in vivo cellular imaging 
such as MRI[25], which can map the anatomic locations of 
specific cells within living tissue. Given that ML has been 
successfully used for recognition of cell phenotype[26], it 
might be reasonable to imagine “in vivo 3D scan” of a 
patent-specific live tissue model into a digital twin with 
cellular resolution. Nevertheless, the immediate impact of 
the digital twins of organs on bioprinting is that the in vivo 
performance of physical bioprinting such as preclinical 
as well as clinical studies must collect information with 
specially designed assay, biosensor, and so on for updating 
original model in the form of digital twin. Furthermore, 
the cell-level digital twins together with physical 3D 
bioprinting could also revolutionize biology fundamentally 
by building tissues from scratch to explore entirely 
new cell configurations for cell cross-talks and cellular 
morphogenesis[27]. This would help provide new insights 
into the challenging question: “Print me an organ! Why we 
are not there yet?” which was recently raised in Ng et al.[28].

5. Other aspects of the future
In future, it is necessary to include the development of 
correspondent infrastructures such as education and 
training specialists and development and adaptation 
of software and computational power and so on. 

Interestingly, ML had been applied to nanotechnology 
to develop nanocomputing hardware that can boost 
artificial-intelligence-based applications[29]. It could be 
a reciprocal advancement to expect in future. Another 
topic worth watching is ML-based programmable design 
for 4D printing[30], as it is relevant to 4D bioprinting, a 
method in which bioprinted tissues transform shape, size, 
or pattern over time[31]. Aside from academy, the industry 
also expects a bright future for use of artificial intelligence 
in 3D bioprinting. For example, in 2019 Procter and 
Gamble partnered with a biotechnology company Aether 
to develop AI 3D Bioprinter[32].

6. Toward digital bioprinting
Application of ML in bioprinting and biofabrication 
will induce dramatic transformation and bioprinting 
will became a part of digital industry and information 
technology[33,34]. What could be done to implement 
these forthcoming transformations? First, bioprinting 
community must attract experts in computer sciences, 
mathematical modeling, computer simulations, and ML. 
Second, special efforts must be done for generation, 
assembly and maintaining of desirable Big Data. 
Maintaining and up-dating of such databases are essential. 
Third, digital organ twins based on sophisticated 
mathematical modeling and advanced software 
will become a new type of knowledge presentation, 
accumulation, and compaction in bioprinting. Finally, 
during transition from empiric to digital approach 
bioprinting will enter in digital era and it will become not 
descriptive but rather predictive technology increasingly 
based on virtual or in silico experiments.

7. Conclusion
In our opinion, when applying ML to bioprinting the 
most important and urgent challenges are: (1) To build 
training databases for ML from Big Data curation and 
(2) to build digital twins of human tissue/organs. The 
goal is to achieve a predictive power of digital twin of 
human tissue/organ based on Big Data which is close to 
virtual crash test in automobile industry. Ultimately, we 
hope to see a standard bioprinting simulation practice in 
future to reduce or replace present 3D bioprinting studies. 
We envision that future 3D bioprinting will become more 
digital and in silico, and eventually strike a balance 
between virtual and physical experiments to maximize the 
efficiency of bioprinting resource utilization. In future, 
digital bioprinting will become a new growth point for 
digital industry and information technology.
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