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Abstract: Closed-form evaluation of key performance indicators (KPIs) of telecommunication net-
works help perform mathematical analysis under several network configurations. This paper deals
with a recent mathematical approach of indefinite quadratic forms to propose simple albeit exact
closed-form expressions of the expectation of two significant logarithmic functions. These functions
formulate KPIs which include the ergodic capacity and leakage rate of multi-user multiple-input
multiple-output (MU-MIMO) systems in Rayleigh fading channels. Our closed-form expressions
are generic in nature and they characterize several network configurations under statistical channel
state information availability. As a demonstrative example of the proposed characterization, the
derived expressions are used in the statistical transmit beamformer design in a broadcast MU-MIMO
system to portray promising diversity gains using standalone or joint maximization techniques of the
ergodic capacity and leakage rate. The results presented are validated by Monte Carlo simulations.

Keywords: quadratic forms; Information theory; ergodic capacity; leakage rate; principal eigenvectors

1. Introduction

Quadratic forms find applications in multifarious fields of engineering. In telecom-
munication systems, quadratic forms in Gaussian random variables are of particular
interest [1–6]. While the earlier works on quadratic forms in Gaussian random variables
laid a good foundation, albeit a unified approach which can include cases of complex
and real, central and non-central, and ratio formulation was not explored until recent
work by Al-Naffouri et al. in [7]. That work provided several closed-form results of key
performance indicators (KPI) of information theocratic systems such as outage probability.
However, metrics dealing with the expectation of logarithmic functions such as ergodic
capacity and leakage rate were not characterized therein. These metrics are central to any
telecommunication network, and the availability of closed-form analytical formulas can
lead to effective beamforming techniques.

Ergodic capacity provides an upper bound on reliable data rate over a fading channel.
It is found by computing the expectations of a logarithmic function of signal-to-interference-
plus-noise ratio (SINR). The SINR has a direct relationship with the ergodic capacity
metric, whereas its cumulative distribution function (CDF) defines the outage probability
measure. Furthermore, SINR expressions can account for both intra-cell as well as inter-cell
interference [8]. Alternatively, signal-to-leakage-plus-noise ratio (SLNR) based metrics
also directly or indirectly influence KPIs. Specifically, an intra-cell SLNR maximization
problem is used for leakage interference suppression and outage analysis in [9], whereas,
a sum leakage rate maximization problem is presented in [10] and its findings directly
showcased as KPIs. Therefore, mathematical analysis of such KPIs can provide pedagogical
insights into the design of multi-user multiple-input multiple-output (MU-MIMO) systems
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and other simpler models such as multiple-input single-output (MISO), and single-input
single-output (SISO).

Various studies have been conducted to evaluate the ergodic capacity and related
KPIs of communication systems. In what follows, we categorize different characterization
approaches available in literature in terms of numerical solutions, exact solutions albeit with
assumptions, and approximate solutions. Numerical solutions of the ergodic and outage
capacity are presented in [11] in terms of a single integral formulation. Exact solutions,
albeit with assumptions appear in [12–16] among other works. More specifically, a closed-
form solution of maximum ratio combining (MRC) based systems is given in [12], however,
it is pertinent for a noise-limited case. The work in [13] uses a moment generating function
(MGF) based solution which is specific for non-negative random variables. Furthermore,
refs. [14,15] consider bounds on the number of transmit antennas. A promising solution
appears in [16], however, it is strictly for orthogonal beamforming vectors and requires
channel state information (CSI) at the transmit side. Approximate solutions of KPIs
include but are not limited to [17–21]. Therein, the solution in [17] is for large system
analysis and it utilizes random matrix theory. The work in [18] considers a satellite to
terminal node linked through a relay and the work accounts for outdated CSI, while [19]
presents solutions by considering correlated channels under transmit antenna selection
based scheme. An indefinite quadratic forms approach [7] is used to obtain an exact
solution of the outage probability expression of a covariance shaping channel model in [22],
however, only approximate solutions of ergodic capacity are reported under this approach.
The approximate solutions include [20] which is based on a Joint-Diagonalization based
approximation only suitable for commuting matrices and [21] which is relevant for large
antenna arrays and specific to the orthonormal set of beamforming vectors. Hence, there
is a need for a unified approach that provides exact closed-form expression of ergodic
capacity by relaxing the above-mentioned assumptions on the transmit beamformers,
antenna diversity, correlated channel gains, and indefinite weight matrices involved in
SINR and SLNR expressions.

A common assumption found in literature is that the base station has knowledge of
instantaneous CSI, e.g., [9,10,23]. These assumptions are based on a feedback scenario,
wherein an accurate instantaneous CSI is made available at the base station by utilizing
a significant fraction of the allocated bandwidth. Hence, as an alternate to the feedback
path, a statistical CSI-based system is bandwidth-efficient and often more applicable in
telecommunications. However, barring the simplest case of uncorrelated channels, deriving
closed-form expressions of the network KPIs by considering only the channel statistics
have difficult mathematical tractability even for Gaussian channels (e.g., [24]). Hence,
deriving exact solutions of KPIs under statistical CSI availability is challenging and an
active research area.

Motivated by the aforementioned discussions, we utilize the indefinite quadratic
forms approach and contribute by:

1. deriving tractable, simple, and ‘exact’ closed-form solutions of the ergodic capacity
and leakage rate. Our solutions relax the assumption of orthonormal and orthogo-
nal transmit beamforming vectors, while they account for colored channels of arbi-
trary dimension, distinct correlation matrices, and indefinite eigenvalue structures.
Furthermore, the proposed solutions are generic and applicable for any antenna
diversity model,

2. demonstrating the derived closed-form expressions on a downlink broadcast MU-
MIMO system. We also outline the design of transmitting beamformers by selecting
sum-capacity and/or sum-leakage rate as objective functions and thereby employ a
maximization problem under power loading constraints, and

3. showcasing the efficacy of proposed results on several important works in the physical
layer domain of communication systems.

Rest of this paper is organized as follows. Section 2 presents closed-form solutions
of ergodic capacity and leakage rate alongside some special cases. Section 3 gives an
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application example, validates the main results, and outlines a beamformer design. Finally,
Section 4 concludes the paper.

Notations: Vectors and matrices are indicated by bold letters. ‖a‖2 and |A| denote
norm-2 of vector a and determinant of matrix A, respectively. E(.) represents the expecta-
tion operator and the expectations is with respect to all sources of randomness. CN (0, R)
defines a zero-mean circularly-symmetric complex Gaussian distribution with covariance
matrix R. (.)H , u(.), and E1(.) indicate the conjugate transposition, the unit step func-
tion, and the exponential integral function, respectively. For brevity of notations (.)

H
2 is

used to identify ((.)
1
2 )H . For any matrix A and vector h, the quadratic form is defined as

‖h‖2
A
4
= hHA h.

2. The Main Results

In this section, we present theorems and some special cases thereof to evaluate ‘exact’
closed-form expression of the ergodic capacity and leakage rate. The two metrics are
defined as follows:

Ck = E
[

log2

(
1 +

hH
k A hk

1 + hH
k B hk

)]
, (1)

Lk = E
[

log2

(
1 +

hH
k A hk

1 + hH
i C hi

)]
, (2)

where Ck and Lk represents the ergodic capacity and leakage rate of kth user equipment,
respectively, while hk and hi are independent kth and ith Rayleigh fading channel vectors,
respectively. Here, A, B, and C are indefinite Hermitian matrices which are assumed
as deterministic.

Theorem 1. Given a channel vector hk ∼ CN (0, Rk) of length T and indefinite Hermitian
matrices A and B of dimension T × T. Then

E
[

log2

(
1 +

hH
k A hk

1 + hH
k B hk

)]
=

1
ln(2)

[ T

∑
t=1

λT−1
t

∏T
u=1,u 6=t(λt − λu)

e
1

λt E1

(
1
λt

)
u
(
λt
)

−
T

∑
t=1

νT−1
t

∏T
u=1,u 6=t(νt − νu)

e
1
νt E1

(
1
νt

)
u
(
νt
)]

, (3)

where λt and νt are the t-th eigenvalues of matrices R
1
2
k [A + B]R

H
2

k and R
1
2
k BR

H
2

k , respectively.

Proof. The proof is given in Appendix A.

Theorem 2. Given two independent channel vectors hk ∼ CN (0, Rk) and hi ∼ CN (0, Ri) of
length T and V, and indefinite Hermitian matrices A and C of dimension T × T and V × V,
respectively. Then

E
[

log2

(
1 +

hH
k A hk

1 + hH
i C hi

)]
=

1
ln(2)

T

∑
t=1

V

∑
v=1

κT
t

∏T
u=1,
u 6=t

(
κt − κu

) ςV−1
v

∏V
w=1,
w 6=v

(
ςv − ςw

)
× 1(

κt − ςv
)[e

1
κt E1

(
1
κt

)
− e

1
ςv E1

(
1
ςv

)]
u
(
κt
)
u
(
ςv
)
, (4)

where κt and ςv are the t-th and v-th eigenvalues of matrices R
1
2
k AR

H
2

k and R
1
2
i CR

H
2

i , respectively.

Proof. The proof is given in Appendix B.
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Note that the two theorems cater for both the positive and negative eigenvalues.
Herein, we only consider distinct eigenvalues, an extension for repetitive eigenvalues is
simple and for such a differential approach in [25] is useful. The theorems include the
SINR and SLNR and they are applicable on the systems with transmit and receive antenna
diversity. The quadratic forms for such systems is pointed out in [22], furthermore [22,26]
also provide efficient statistical beamforming vector designs. Statistics of channel vec-
tors indicate that such beamforming vector designs are in the direction of the principal
eigenvector (PEV) of the channel correlation matrices [27].

The expectation of the form involving signal-to-noise ratio (SNR) is rather mature
in literate. An ‘exact’ solution for the noise-limited case is established [20] for unit rank
matrices. In Proposition 1, we provide a solution for an arbitrary rank Hermitian matrices
under the framework of indefinite quadratic forms.

Proposition 1. As a special case of Theorem 1, considering weight matrix B = 0. Then:

E
[

log2

(
1 + hH

k A hk

)]
=

1
ln(2)

[ T

∑
t=1

κT−1
t

∏T
u=1,u 6=t(κt − κu)

e
1
κt E1

(
1
κt

)
u
(
κt
)]

. (5)

Proof. The proof is pointed out in Appendix A.

The aforementioned proposition is useful in deriving the expectations of the form [28]
((5)–(7)) by interweaving sum of quadratic forms, i.e., hH

k A hk = hH
k {∑C

c=1 Ac} hk =

hH
k A1 hk + hH

k A2 hk + · · ·+ hH
k AC hk. With some manipulations, Proposition 1 can also be

applied on cognitive radio and relay-assisted systems with partial channel state informa-
tion [29] (8)–[30] (20).

Next, a structure pertinent to the communication systems having white or identical
correlation matrices is proposed.

Proposition 2. As a special case of Theorem 2, considering white channels, i.e., hk ∼ CN (0, I),
hi ∼ CN (0, I), and assuming similar weight matrices, i.e., A = C. Then:

E
[

log2

(
1 +

hH
k A hk

1 + hH
i A hi

)]
=

1
ln(2)

T

∑
t=1

κ2T−3
t

∏T
u=1,
u 6=t

(
κt − κu

)2

[
κt − e

1
κt E1

( 1
κt

)]
u(κt), (6)

where κt is now the tth eigenvalue of matrix A since Rk = I.

Proof. The proof is pointed out in Appendix B.

Proposition 2 provides statistical insights of leakage rate defined similarly in [10] (4).

3. Application Example and Discussion

In this section, we demonstrate the utility of the proposed theorems by adopting the
broadcast system model given in [20,31] (Figure 1). Specifically, we deal with a downlink
single cell MU-MIMO system consisting of K single antenna mobile stations (MS) and an N
antenna base station (BS). We assume unity average power symbols which are modulated
with transmit beamformer wk ∈ CN×1 at transmission end, sent over an N × 1 channel
hk ∼ CN(0, Rk), and received at the kth MS. The system is also inflicted with an additive
white noise with zero mean and variance σ2

k . Hence, the instantaneous SINR and SLNR of
the kth user under this model is given by

SINRk =
|hH

k wk|2

σ2
k + ∑K

i=1,i 6=k |h
H
k wi|2

, (7)

SLNRk =
|hH

k wk|2

σ2
k + ∑K

i=1,i 6=k |h
H
i wk|2

, (8)
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where wi represents the beamforming vector of interfering symbol and hi ∼ CN(0, Ri)
represents the leakage channel.

Now, employing the whitening transformations on the desired and interference chan-

nels, i.e., h̄k = R−
H
2

k hk, and h̄i = R−
H
2

i hi, respectively, allows us to express SINRk and
SLNRk in the canonical quadratic form appearing in the proposed theorems as:

SINRk =
h̄H

k Ah̄k

1 + h̄H
k Bh̄k

; (9)

SLNRk =
h̄H

k Ah̄k

1 + h̄H
i Ch̄i

, (10)

where A, B, and C are the weight matrices of the desired, co-channel interference, and leak-
age interference, namely

A =
1
σ2

k
R

1
2
k wkwH

k R
H
2

k , B =
1
σ2

k
R

1
2
k

(
K

∑
i=1,i 6=k

wiwH
i

)
R

H
2

k , and C =
1
σ2

k
R

1
2
i wkwH

k R
H
2

i .

Next, considering that receiver has channel state information (CSI), the transmitter
has statistical CSI, the channels are ergodic, and bandwidth is normalized to unity; then
the sum ergodic capacity C [32], and the sum leakage rate L is expressed as

C =
K

∑
k=1

Ck =
K

∑
k=1

E
[
log2

(
1 + SINRk

)]
, (11)

L =
K

∑
k=1

Lk =
K

∑
k=1

E
[
log2

(
1 + SLNRk

)]
, (12)

where Ck and Lk have now simple and exact closed-forms thanks to (3) and (4), respectively.

3.1. Validation of the Closed-Form Expressions

For validation purpose of the proposed work, we show in Figures 1 and 2 the plots of
the sum capacity and sum leakage rate against SNR in dB while varying the number of
transmit antennas N. Herein, we consider distinct correlation matrices and set the Monte
Carlo runs to 100,000. With insight from [27], transmit beamformers, i.e., wk, ∀k are based
on the principal eigenvector of the respective correlation matrices. Note that the system
behaves as noise limited at low SNR and interference limited at high SNR as observed for
K = 2 and K = 4 in both the figures. We have used a dominant eigenvalue-based beamformer
design [27] in the simulation setup which is not optimal and hence degradation in sum
capacity and leakage is observed as the total number of users increase. However for large K,
it is observed that the rate degradation in Figure 2 is less than Figure 1 because the leakage
rate in (11) is a function of decoupled beamformers (8). An increase in transmit antenna
order N also increases beam directivity and hence increases sum and leakage rates in both
the figures. In Figure 3, plot of the sum capacity against an increasing N while varying SNR
in dB is given. For the PEV beamformer design, the performance gains slow down with
the increasing number of transmit antennas for all considered cases. The absolute error
between the analytical closed-form expressions and simulations of 100,000 Monte Carlo
runs is presented in Figure 4. Note that the summary statistics would further improve by
increasing the Monte Carlo runs. Hence, under several network configurations including
the case for large array MIMO structures, an exact match of analytical and simulation
results proves the two theorems.
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Figure 1. Comparison of analytical and simulation results of the sum capacity versus the transmit
SNR in dB.
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SNR in dB.
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1.5 times away from the top interquartile range of the box plots.



Sensors 2021, 21, 6792 8 of 13

3.2. Beamforming Using the Closed-Form Expressions

The availability of the closed-form expressions allows us to utilize state-of-art unsu-
pervised transmit antenna beamformer designs. The design is unsupervised in the sense
that it considers only the statistical CSI at the transmitter side. As C and L given in (11)
and (12) account for all users in the respective expressions, a single objective optimization
problem is desired. We define such optimization problem as

max
{wk}K

k=1

J
(
{wk}K

k=1; C; L
)

s.t. {‖wk‖2
2 ≤ 1}K

k=1 ,

(13)

where the constraints are used to limit transmit power of all transmit beamformers, while
depending on the methodology of optimization; the objective function has the follow-
ing cases

J
(
.
)
=


L, Standalone L max.
C, Standalone C max.
C ↔ L, Joint C and L max.

(14)

In the standalone case, either L or C is used as an objective function. In the joint case,
both C ↔ L are set as objectives in the alternate recursions. Hence, after initialization using
the PEV approach [27] in the joint case, (11) is selected in (13) at odd recursion and the
results obtained are then used as initial beam vectors for (12) which are now used at even
recursions in (13). The algorithm terminates if the relative improvement of (13) is less than
the predefined threshold value set by the user. The working principle of (13) and (14) is
based on the ‘interior-point’ method given in [33]. The construct of the beamformer is
given in Algorithm 1.

Algorithm 1 Construct of Beamformer

1: Set the iteration index i = 0, and define algorithm termination conditions, namely,
maximum iterations (imax), and precision level (ε).

2: Select an objective function from (14), and initialize beamformers {w{int.}
k }K

k=1 using
PEV scheme in [27].

3: Compute J(i)
(
{wk}K

k=1; C; L
)

using {w{int.}
k }K

k=1.

4: repeat
5: i = i + 1

6: Compute J(i)
(
{wk}K

k=1; C; L
)

using ‘interior-point’ method in (13).

7: Update local optimal beamformer {wlo
k }

K
k=1.

8: if {|J(i)(.)− J(i−1)(.)| ≥ ε} && {i ≤ imax} then
9: set Condition = false.

10: else
11: set Condition = true.
12: end if
13: until {Condition = true}

In Figure 5, we reflect on the aforementioned optimization problem by setting N = 4
and K = 2, while performing initialization of transmitting beamformers using PEV. Per-
formance of the three cases in (14) is compared in terms of the sum capacity versus SNR
in dB. Under the considered network configurations, Joint C ↔ L max. is most efficient,
Standalone C max. is finding good local maxima, whereas Standalone L max. is inefficient
at high SNR values. In Figure 5, we also provide the validity of the proposed theorems at
both initialization and post-optimization phases. In comparison, the solutions in [16] which
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is specific for orthogonal beamformers, and [21] which is based on the orthonormal set of
beamformers fails validation under the PEV initialized arbitrary beamformer designs.

Lastly, in Figure 6, the performance of the proposed solution is compared with [16] (27)
for K set to 2 and 3. It is worth noting that the compared closed-form solution is based
on known CSI at the transmit side and their model considers channel knowledge at
the transmit side and uses it in the transmit beamformer design. However, for a fair
comparison, we subject their solution to the PEV based arbitrary beamformer design owing
to only statistical CSI availability at the transmit side. It is observed that until the SNR
value of 10 dB, the proposed solution behaves as noise limited whereas, beyond this value,
the system is more interference impaired. Nevertheless, the proposed solutions in both the
user cases show significantly higher performance throughout the SNR range as compared
with the exiting method.
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Figure 5. Comparison of analytical and simulation results of the sum capacity versus the transmit
SNR in dB under several beamformer designs (BFD).
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Figure 6. Comparison of the sum capacity versus the transmit SNR in dB. Here, proposed and
existing solutions are based on the PEV transmit beamforming scheme.

4. Conclusions

In this paper, exact closed-form expressions of the ergodic capacity and leakage are
presented for a generic model which includes co-channel interference, distinct correlation
matrices, Hermitian indefinite weight matrices of correlated channels, and any determinis-
tic beamformers. The expressions are in terms of exponential, exponential integral, and unit
step functions. In the demonstration, a downlink broadcast MU-MIMO system impaired
by Rayleigh fading is considered, and a canonical SINR and SLNR formulation is outlined
on which the proposed solution can be directly applied. Furthermore, the proposed design
of transmitting beamformers indicates that KPIs of telecommunication systems can be
enhanced both by using SINR and SLNR based metrics. The proposed results hold not
only for classical network configurations but also for emerging large antenna array models
where transmit antenna elements are greater than the total number of users in a given
cell. This work can be furthered in several domains including the performance analysis of
covariance shaping receive beamformers, characterization of multi-cell association systems,
and performance optimization of cognitive radio and relay assisted networks.
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Appendix A

Proof of Theorem 1. From the interweaving of sum of quadratic forms defined in Section 2,
employing the notion of quadratic forms, and the linearity of the expectation operator,
we have

Ck = E
[

log2

(
1 + ||hk||2A+B

)]
︸ ︷︷ ︸

I1

−E
[

log2

(
1 + ||hk||2B

)]
︸ ︷︷ ︸

I2

(A1)

Using [34] (6), I1 is expressed in integral form as follows

I1 =
∫ ∞

0
log2(1 + γth) f||hk ||2A+B

(γth) dγth (A2)

=
1

ln(2)

∫ ∞

0

1− F||hk ||2A+B
(γth)

γth + 1
dγth (A3)

where γth is a predefined threshold of the CDF, i.e., F||hk ||2A+B
(γth) = Pr{||hk||2A+B < γth},

and f||hk ||2A+B
(γth) is the probability density function (PDF). The second equality is obtained

by using integration by parts [35] (20).
Now, applying residue theory [7], the closed-form expression of the CDF is expressed as

F||hk ||2A+B
(γth) = 1−

T

∑
t=1

λT−1
t e−

γth
λt

∏T
u=1,u 6=t(λt − λu)

u
(
λt
)

(A4)

Next, plugging (A4) in (A2), applying change of variable γ̄th = γth + 1, and employ-
ing [36] (Proposition 3.351-5), gives

I1 =
1

ln(2)

T

∑
t=1

λT−1
t

∏T
u=1,u 6=t(λt − λu)

e
1

λt E1

(
1
λt

)
u
(
λt
)

(A5)

The second integral I2 in (A1) has B as the weight matrix of the quadratic norm and has
a similar structure differing only by the eigenvalues. Hence, the closed-form expressions of
I1 and I2 yield the exact solution given in (3). The same methodology applies to obtain the
latest expression in (5).

Appendix B

Proof of Theorem 2. The proof starts by conditioning the channel vector appearing in the
denominator in (4) as

Lk|||hi ||2C=x = E
[
log2

(
1 + ||hk||2A/(1+x)

)]
(A6)

Using the integral formulation shown in the proof of Theorem 1 and removing the
condition in (A6) gives us

Lk =
1

ln(2)

∞∫
−∞

∞∫
0

1− F||hk ||2A/(1+x)
(γth)

γth + 1
f||hi ||2C

(x)dγthdx (A7)
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where CDF and PDF are characterized using [7] as follows

F||hk ||2A/(1+x)
(γth) = Pr{||hk||2A/(1+x) < γth}

= 1−
T

∑
t=1

κT−1
t

∏T
u=1,
u 6=t

(κt − κu)
e−

(1+x)γth
κt u

(
(1 + x)γth

κt

)
(A8)

f||hi ||2C
(x) =

d
dx

Pr{||hi||2C < x}

=
V

∑
v=1

ςV−2
v

∏V
w=1,w 6=v

(
ςv − ςw

) e−
x

ςv u
(

x
ςv

)
(A9)

Next, by plugging (A8) and (A9) in (A7), adjusting the limits of integration by means
of the two-unit step functions, and performing some mathematical manipulations yield

Lk =
T

∑
t=1

V

∑
v=1

κT
t e

1
κt u
(
κt
)

∏T
u=1,u 6=t

(
κt − κu

) ςV−1
v u

(
ςv
)

∏V
w=1,w 6=v

(
ςv − ςw

)
× 1

ln(2)

[ ∫ ∞

1

1
γth(γth +

κt
ςv
− 1)

e
γth
κt dγth

]
(A10)

By partial fraction expansion of (A10) and using [36] (Propositions 3.351-5 and 3.352-2)
leads to the solution given in (4).

For the special case in (6), we consider A = C and hence use f||hi ||2A
(x) in (A7) followed

by some mathematical manipulations, to achieve a single integral form as

Lk =
1

ln(2)

T

∑
t=1

κ
2(T−1)
t

∏T
u=1,u 6=t

(
κt − κu

)2 u
(
κt
) ∫ ∞

0

1
(γth + 1)2 e

γth+1
κt dγth (A11)

Lastly, using [36] (Proposition 3.353-3) on the above expression yields the exact solu-
tion given in (6).
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