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ORIGINAL ARTICLE
Altered responsiveness of BNST and amygdala neurons in

trauma-induced anxiety

OE Rodriguez-Sierra'?, S Goswami*>, HK Turesson' and D Pare'

A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures
display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria
terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human
neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs
PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state
of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that
the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively.
Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic
responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about
the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the
influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-

like state is proposed.
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INTRODUCTION

Convergent findings from animal and human studies implicate a
highly conserved network of brain structures in the expression of
fear and anxiety.' These include the medial prefrontal cortex, the
bed nucleus of the stria terminalis (BNST), as well as the
basolateral (BLA) and central (CeA) amygdala. Importantly, human
functional imaging studies have revealed that many of these
structures exhibit abnormal activity levels during symptom
provocation in post-traumatic stress disorder (PTSD).>™

However, BNST and the amygdala are in fact a collection of
functionally heterogeneous nuclei that cannot be resolved with
human functional imaging techniques. Thus, to shed light on the
mechanisms that support the altered responsiveness of BNST and
the amygdala in anxiety disorders, we used a well-characterized
rat model of PTSD.> In this model, Lewis rats are subjected to a
species-relevant threatening experience, predatory threat, invol-
ving exposure to cat smell.>’ Following predatory threat, a subset
(~50%) of susceptible rats (termed ‘PTSD-like’) develops severe
and persistent (>2 weeks) behavioral manifestations of anxiety,
including compromised exploratory behavior and increased
startle.” Importantly, this model reproduces salient features of
the human syndrome. For instance, PTSD is characterized by a fear
extinction deficit that develops after trauma® and a hippocampal-
dependent allocentric spatial processing deficit that predates
trauma.”'® The Lewis rat model of PTSD reproduces these two
deficits, including their different temporal relationship to
trauma.>'"'2

Therefore, using this model, we compared the intrinsic and
synaptic responsiveness of BNST and amygdala neurons in
resilient vs susceptible rats with patch recordings in vitro. This

approach revealed that the PTSD-like state is associated with
distributed but region-specific alterations in the synaptic respon-
siveness of BNST and amygdala neurons.

MATERIALS AND METHODS

Subjects and experimental timeline

Procedures were approved by the Institutional Animal Care and Use
Committee of Rutgers State University and complied with the Guide for the
Care and Use of Laboratory Animals (Department of Health and Human
Services). Adult male Lewis rats (200-225g) were first subjected to
predator threat and, 7 days later, tested on the elevated plus maze (EPM), a
well-accepted behavioral test of anxiety (Figure 1a). Next, based on their
behavior in the EPM, rats were sorted into ‘PTSD-like’ or ‘resilient’
phenotypes as described below. Then, 1-3 days later rats were
anesthetized, their brains extracted and coronal slices prepared for
visually-guided patch-clamp neuronal recordings in BNST or the amygdala
(Figures 1b and c). Investigators were blind to the rats’ phenotype.

Predatory threat

The threatening experience consisted of a single exposure (10 min) to
soiled cat litter in a plastic rat cage with a mesh top. The litter was
obtained from male cats (sifted for stools; 2-day use period) and included
the odor of cat feces, urine, hair and skin. Predator odors are such potent
stressors that they can be used as unconditioned stimuli to drive Pavlovian
fear learning.'®™*

EPM and criteria used to classify rats as resilient vs PTSD-like

Rats were placed at the EPM's center (Supplementary Methods), facing an
open arm and allowed to explore the apparatus for 5 min. Behavior was
recorded and scored offline. All four paws had to be into the arm to be
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Figure 1.

Experimental paradigm and recording sites. (a) Timeline of the experiments. (b) Scheme showing stimulation (stim.) and recording

(circles) sites for the bed nucleus of the stria terminalis (BNST) experiments. A pair of stimulating tungsten electrodes was positioned in the
stria terminalis (ST). Visually-guided patch-clamp recordings were performed in three different BNST-A regions: anterolateral (AL),
anteromedial (AM) and anteroventral (AV). (c) Scheme showing stimulation (filled circles) and recording (empty circles) sites for the amygdala
experiments. Patch clamp recordings were performed in the basolateral (BL) nucleus, as well as the lateral (CelL) and medial (CeM) sectors of
CeA. Stimulating electrodes were positioned in the external capsule (EC) and lateral amygdala (LA) when recording BL neurons or in the BL
nucleus when studying CeA neurons. For clarity, CeL neurons recorded in the glutamate uncaging experiments were not included. However,
they were recorded in the same part of CeL as the cells currently depicted. Cross on lower right indicates orientation of the schemes (D, dorsal;
L, lateral; M, medial; V, ventral). AC, anterior commissure; IC, internal capsule; Str., striatum.

classified as an arm entry. Consistent with prior work,®”'"'? rats with

extremely compromised exploratory behavior, that is spending all of the
available time in the EPM'’s closed arms, were classified as PTSD-like. Rats
that explored the open arms for any amount of time were classified as
resilient. Predatory threat exposure increases the incidence of the PTSD-
like phenotype in the EPM: from ~ 10% in Lewis rats exposed to clean litter
to ~50% after predatory threat.5”'" However, predatory threat does not
increase anxiety in all rats but causes the emergence of an extremely
anxious phenotype in a subset of susceptible Lewis rats."' Indeed,
comparisons of time spent in the open arms in rats exposed to soiled vs
clean litter, but excluding subjects that did not explore the open arms,
revealed no group differences."’ Moreover, resilient rats displayed a higher
incidence of other behaviors suggestive of resilience.!’

In vitro slice preparation

Rats were anesthetized with Avertin (300 mg kg‘1, i.p.) and perfused
transcardially with a cold modified artificial cerebrospinal fluid (aCSF)
detailed in the Supplementary Methods. Brains were cut in 300-um-thick
coronal slices using a vibrating microtome while in the above solution.
Slices were then transferred to an incubating chamber for at least 1 h at
room temperature in a control aCSF (Supplementary Methods). The slices
were transferred one at a time to a recording chamber perfused with the
latter solution (10 mImin~"). Before beginning the recordings, we
gradually increased the chamber temperature to 32 °C.

Electrophysiology

We obtained visually-guided whole-cell recordings using pipettes filled
with a standard intracellular solution (Supplementary Methods). Mem-
brane potential (V,,,) values were corrected for the liquid junction potential
(10 mV with this solution). We only considered cells that had stable resting
potentials negative to —60mV and generated overshooting action
potentials. Electroresponsive properties were characterized by studying
the cells’ responses to graded series of current pulses (+20-pA steps,
500 ms) applied from rest, -65 or -80 mV. The linear portion of current-
voltage plots was used to estimate the cells’ input resistance. To activate
synaptic inputs to BNST cells, stimulating electrodes were positioned in the
stria terminalis (ST; Figure 1b). To activate synaptic inputs to amygdala
neurons, stimulating electrodes were positioned at one of three sites: in
the external capsule and lateral amygdala (LA) when recording neurons in
the basolateral (BL) nucleus or in BL when studying CeA neurons. Unless
otherwise noted, electrical stimuli (100 ps) were delivered at a low
frequency (0.1 Hz), in a range of intensities, and from a V,,, of -65 mV. At
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least three stimuli were delivered at each intensity and responses
averaged.

Presumably because the stimulation and recording sites were closer in
the BNST than amygdala experiments, high-intensity ST stimuli elicited
direct spikes in many of the recorded BNST cells. Thus, we used a lower
range of stimulation intensities in the BNST (100-600 pA) than the
amygdala (100-800 pA) experiments. When electrical stimuli elicited direct
spikes, data obtained at that intensity and above was not considered for
that cell. See Supplementary Methods for the criteria used to distinguish,
direct, orthodromic and antidromic action potentials. Finally, when the
stimuli elicited a mixture of sub- and supra-threshold responses, more
stimuli were applied.

Glutamate uncaging

Postsynaptic responsiveness to glutamate was assessed using glutamate
uncaging. In these experiments, glutamate (4-Methoxy-7-nitroindolinyl-
caged-L-glutamate, 1.0 mwm; Tocris Bioscience, Bristol, UK) was added to the
aCSF. Glutamate was uncaged by applying ultraviolet light pulses
(5-30 ms, steps of 5ms) over the recorded cell. Responsiveness to
uncaged glutamate was assessed from a membrane potential of -80 mV,
as determined by intracellular current injection. The ultraviolet light stimuli
were delivered by a LED source (365 nm, 60 mW; 0.1 Hz; CoolLED, Andover,
UK) via a x 60 immersion objective.

Data analyses and statistics

The data were analyzed offline with the software IGOR (Wavemetrics,
Portland, OR, USA), clampfit (Axon instruments, Foster City, CA, USA), and
custom software written using Numpy and Scipy (http://www.scipy.org).
Values are expressed as means + s.e.m. All statistical tests are two-sided. In
all cases, all available cells, trials and subjects are included in the statistical
analyses, as appropriate. The tests aimed to determine whether there were
differences between neurons recorded in the two rat phenotypes.
Depending on sample sizes, we used X>- or Fisher's exact tests to
determine if phenotypic differences in the incidence of different cells types
were significant. To compare their electroresponsive properties, we used
non-parametric Kruskal-Wallis one-way analysis of variance (ANOVA). Since
the synaptic responsiveness data were distributed normally, we used
repeated measures ANOVAs for these comparisons.

RESULTS

We subjected 166 Lewis rats to predatory threat and tested them
on the EPM 1 week later. Subjects with extremely compromised
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Figure 2. Synaptic responsiveness of BNST neurons to ST stimuli in resilient (black) and PTSD-like (red) rats. Neurons recorded in BNST-AL (a),
BNST-AM (b) or BNST-AV (c). The x-axis represents stimulation intensity, whereas the y-axis shows (1) the amplitude of evoked EPSPs and IPSPs
(positive and negative values, respectively), (2) EPSP slopes (measured in the first 2 ms) and (3) the proportion of trials eliciting orthodromic
spikes. Insets show representative examples of evoked responses for neurons recorded in resilient (black) and PTSD-like rats (red). Error bars
indicate s.e.m. AL, anterolateral; AM, anteromedial; AV, anteroventral; BNST, bed nucleus of the stria terminalis; EPSP, excitatory postsynaptic
potential; IPSP, inhibitory postsynaptic potentials; PTSD, post-traumatic stress disorder; ST, stria terminalis.
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exploratory behavior (no time in the open arms of the EPM) were
categorized as PTSD-like (48%) and the others as resilient (52%).
One to three days later, we performed visually-guided patch-
clamp recordings of neurons in different regions of BNST or the
amygdala (Figures 1b and c).

BNST experiments

We focused on the anterior BNST region (BNST-A) because it has
been most frequently implicated in anxiety.'> However, BNST is a
collection of ~15-20 nuclei with much disagreement regarding
their exact number and location.'®'” Compounding this problem,
individual BNST nuclei cannot be identified with precision in living
slices. Therefore, we used a simpler parcellation of BNST-A in three
regions, based on the position of major fiber bundles (Figure 1b):
the anterior commissure dividing the BNST-A in dorsal and ventral
(BNST-AV) sectors, and the intra-BNST component of the ST
subdividing the dorsal portion in medial (BNST-AM) and lateral
(BNST-AL) regions. The following is based on samples of 61 BNST-
AL cells (resilient, n=33; PTSD-like, n =28) recorded in 38 rats, 52
BNST-AM cells (resilient, n=27; PTSD-like, n=25) recorded in 32
rats, and 50 BNST-AV neurons (resilient, n =24; PTSD-like, n=26)
recorded in 30 rats.

Incidence, passive properties and spike characteristics of BNST-A
neurons in resilient vs PTSD-like rats

BNST-A contains at least five different physiological cell types.
In decreasing order of incidence, they are low-threshold bursting
(LTB) neurons, regular spiking (RS) cells, neurons expressing a fast
inward rectifying K" conductance (fIR), spontaneously active cells
and late-firing neurons. Unfortunately, with the exception of the
rare fIR neurons expressing CRF,?* there is no consistent relation-
ship between the physiological properties of BNST-A neurons and
their transmitter content (reviewed in ref. 23). Most BNST-A
neurons are GABAergic neurons.?*?’ A few glutamatergic cells
have also been identified in BNST-AM and AV,%?® where they are
intermingled with the prevalent GABAergic neurons. Thus, it is
likely that the vast majority of the cells we recorded belong to the
prevalent class of GABAergic neurons.?

We found no phenotype-related variations in the incidence of
the physiological cell types (X*-tests, P's>0.51; Supplementary
Table 1), which appeared to fall in the normal range previously
reported in naive rats.'®" Moreover, we detected no phenotype-
related differences in these cells’ passive properties and spike
characteristics  (Kruskal-Wallis one-way ANOVAs, P's >0.05;
Supplementary Tables 2-7). Because three of the five cell types
are rare, subsequent comparisons focused on the prevalent RS
and LTB cells.

18-21

Synaptic responsiveness of BNST-A neurons in resilient vs PTSD-
like rats

To study the synaptic responsiveness of BNST-A neurons, we
positioned stimulating electrodes in the ST (Figure 1b). This fiber
bundle carries inputs from the main afferent of BNST, the
amygdala. Indeed, the BNST-A receives very strong glutamatergic
and GABAergic inputs from the BLA and CeA, respectively
(Supplementary Figure 1).2°3°3" Therefore, from a V., of
—65mV, we activated these axons at a low frequency (0.1 Hz)
by delivering brief (100 ps) electrical stimuli (0.1-0.6 mA) through
the ST electrodes. As described below, we found marked region-
specific differences in the synaptic responsiveness of BNST-A
neurons between the two rat phenotypes. However, within each
region, the various physiological cell types exhibited the same
trends. Thus, for simplicity, the results obtained in the different
classes of neurons are pooled below.
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BNST-AL neurons

The synaptic responsiveness of BNST-AL neurons was lower in
PTSD-like than resilient rats (Figure 2a). This difference was mostly
due to the higher amplitude of ST-evoked inhibitory postsynaptic
potentials (IPSPs) in cells from PTSD-like rats (Figure 2a1; ANOVA,
F1.59=8.821, P=0.006). Although there was a trend for ST-evoked
excitatory postsynaptic potentials (EPSPs) to have lower ampli-
tudes in neurons from PTSD-like than resilient rats (Figure 2a1), it
did not reach significance (F 59y =2.4, P=0.07). Consistent with
this, the slope of ST-evoked EPSPs did not differ significantly
between the two rat phenotypes (Figure 2a2). Despite the similar
properties of ST-evoked EPSPs in the two phenotypes, the
likelihood that ST stimuli would elicit orthodromic spiking was
significantly higher in neurons from resilient than PTSD-like rats
(Figure 2a3; F(; 59)=5.803, P=0.019). Overall, these results suggest
that differences in the potency of ST-evoked inhibition contribute
to reduce the orthodromic responsiveness of BNST-AL neurons in
PTSD-like relative to resilient rats.

BNST-AM neurons

Opposite to BNST-AL neurons, the responsiveness of BNST-AM
cells was higher in PTSD-like than resilient rats. Indeed, the
amplitude (Figure 2b1) and slope (Figure 2b2) of ST-evoked EPSPs
were significantly higher in neurons recorded from PTSD-like than
resilient rats (EPSPs, F(;s0=5.762, P=0.02; Slope, F 50 =4.95,
P=0.03), with no difference in IPSP amplitudes (Figure 2b1;
F(1,500=0.179, P=0.67). Accordingly, the probability that ST stimuli
would elicit supra-threshold responses was significantly higher in
PTSD-like than resilient rats (Figure 2b3; F; 50)=5.09, P=0.028).

BNST-AV neurons

Similar to BNST-AM cells, but opposite to BNST-AL neurons, the
responsiveness of BNST-AV cells was higher in PTSD-like than in
resilient rats. This was evidenced by the significantly higher
amplitude (Figure 2c1) and slope (Figure 2c2) of ST-evoked EPSPs
in PTSD-like rats (EPSPs, F(45=9.65, P=0.003; Slope,
F148=9.309, P=0.004), with again no difference in IPSP
amplitudes between the two rat phenotypes (Figure 2c1;
F(1,48)=0.425, P=0.51). Paralleling these results, spiking probability
in response to ST stimuli was significantly higher in PTSD-like than
resilient rats (Figure 2c3; F(; 45y=11.51, P=0.001).

Mechanisms underlying differences in the synaptic responsiveness
of BNST-AM and AV cells

To determine whether the phenotypic differences in EPSP
properties described above are dependent on a presynaptic
mechanism, we compared the amount of paired-pulse facilitation
(PPF) in the two groups of BNST-AM and AV neurons
(Supplementary Figure 2). In this analysis,>* two identical stimuli
are applied in rapid succession. PPF magnitude is inversely
proportional to transmitter release probability: manipulations that
increase release probability decrease PPF and conversely.3373°
Therefore, in the presence of picrotoxin (100 pm) and in voltage-
clamp mode, we applied two ST stimuli in rapid succession and
computed the ratio of the EPSC amplitude they elicited (EPSC2/
EPSC1) in BNST-AM (Supplementary Figure 2A), and AV
(Supplementary Figure 2B) neurons in the two phenotypes. In
both BNST regions, the paired-pulse ratio did not differ
significantly between groups (Supplementary Figure 2; t-tests,
AM, P=0.8; AV, P=0.1).

Amygdala experiments

We recorded 82 BL neurons (resilient, n=38; PTSD-like, n=44)
from 32 rats; 138 central lateral (Cel) neurons (resilient, n=69;
PTSD-like, n=69) from 37 rats; and 71 central medial (CeM)
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Figure 3. Incidence of different physiological classes of amygdala neurons. Voltage responses of six different cells to negative and positive
current pulses of progressively increasing amplitude (current step increments of —0.04 nA for negative and sub-threshold positive pulses;
current step increments of 0.02 nA for supra-threshold pulses). Unless otherwise noted, stimuli were applied from a membrane potential
of —80 mV, as determined by steady intracellular current injection. (a) In BL, three types of neurons could be distinguished: regular spiking (RS;
a1), intrinsically bursting (IB; a2) and fast spiking (FS; a3). Inset between a2 and a3 overlays action potentials generated by FS and IB cells. (b)
In CelL, three types of neurons could be distinguished: RS (b1), low-threshold bursting (LTB; b2) and late firing (LF, b3). Inset below top trace of
b2 shows rebound spike doublet generated at the break of a —0.2 nA hyperpolarizing pulse applied from —65 mV. Inset in b3 shows change
in the time course of voltage responses to sub-threshold depolarizing current pulses. Voltage and time calibrations between A1 and A2 apply
to all panels with the exception of insets. (c) Phenotypic variations in the incidence of physiological cell types. (¢1-3) Amygdala neurons
recorded in BL (c1), CelL (c2) and CeM (c3). Sample sizes: (c1) BL neurons from resilient (n = 38) and PTSD-like rats (n =44); (c2) CeL neurons
from resilient (n =69) and PTSD-like rats (n =69). (¢3) CeM neurons from resilient (n = 25) and PTSD-like rats (n =41). BL, basolateral; CeL, central
lateral; CeM, central medial; PTSD, post-traumatic stress disorder; RS, regular spiking.
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neurons (resilient, n = 26; PTSD-like, n =45; Figure 1c) from 22 rats.
CeL and CeM are considered separately because they form
contrasting connections with fear output networks. While CeM
contributes extensive projections to various brainstem fear
effector structures, CelL outputs are mostly limited to the
parabrachial nucleus.>73® However, Cel regulates fear expression
via its GABAergic projections to CeM*~*? and BNST.*'

Passive properties and incidence of different cell types in resilient
vs PTSD-like rats

BL neurons. Consistent with prior work,**™* we classified BL
neurons as putative projection cells (Figure 3a1) or interneurons
(Figure 3a3) based on their contrasting electroresponsive proper-
ties (reviewed in refs 47,48). BL neurons were classified as
projection cells when they displayed spike frequency adaptation
during depolarizing current pulses and generated action poten-
tials of comparatively long duration (0.8 ms at half amplitude).
Given the heterogeneous firing patterns of BL interneurons,**~>"
we relied primarily on spike duration to identify these cells
(0.6 ms at half amplitude). Because a very low proportion of
recorded cells met this criterion, they are not considered further.
Consistent with previous findings,*® two types of BL projection
cells were distinguished based on their responses to depolarizing
current pulses: cells generating only single spikes (Figure 3a1),
hereafter termed RS cells, and neurons generating spike doublets
or bursts (Figure 3a2), hereafter termed intrinsically bursting. The
incidence of RS and intrinsically bursting neurons did not vary
between resilient and PTSD-like rats (Fisher’s exact test, P=0.8230;
Figure 3c1). Whether we considered the two types of projection
cells together or separately, spike duration, amplitude and
threshold did not vary significantly as a function of the rats’
phenotypes, nor did their resting potential, time constant or input
resistance (t-tests, P's>0.1, Supplementary Table 8).

-46

Cel neurons. Consistent with prior studies in rats,39’52'53 we

identified three main cell types in CeL, based on variations in the
temporal dynamics of current-evoked spiking: RS (Figure 3b1),
LTB (Figure 3b2) and late-firing (LF, Figure 3b3). However, their
incidence did not vary significantly between resilient vs
PTSD-like rats (Figure 3c2; X*-test, y*=3.11, P=0.211). Moreover,
whether we considered the three cell types together or separately,
the two behavioral phenotypes were not associated with
differences in the spiking or passive properties of CeL neurons
(t-tests, P's>0.08; Supplementary Table 9).

CeM neurons. In prior studies,*>** the same physiological classes
of neurons identified in CeL were found in CeM, albeit with
differences in their relative incidence. Our results in CeM matched
these earlier findings with the exception that we encountered no
LF cells. In contrast with BL and CeL neurons, marked differences
in the incidence of CeM cell types were observed as a function of
the rats’ phenotype (Figure 3c3). In particular, RS cells prevailed in
PTSD-like rats whereas the incidence of LTB neurons was higher in
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resilient rats (Fisher's test, P=0.017). However, comparing the
spike or passive properties of CeM neurons (Supplementary Tables
10-12) revealed no significant differences between PTSD-like and
resilient rats (P's > 0.09).

Synaptic responsiveness of amygdala neurons in resilient vs PTSD-
like rats

BL neurons. BL receives excitatory inputs from several cortical
regions® and the LA>%°7 To test whether the responsiveness of
BL neurons to these inputs differed between the two phenotypes,
we positioned stimulating electrodes in the external capsule,
which carries most cortical axons ending in BL, and the ventral
part of LA. We then compared the responses elicited by electrical
stimuli (100 us; 0.1-0.8 mA) delivered at these two sites (resilient,
n=34; PTSD-like, n=24). Irrespective of the stimulation site, no
phenotypic differences were seen in the proportion of stimuli
eliciting spikes (Figure 4al; F(;56=0.526, P=0.471), in the
amplitude of evoked EPSPs or IPSPs (Figure 4a2; EPSPs,
Fa.s6=0.743, P=0.512; IPSPs, F(; 56 =0.239, P=0.689) or in the
slope of EPSPs (Figure 4a3; F(; 55)=0.6872, P=0.356).

Cel neurons. BL neurons contribute glutamatergic inputs to CeL
and CeM.’"%° Therefore, we compared the properties of BL-
evoked synaptic responses in the two phenotypes. Cel cells
(resilient, n = 28; PTSD-like, n = 34) displayed marked differences in
synaptic responsiveness as a function of phenotype (Figure 4b).
First, the proportion of BL stimuli eliciting spikes was significantly
higher in PTSD-like than resilient rats (ANOVA, F;60)=8.693,
P =0.0045; Figure 4b1) and this effect was seen in both RS and LF
neurons. Consistent with the higher probability of orthodromic
spiking in PTSD-like rats, CeL EPSP (but not IPSP) amplitudes
(Figure 4b2; ANOVA, F460=4.75, P=0.033) and slopes
(Figure 4b3; ANOVA, F(160)=4.192, P=0.045) were higher in
PTSD-like than resilient rats, particularly in an intermediate range
of stimulation intensities (0.2-0.5 mA).

To determine whether the increased synaptic responsiveness of
CeL neurons in PTSD-like rats was due to pre- or postsynaptic
factors, we compared properties of PPF in the two groups
(Supplementary Figure 3), as in the BNST experiments. However,
the paired-pulse ratio did not differ significantly (t-test, t=—0.302,
df =32, P=0.765; PTSD = 1.55 £ 0.064, resilient=1.52 £ 0.068).

Therefore, to test whether a difference in the postsynaptic
sensitivity of CeL neurons to glutamate mediates the differences
in BL-evoked responses, we used photic uncaging of glutamate. In
this approach, slices are bathed in an aCSF solution containing
caged glutamate (1.0 mm). Ultraviolet light stimuli (5-30 ms),
centered over the soma of the recorded cell, are applied to
uncage glutamate. Figure 4d1 illustrates representative examples
of responses to stimuli of progressively increasing duration
(bottom to top) in CeL neurons from PTSD-like (red, left) and
resilient (right, black) rats. As in these representative examples, the
average amplitude (Figure 4d2) and slope (Figure 4d3) of EPSPs
elicited by uncaged glutamate was significantly higher in CeL cells

<
Figure 4.

Synaptic responsiveness of BL (a), CeL (b) and CeM (c) neurons in resilient (black) and PTSD-like (red) rats. In all panels, the x-axis

represents stimulation intensity whereas the y-axis shows (1) proportion of trials eliciting orthodromic spikes, (2) the amplitude of evoked
EPSP and IPSP (positive and negative values, respectively), as well as (3) EPSP slopes (measured in the first 2 ms). Error bars indicate s.e.m.
Stimulation sites were LA (a1), EC (a2, a3), BL (b,c). Insets show representative examples of evoked responses for neurons recorded in resilient
(black) and PTSD-like rats (red). (d) Responses of CelL neurons to uncaged glutamate vary as a function of the rats’ phenotype. (d1)
Representative examples of responses elicited by UV light pulses of gradually increasing duration (from 5 ms at bottom to 45 ms at top). Inset:
proportion of cells spiking (y-axis) as a function of UV stimulus duration (x-axis). Beyond 30 ms, all cells fired. (d2) Peak amplitude of EPSPs
elicited by glutamate uncaging (y-axis) as a function of UV stimulus duration (x-axis). In this and the next panel, all supra-threshold responses
were excluded, resulting in progressively diminishing n’s with UV stimuli of increasing durations (see inset of b1). (d3) Slope of EPSPs elicited
by glutamate uncaging (y-axis) as a function of UV stimulus duration (x-axis). Error bars indicate s.e.m. BL, basolateral; CeL, central lateral; CeM,
central medial; EC, external capsule; EPSP, excitatory postsynaptic potential; IPSP, inhibitory postsynaptic potentials; LA, lateral amygdala;

PTSD, post-traumatic stress disorder; UV, ultraviolet.
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from PTSD-like than resilient rats (PTSD-like, n = 24; resilient, n = 25;
amplitude, F(; 47)=30.28, P < 0.001; slope, F( 47)=13.12, P=0.004).
Note that these differences were detected despite the fact that
the analyses excluded trials where cells fired in response to
uncaged glutamate. At all stimulation intensities, a higher
proportion of supra-threshold trials were seen in CelL neurons
from PTSD-like rats (Figure 4d1, inset).

CeM neurons. Opposite to the results obtained in Cel, CeM
neurons from PTSD-like rats had a lower synaptic excitability. First,
the proportion of BL stimuli eliciting spikes (Figure 4c1) were
significantly lower in CeM cells from PTSD-like than resilient rats
(ANOVA, F(1 57y=4.5, P=0.033). Similarly, EPSP slopes (Figure 4c3)
were significantly lower in the PTSD-like group (F( 57 =6.028,
P=0.017). EPSP amplitudes (Figure 4c2) displayed a parallel trend
but group differences did not reach significance (F(;s7=2.947,
P=0.09).

DISCUSSION

Using patch recordings in brain slices kept in vitro, we studied the
intrinsic and synaptic responsiveness of BNST and amygdala
neurons in a rat model of PTSD. By comparing BNST and amygdala
neurons in resilient and susceptible rats, we observed region-
specific differences in their synaptic excitability. Below, we discuss
the significance of these observations in light of prior work on the
role and connections of the amygdala and BNST.

Limitations of the ex vivo approach and validity of the model

Although physiological studies in brain slices have substantial
analytical power, they also have some limitations. On the negative
side, many connections, particularly those involving distant
structures, are lost. Consequently, network phenomena that might
play an important role in PTSD cannot be studied with this
approach, raising the possibility that some of the differences we
observed in vitro are mitigated or enhanced by activity in BNST or
amygdala afferents.

On the positive side, the ex vivo approach allows one to study
nuclei-specific alterations in physiological properties; BNST and
the amygdala do not have to be treated as undifferentiated
structures because of insufficient spatial resolution. Also, the
ex vivo paradigm allows identification of phenotypic differences in
neuronal excitability, independently of emotion and cognition.
This contrasts with human imaging studies where neuronal
activity and emotions are inextricable. However, it is impossible
to determine whether the differences we observed predated
exposure to predator threat or emerged as a result of this
experience. Related to this, it is conceivable that the susceptibility
of PTSD-like rats to predator threat is due to their increased
responsiveness to olfactory stimuli relative to resilient rats.

Altered BNST and amygdala responsiveness in PTSD-like vs
resilient rats

Early lesion and inactivation studies that lacked the spatial
resolution to selectively affect different BNST sub-regions led to
the view that BNST activity promotes the development of long-
lasting anxiety states.®’"®> However, more recent work indicates
that BNST is functionally heterogeneous.®®®” First, much data
indicates that CRF neurons of the oval nucleus, located in the
dorsal half of BNST-AL, exert an anxiogenic influence. For instance,
stressors increase CRF mRNA expression in BNST-AL (reviewed in
ref. %) and infusing CRF in BNST is anxiogenic.® Moreover, anxiety
is reduced after chemogenetic inactivation of CRF cells®® or
optogenetically silencing BNST-AL cells expressing D1-receptors,®®
thought to be only expressed by CRF cells.”® However, it is
currently unclear how CRF cells promote anxiety. Since they do
not project to the pituitary, their influence probably involves a
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modulation of synaptic transmission in BNST itsel
targets.

Related to this, CRF cells account for a minority of BNST-AL
neurons?? raising the question of what is the role of the prevalent
non-CRF GABAergic neurons? It should be noted that most of our
BNST-AL cells presumably belonged to this group since only
~10% of our sample were fIR neurons. Mounting evidence
suggests that these non-CRF cells are inhibited during fear and
anxiety. Indeed, a peptide that when infused in BNST, potentiates
acoustic startle and increases neuronal activity in BNST-AL's
brainstem targets’® actually inhibits non-CRF BNST-AL neurons
in vitro.”! Moreover, BNST-AL neurons acquire inhibitory responses
to conditioned stimuli predicting adverse outcomes.”? In contrast,
BNST-AM cells develop excitatory responses to the same condi-
tioned stimuli”? Importantly, BNST-AL and AM neurons also
display inverse activity changes in relation to the expression of
contextual fear.”?

The region-specific regulation of neuronal excitability we
observed in BNST is consistent with these prior findings. The
synaptic excitability of the non-CRF BNST-AL neurons was lower in
PTSD-like rats, in keeping with the fact that these cells are
inhibited during cued and contextual fear.”> Opposite to BNST-AL,
BNST-AM and AV neurons had a higher synaptic excitability in
PTSD-like rats, consistent with the higher firing rates of BNST-AM
cells during cued and contextual fear.”? Interestingly, BNST-AL
sends purely GABAergic projections to BNST-AM and AV,”?
providing a potential substrate for the reciprocal activity fluctua-
tions seen between these two BNST-A regions during fear and
anxiety.

In the amygdala, we observed, robust phenotypic differences in
the excitability of CeA neurons but they had an opposite polarity
in CeL and CeM. In Cel, the amplitude and slope of BL-evoked
EPSPs was higher in PTSD-like rats whereas the opposite was
observed in CeM. Although Cel cells send GABAergic projections
to CeM,.***” IPSP amplitudes did not differ between the two
phenotypes in CeM. A possible explanation for this apparent
contradiction is that CeL axons end distally in the dendrites of
CeM neurons, preventing us from detecting changes in IPSP
amplitudes with somatic recordings. Consistent with this possibi-
lity, distal GABAergic synapses to CeA neurons have a lower
unitary conductance than somatic inhibitory synapses.”*

While we observed differences in the efficacy of glutamatergic
synapses onto BNST-AM, BNST-AV and CeL neurons, in these three
cases PPF properties did not differ as a function of the rats’
phenotype. Thus, it is likely that postsynaptic factors, such as a
change in the number and/or biophysical properties of AMPA
receptors, are involved. Consistent with this, we found that Cel
neurons had an increased sensitivity to uncaged glutamate in
PTSD-like rats. More work will be needed to characterize these
changes such as comparing AMPA/NMDA ratios and activity-
dependent plasticity between phenotypes. Also to be identified
are the signaling pathways that support the persistent changes in
synaptic transmission we observed.

Relevance to PTSD

Supporting the relevance of our data for understanding PTSD,
there are many precedents in the literature for the participation of
CeA and BNST in anxiety disorders.”>~”® For instance, functional
imaging studies in humans have reported increased BNST
activation during the anticipation of adverse events and in
stress-related anxiety disorders.8%®" Moreover, in a non-human
primate model of childhood dispositional anxiety, a temperament
associated with an increased risk of developing mood disorders,
CeA and BNST were found to be more active in monkeys with
high- than low-dispositional anxiety’”>’® and CeA lesions
decreased dispositional anxiety.”® Interestingly, the peptide
PACAP (pituitary adenylate cyclase-activating polypeptide), which
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Figure 5. Differences in synaptic responsiveness between resilient
(left) and PTSD-like (right) rats in the extended amygdala. Arrows of
different thicknesses indicate relative strength or activity of the
pathways depicted. The responsiveness of Cel neurons to BL inputs
is higher in PTSD-like rats; that of CeM neurons is lower. In BNST, AL
neurons are subjected to stronger inhibition in PTSD-like rats,
whereas AM cells show a higher synaptic excitability. Given the
GABAergic projections from CelL to CeM and BNST-AL, as well as
from BNST-AL to BNST-AM, these differences should enhance the
activity of BNST-AM neurons and reduce that of CeM cells. AL,
anterolateral; AM, anteromedial; BL, basolateral; BNST, bed nucleus
of the stria terminalis; CeL, central lateral; CeM, central medial; PTSD,
post-traumatic stress disorder.

is enriched in CeL,2? enhances fear expression when infused in
CeA® and predicts PTSD symptom severity in women,®* causes a
postsynaptic increase in the responses of Cel neurons to BL
inputs,® as we observed here in PTSD-like rats. PACAP inputs to
Cel originate in the parabrachial nucleus, which also projects to
BNST-AL.2% However, PACAP inputs to BNST-AL are concentrated
in the oval nucleus where they target CRF neurons.?” Given the
rapidly accumulating evidence implicating PACAP and CRF
signaling in PTSD,® it will be important to characterize the
excitability of CRF neurons of the oval nucleus in the Lewis rat
model of PTSD.

Significance for the pathophysiology of PTSD

We observed distributed changes in synaptic responsiveness in a
largely disconnected network. How would these changes impact
the expression of fear and anxiety in an intact brain? CeL emerges
as a key regulator in this context because it contributes GABAergic
projections to CeM and BNST-AL but not BNST-AM.>"3® Because
CelL neurons are more excitable in PTSD-like rats, they should
inhibit non-CRF BNST-AL neurons (Figure 5). Also, since BNST-AL
contributes GABAergic projections to BNST-AM,”® BNST-AL inhibi-
tion by CelL inputs should cause a disinhibition of BNST-AM. In
turn, higher activity levels in BNST-AM should increase, via its
hypothalamic projections,®® anxiety. Last, because Cel sends
GABAergic projections to CeM,®3° the PTSD-like state might be
paradoxically associated with a reduced responsiveness of CeM
fear output cells.

This model makes a startling prediction: in PTSD-like rats,
control of fear expression is altered such that the influence of CeM
is minimized whereas that of BNST-AM and AV is enhanced. This
prediction could be tested by comparing the effects of BNST
lesions on the expression of conditioned fear responses to cues in
the two phenotypes. Indeed, prior studies found that cued fear is
unaffected by BNST lesions.56%¢*55 However, our results predict
that, after predatory threat, such interventions will reduce cued
fear in PTSD-like but not resilient rats. If supported, this prediction
might explain the greater resistance of conditioned fear to
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extinction training in PTSD-like rats:'" because mechanisms of fear
expression would differ between the two phenotypes, so would
extinction mechanisms. Also, given earlier findings indicating that
BNST activity promotes fear generalization,®® the enhanced
responsiveness of BNST-AM and AV neurons might promote
generalization of fear to innocuous cues and contexts, a defining
feature of anxiety disorders.
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