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Abstract: Strength is an important parameter for the design of asphalt pavement materials and
structures. To study the influence of various factors on the three-dimensional strength of asphalt
mixtures, three aggregate gradations (dense-graded bituminous mixture AC-13, stone mastic
asphalt SMA-13 and bituminous stabilization aggregate paving mixture OGFC-13) and two binders
(SBS modified bitumen and 70# base bitumen) were used to prepare the asphalt mixture specimens.
Among them, SBS+SMA-13 asphalt mixture has the best performance. On this basis, the uniaxial
compressive test, uniaxial tensile test and confining triaxial test were conducted on the SBS+SMA-13
asphalt mixture under six oil-stone ratios conditions (5.5%, 5.7%, 5.9%, 6.1%, 6.3%, and 6.5%),
six temperatures conditions (5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C), and five loading rates
conditions (1 mm/min, 2 mm/min, 3 mm/min, 4 mm/min, and 5 mm/min). In addition, a unified
three-dimensional strength calculation model considering the influence of temperature, loading rate,
and oil-stone ratio was proposed, and the change law of the three-dimensional strength with these
above factors was revealed. Furthermore, two sets of three-factor three-level orthogonal tests were
carried out on the SMA-13 asphalt mixture. The sensitivity analysis and strength regulation research
between three-dimensional strength and each factor were carried out. The results show that the type
of asphalt has the greatest influence on the strength of the mixture, the temperature has the second
most influence, the loading rate has less influence, and the oil-stone ratio has the least influence.
The strength regulations proposed to improve the strength of the asphalt mixture include the use of
modified asphalt, high-temperature stability high-quality asphalt, and the lower oil-stone ratio than
the Marshall optimal oil-stone ratio. The strength control measures proposed from the perspective of
the three-dimensional stress state, the joint failure of each stress components and real stress states are
taken into consideration.

Keywords: asphalt mixture; various factors; unified three-dimensional strength calculation model;
orthogonal test; strength regulation

1. Introduction

Asphalt pavement is currently the most widely used high-grade pavement structure form around
the world [1], for its performance, convenience in construction and maintenance, evenness, and comfort
when driving. As the main road material, the mechanical properties of asphalt mixtures, especially
direct tensile, uniaxial compression, and confining triaxial strength characteristics are quite important
parameters for the design of mixture composition and the combined design of asphalt pavement
structures [2]. Asphalt mixtures strength parameters are important parameters for pavement design [3].
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Therefore, it is of great significance to study the factors affecting the strength of asphalt mixtures [4]
and put forward corresponding control measures to ensure the quality and durability of asphalt
pavement [5–7].

At present, the research on the strength characteristics of asphalt mixtures mostly focuses on
the traditional experiments of tension, compression, bending, shear, and torsion [8–10]. As a typical
visco-elastoplastic material, the difference of its mechanical properties is directly related to the
stress state and test conditions [11]. Kim [12], Lee [13], and Pszczola [14] carried out the strength
characteristics of the asphalt mixture under uniaxial tension, uniaxial compression, indirect tension,
and semicircular bending under different temperatures and loading speeds which combined with
molecular dynamics [15] and fracture mechanics [16]. Some researchers, such as Habeeb [17], Liu [18],
Ranieri [19], and Ge [20] have carried out research on the effects of gradation, asphalt type, asphalt
content and other factors on the strength performance of the mixture, and proposed the regulation
measures to the strength of asphalt mixture [21–23]. These research are of reference significance.

Asphalt pavement structure is in a typical three-directional tension-compression combined stress
state under the combined effect of temperature and vehicle load. It is obviously that triaxial test
can better simulate the stress state of pavement structure [24]. For this, Huang et al. [25] developed
a triaxial test equipment, carried out the three-directional loading test, and established an octahedral
failure criterion model under complex stress state. To facilitate the engineering design and promote
the application, a method of establishing a three-dimensional strength model through conventional
direct tensile, uniaxial compression, and confining triaxial tests is further proposed to consider the
combined failure effect between each stress components.

Therefore, this article uses the above method to test the widely used SMA-13 asphalt mixture
and establishes a unified three-dimensional strength calculation model that considers the effects of
temperature, loading speed, and oil-stone ratio, and analyzes the influence of various factors through
orthogonal experiments. The three-dimensional strength control measures are proposed in order to make
better use of the strength potential of the asphalt mixture. The research scheme is shown in Figure 1.
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Figure 1. The research program of the failure strength models of asphalt mixtures under various factors.
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2. Materials and Methods

2.1. Materials and Specimens Preparation

It has been clarified that to study the influence of gradation and asphalt type on the three-
dimensional strength of asphalt mixture, the Continuous-dense-graded bituminous mixture AC-13,
Gap-dense-graded bituminous mixture SMA-13 and Gap-open-graded bituminous paving mixture
OGFC-13 were used in this research, which were widely used in asphalt surface layer. The gradations
are shown in Figure 2. In addition, the aggregate type is basalt, the apparent density and mechanical
properties are shown in Figure 2 and Table 1. The binder is widely used SBS (Styrene-Butadiene-Styrene
Block Copolymer) modified bitumen and 70 # base bitumen, and its properties are shown in Table 2.
The wood fiber was used in SMA-13 and OGFC-13asphalt mixture. The fiber content is 0.5%, the basic
properties are shown in Figure 2.
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Table 1. The density of basalt aggregate at all levels.

Sieve Size (mm) Apparent Density (g/cm3) Standard Requirement Test Methods

13.2 2.680 ≥2.6 T0304-2004
9.5 2.682 ≥2.6 T0304-2004

4.75 2.673 ≥2.6 T0304-2004
2.36 2.660 ≥2.5 T0328-2004
1.18 2.651 ≥2.5 T0328-2004
0.6 2.617 ≥2.5 T0328-2004
0.3 2.604 ≥2.5 T0328-2004

0.15 2.594 ≥2.5 T0328-2004
0.075 2.627 ≥2.5 T0328-2004

Ore powder 2.763 ≥2.5 T0352-2004

The optimal oil-stone ratio for the three gradations was determined according to the Marshall
test. The Marshall test results are shown in Table 3. Rotary compaction was used to form a cylindrical
test piece with a diameter of 100 mm and a height of 106 mm [26]. The surface of the specimen was
polished with a diamond blade, and a cylindrical specimen with a diameter of 100 mm and a height of
100 mm was obtained, as shown in Figure 3.
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Table 2. The key index of two type of asphalt.

Test Test Methods
Test Results Standard Requirement

SBS Asphalt Base Asphalt SBS Asphalt Base Asphalt

Penetration (25 ◦C, 100 g, 5 s) T0604-2004 56.1 69 40~60 60–80
Penetration Index T0604-2004 0.533 −0.78 ≥0 −1.5~+1.0

Softening point (◦C) T0606-2004 80 48 ≥60 ≥46
Ductility, cm T0605-2004 32(5 ◦C) 22.8(10 ◦C) ≥20 ≥20

Kinematic viscosity 135 ◦C (Pa·s) T0625-2004 2.30 - ≤3 -
Dynamic viscosity 60 ◦C (Pa·s) T0620-2004 - 192 - ≥180

Solubility (%) T0607-2004 99.9 99.8 ≥99 ≥99.5

Table 3. The Marshall test results.

Mixture Type VV (%) Oil-Stone Ratio (%) VMA (%) VFA (%) MS (KN) FL (mm)

AC-13
SBS 4.5 5.7 15.2 70.4 15.7 2.7
Base 4.2 5.2 14.6 71.2 14.1 2.4

SMA-13
SBS 4.7 6.1 19.8 76.3 6.3 –
Base 4.3 5.7 17.2 75 5.8 3.7

OGFC-13
SBS 19.5 5.4 12.8 – 6.9 –
Base 20.9 4.9 10.5 – 4.1 –
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2.2. Testing Conditions and Procedures

2.2.1. Testing Plan

In the Specifications for the design of highway Asphalt pavement (JTG D50-2017), the influence
of temperature was emphatically considered in the damage analysis of the reference pavement
structure. To consider the influence of temperature, the pavement structure damage under different air
temperature conditions is converted to the equivalent damage under standard temperature (20 ◦C).
The equivalent temperature is based on the hottest monthly average temperature, the coldest monthly
average temperature, and the annual average temperature for 10 consecutive years in the specification.
According to the benchmark equivalent temperature Tξ in the specification, the equivalent temperature
distribution map of each region in China can be obtained by ArcGIS software using interpolation
processing, as shown in Figure 4. Therefore, 5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C were selected
as the experimental temperatures to better simulate the actual working temperature of the road.
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The specimens should be placed in the temperature control box for more than 4h before the test to
ensure the accuracy of the test temperature.
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In the Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTG
E20-2011), the loading rate of cylinder uniaxial compression test is 2 mm/min. To analyze the impact of
loading rate, the values near the standard loading speed were selected for testing, i.e., the uniaxial
compression, direct stretching and confining triaxial tests were carried out with the loading rate of
1 mm/min, 2 mm/min, 3 mm/min, 4 mm/min, and 5 mm/min.

The strength test of three gradations (AC-13, SMA-13, OGFC-13) of asphalt mixture were performed
under the Marshall optimal oil-stone ratio respectively. The results showed that SMA-13 asphalt
mixture had the best performance, thus the strength test under different oil-stone ratio also conducted
on SMA-13 asphalt mixture. According to the Technical Specifications for Construction of Highway
Asphalt Pavement (JTG F40-2004), the asphalt content should be increased 0.1~0.3% at the cold area or
decreased 0.1~0.5% at the hot area for adopt the traffic conditions. In addition, the oil-stone ratio of
SMA-13 asphalt mixture used by this article can be calculated should increase 0.1~0.3% or decrease
0.1~0.6% within appropriate porosity. Therefore, this article chooses the six different oil-stone ratios
(5.5%, 5.7%, 5.9%, 6.1%, 6.3%, 6.5%) to performed the strength test to consider the influence of oil-stone
ratio on asphalt mixture.

2.2.2. Test Methods

To study the three-dimensional strength characteristics of asphalt mixtures, Huang [25] performed
a triaxial failure test on a type of AC-13 asphalt mixture, and established a three-dimensional strength
model characterized by tensile and compressive meridian, and failure strength envelope. The strength
model which considering the cooperative destruction between each component is shown in Equation (1).
However, the model is a complex nonlinear model due to contains five parameters and the form is
complicated, which is not convenient for popularization and application.

τc
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where the σoct is octahedral normal stress, τoct is octahedral shear stress, fc is uniaxial compression
strength, θ is lode angle. The calculations are as follows:

σoct =
1
3
(σ1 + σ2 + σ3) (2)

τoct =
1
3

√
(σ1 − σ2)

2 + (σ3 − σ2)
2 + (σ3 − σ1)

2 (3)

θ = arccos
(

2σ1 − σ2 − σ3

3
√

2τoct

)
(4)

where σ1, σ2, σ3 are each principal stress, where the unit is MPa, and the tension and compression are
positive and negative respectively.

In pavement structure, the octahedron normal stress σoct is usually less than 1/3 fc. When the
hydrostatic stress is less, the test results of the tensile and compressive meridian and the strength
envelope can be characterized by straight lines. As shown in Figure 5, the failure criterion is established
by linear regression. The design is safe, and the deviation is within 10%. By this way, the five-parameter
non-linear three-dimensional strength model is simplified to a three-parameter linear strength model,
and the model accuracy is guaranteed. The linear model can be established through unconfined
compression, direct tensile and confining triaxial test which commonly used in road engineering.
By substituting the above test results into the three sets of linear equations shown in Equation (5),
the model parameters M, A, and B can be obtained.

τc
oct
fc

= M(A− B
σoct

fc
)

τt
oct
fc

= A− B
σoct

fc
τoct = τt

oct − (τ
t
oct − τ

c
oct)3θ/π (5)
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2.2.3. Test Schematic

It is known that the linear strength model can be obtained through uniaxial compressive, direct
tensile and triaxial compressive tests. Before performing the direct/triaxial tensile test, clean the upper
and lower contact surfaces of the pull plate and the test specimen and apply the adhesive, wait for the
adhesive to fully cure, and then apply axial tensile stress to the test specimen until destroy the specimen.
Through the self-developed airbag triaxial tester [25] to carry out the triaxial compression/tension test,
as shown in Figure 6. Through the flexible airbag to apply the same compressive stress σ1 and σ2

(σ2 and σ3) in the horizontal direction, we then apply the axial compressive stress σ13 (σ1) to cause the
failure of the specimen [27]. Before performing the uniaxial and triaxial compression tests, the upper
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and lower pressing plates and the specimen surface were wiped with Vaseline, and a cushion was
added to reduce the friction between the specimen and the pressing plate. In addition, before the
triaxial test, the inner wall of the airbag and the contact surface of the specimen should be rubbed with
lubricating oil to lubricate the inner wall.
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Figure 6. Strength test under various stress states.

3. Results and Discussion

3.1. The Influence of Gradations and Asphalt Type in the Strength of Asphalt Mixture

To analyze the effect of gradation on the strength of asphalt mixture, three type of asphalt mixtures
were tested under optimal oil-stone ratio respectively, the test temperature was 20 ◦C and the loading
rate was 2 mm/min. The average test results are shown in Table 4. Figure 7 shows the compressive and
tensile strength comparison of three type of asphalt mixtures. Among the three gradations of asphalt
mixture prepared by the 70# base bitumen, the compressive strength of SMA-13 asphalt mixture is
higher than AC-13 asphalt mixture and OGFC-13 asphalt mixture, and the increase corresponding to
AC-13 asphalt mixture and OGFC-13 asphalt mixture were 7.4% and 19.4%, respectively.

Table 4. Test results of three type of asphalt mixture under Marshall optimum oil-stone ratio.

Asphalt Type Mixture Type σ1/MPa σ2/MPa σ3/MPa σoct/fc τoct/fc θ/◦

Base asphalt

AC-13

0 0 −5.835 −0.333 0.471 60
−0.2 −0.2 −7.417 −0.447 0.583 60
0.845 0 0 0.0483 0.068 0
0.748 −0.5 −0.5 −0.014 0.101 0

SMA-13

0 0 −6.265 −0.333 0.471 60
−0.2 −0.2 −7.905 −0.442 0.58 60
0.885 0 0 0.0471 0.067 0
0.806 −0.5 −0.5 −0.01 0.098 0

OGFC-13

0 0 −5.245 −0.333 0.471 60
−0.2 −0.2 −6.625 −0.446 0.577 60
0.727 0 0 0.0462 0.065 0
0.698 −0.5 −0.5 −0.019 0.108 0

SBS asphalt SMA-13

0 0 −6.449 −0.333 0.471 60
−0.2 −0.2 −8.146 −0.442 0.581 60
0.918 0 0 0.0474 0.067 0
0.883 −0.5 −0.5 −0.006 0.101 0

Based on the above strength test results, the simplified linear three-dimensional strength model
can be established based on the following:

Tensile meridian:
τt

oct
fc

= A + B
σoct

fc
R2 = 0.95 (6)
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Compressive meridian:
τc

oct
fc

= C×
(
A + B

σoct

fc

)
R2 = 0.94 (7)

Failure envelope curve:
τoct(θ) = τt

oct −
(
τt

oct − τ
c
oct

)
3θ/π (8)

where A, B, C is the fitting parameters, R2 is the correlation coefficient. In addition, the model
parameters are shown in Table 5.

Table 5. Fitting parameters of linear model under different gradation.

Modeling Parameters A B C

Fitting Results 0.1 −0.64 1.512
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As can be seen from Table 4 and Figure 7, AC-13, SMA-13, and OGFC-13 asphalt mixtures show
differences in strength deformation. The SMA-13 asphalt mixture formulated by SBS modified bitumen
has the best performance and the increasement to the SMA-13 asphalt mixture prepared by 70# base
bitumen was 2.9%. The reason is mainly due to the fact that SMA-13 is the dense framework structure.
Compared with AC-13, it has the higher asphalt content and less fine aggregate, and has a larger
specific surface area, cohesion force and internal friction angle, which improves the strength and
stability [28,29]. Compared with the suspend-dense structure AC-13, OGFC-13 is a typical skeleton-gap
structure. It has a porosity of more than 18% and the fine aggregate is less than SMA-13. The space
skeleton formed by the coarse aggregates close to each other cannot be effectively filled by the limited
fine aggregates of the structure, the strength is less than AC-13. The use of modified SBS improves the
adhesion between asphalt and aggregate, and improves the strength of the mixture [30,31]. Therefore,
the SBS+SMA-13 asphalt mixture was used to study the strength under different oil-stone ratios,
temperatures and loading rates.

3.2. Strength Test of Asphalt Mixture at Different Oil-Stone Ratios

To study the effect of oil-stone ratio to the strength of asphalt mixture, the SBS+SMA-13 asphalt
mixture was performed, the loading rate was 2 mm/min, the test temperature was 20 ◦C, and the
oil-stone ratios were 5.5%, 5.7%, 5.9%, 6.1%, 6.3%, 6.5%. The average test results are shown in Table 6.
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Table 6. Test results of asphalt mixture under different oil-stone ratio.

Oil-Stone Ratio σ1/MPa σ2/MPa σ3/MPa σoct/fc τoct/fc θ/◦

5.5%

0 0 −5.873 −0.33 0.47 60
−0.2 −0.2 −7.441 −0.45 0.58 60
0.885 0 0 0.05 0.07 0
0.777 −0.5 −0.5 −0.01 0.1 0

5.7%

0 0 −6.306 −0.333 0.471 60
−0.2 −0.2 −7.991 −0.443 0.582 60
0.905 0 0 0.0478 0.068 0
0.795 −0.5 −0.5 −0.011 0.097 0

5.9%

0 0 −6.819 −0.333 0.471 60
−0.2 −0.2 −8.501 −0.435 0.574 60
0.981 0 0 0.0479 0.068 0
0.853 −0.5 −0.5 −0.007 0.094 0

6.1%

0 0 −6.449 −0.333 0.471 60
−0.2 −0.2 −8.146 −0.442 0.581 60
0.918 0 0 0.0474 0.067 0
0.826 −0.5 −0.5 −0.009 0.097 0

6.3%

0 0 −6.005 −0.333 0.471 60
−0.2 −0.2 −7.685 −0.449 0.588 60
0.864 0 0 0.048 0.068 0
0.774 −0.5 −0.5 −0.013 0.1 0

6.5%

0 0 −5.183 −0.333 0.471 60
−0.2 −0.2 −6.868 −0.467 0.606 60
0.743 0 0 0.0478 0.068 0
0.689 −0.5 −0.5 −0.02 0.108 0

Based on the above strength test results, the simplified linear three-dimensional strength model
can be established based on the following:

Tensile meridian:

τt
oct

a1p2 + b1p + c
= A + B

σoct

a1p2 + b1p + c
R2 = 0.98 (9)

Compressive meridian:

τc
oct

a1p2 + b1p + c
= C×

(
A + B

σoct

a1p2 + b1p + c

)
R2 = 0.98 (10)

Failure envelope curve:
τoct(θ) = τt

oct −
(
τt

oct − τ
c
oct

)
3θ/π (11)

where A, B, C, a1, b1 and c are fitting parameters, and fc = a1p2 + b1p + c, Where τc
oct and τt

oct are shear
stress corresponding to the point on the compressive and tensile meridian respectively. Where p is
oil-stone ratio, the unit of p is %. In addition, the model parameters are shown in Table 7.

Table 7. Fitting parameters of linear model under different oil-stone ratio.

Asphalt Type A B C a1 b1 c

SBS Modified Asphalt 0.1 −0.64 1.512 −4.51 53.45 −151.69

Figure 8 shows the tensile and compressive meridian under different oil-stone ratios. The ultimate
strength of the asphalt mixture increased at first and then decreased with the increase of the oil-stone
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ratio. The strength change is obviously non-linear, and the strength value reaches the highest when it
slightly lower than the optimal oil-stone ratio. The ultimate strength of the asphalt mixture increased
at first and then decreased with the increase of the oil-stone ratio. The strength change is obviously
non-linear, and the strength value reaches the highest when it slightly lower than the optimal oil-stone
ratio. The reason is that the mixture has the bigger proportion of coarse aggregate and the smaller
proportion fibers and fine aggregate, the specific surface area is large. As the asphalt content increases,
the interspace in the mixture are continuously filled, the cohesion increases, and the strength increases.
However, as the asphalt content continues to increase, more free asphalt is produced, filling the
interspace in the mixture, it also pushes the minerals away from each other. Too much free asphalt
causes the cohesion to decrease. The obtained maximum three-dimensional strength corresponds to
the oil-stone ratio which is slightly lower than the optimal oil-stone ratio, with the oil-stone ratio value
of 5.9% instead of the Marshall optimal oil-stone ratio of 6.1%. The failure envelope under different
oil-stone ratios in π plane is shown in Figure 9.

Materials 2020, 13, x FOR PEER REVIEW 10 of 21 

 

2 2
1 1 1 1

t
oct octA B

a p b p c a p b p c
τ σ

= +
+ + + + 2 0.98R =  

(9) 

Compressive meridian: 

2 2
1 1 1 1

c
oct octC A B

a p b p c a p b p c
τ σ 

= × + + + + +  2 0.98R =  
(10) 

Failure envelope curve: 

( ) ( )3t t c
oct oct oct octτ θ τ τ τ θ π= − −

 
(11) 

where A, B, C, 1a , 1b  and c are fitting parameters, and 
2

1 1cf a p b p c= + + , Where 
c
octτ  and 

t
octτ  are 

shear stress corresponding to the point on the compressive and tensile meridian respectively. Where 
p is oil-stone ratio, the unit of p is %. In addition, the model parameters are shown in Table 7. 

Table 7. Fitting parameters of linear model under different oil-stone ratio. 

Asphalt Type A B C 1a  1b  c 
SBS Modified Asphalt 0.1 −0.64 1.512 −4.51 53.45 −151.69 

Figure 8 shows the tensile and compressive meridian under different oil-stone ratios. The 
ultimate strength of the asphalt mixture increased at first and then decreased with the increase of the 
oil-stone ratio. The strength change is obviously non-linear, and the strength value reaches the 
highest when it slightly lower than the optimal oil-stone ratio. The ultimate strength of the asphalt 
mixture increased at first and then decreased with the increase of the oil-stone ratio. The strength 
change is obviously non-linear, and the strength value reaches the highest when it slightly lower than 
the optimal oil-stone ratio. The reason is that the mixture has the bigger proportion of coarse 
aggregate and the smaller proportion fibers and fine aggregate, the specific surface area is large. As 
the asphalt content increases, the interspace in the mixture are continuously filled, the cohesion 
increases, and the strength increases. However, as the asphalt content continues to increase, more 
free asphalt is produced, filling the interspace in the mixture, it also pushes the minerals away from 
each other. Too much free asphalt causes the cohesion to decrease. The obtained maximum three-
dimensional strength corresponds to the oil-stone ratio which is slightly lower than the optimal oil-
stone ratio, with the oil-stone ratio value of 5.9% instead of the Marshall optimal oil-stone ratio of 
6.1%. The failure envelope under different oil-stone ratios in π  plane is shown in Figure 9. 

 
(a) (b) 

Figure 8. Linear compressive and tensile meridian under different oil-stone ratios. (a) The compressive
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3.3. Strength Test of Asphalt Mixture at Different Temperatures

To study the effect of temperatures to the strength of asphalt mixture, the SBS+SMA-13 asphalt
mixture was performed, the test temperatures were 5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, the loading
rate was 2 mm/min, the oil-stone ratio was 5.9%. The average test results are shown in Table 8.
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Table 8. Test results of asphalt mixture under different temperatures.

Temperature σ1/MPa σ2/MPa σ3/MPa σoct/fc τoct/fc θ/◦

5 ◦C

0 0 −9.059 −0.333 0.471 60
−0.2 −0.2 −10.74 −0.41 0.548 60
1.304 0 0 0.048 0.068 0
1.213 −0.5 −0.5 0.0078 0.089 0

10 ◦C

0 0 −8.177 −0.333 0.471 60
−0.2 −0.2 −9.862 −0.418 0.557 60
1.174 0 0 0.0479 0.068 0
1.038 −0.5 −0.5 0.0015 0.089 0

15 ◦C

0 0 −7.301 −0.333 0.471 60
−0.2 −0.2 −8.979 −0.428 0.567 60
1.052 0 0 0.048 0.068 0
0.987 −0.5 −0.5 −0.0006 0.096 0

20 ◦C

0 0 −6.819 −0.333 0.471 60
−0.2 −0.2 −8.501 −0.435 0.574 60
0.981 0 0 0.0479 0.068 0
0.905 −0.5 −0.5 −0.005 0.097 0

25 ◦C

0 0 −6.049 −0.333 0.471 60
−0.2 −0.2 −7.727 −0.448 0.587 60
0.872 0 0 0.048 0.068 0
0.785 −0.5 −0.5 −0.012 0.1 0

30 ◦C

0 0 −5.012 −0.333 0.471 60
−0.2 −0.2 −6.145 −0.435 0.559 60
0.747 0 0 0.0497 0.07 0
0.698 −0.5 −0.5 −0.02 0.113 0

Based on the above strength test results, the simplified linear three-dimensional strength model
can be established based on the following:

Tensile meridian:
τt

oct
a2 + b2t

= A + B
σoct

a2 + b2t
R2 = 0.98 (12)

Compressive meridian:

τt
oct

a2 + b2t
= C×

(
A + B

σoct

a2 + b2t

)
R2 = 0.98 (13)

Failure envelope curve:
τoct(θ) = τt

oct −
(
τt

oct − τ
c
oct

)
3θ/π (14)

where A, B, C, a2 and b2 are fitting parameters, and fc = a2 + b2t, t is temperature. In addition, the
model parameters are shown in Table 9.

Table 9. Fitting parameters of linear model under different temperatures.

Asphalt Type A B C a2 b2

SBS Modified Asphalt 0.1 −0.64 1.512 9.78 −0.155

Figure 10 shows the linear compressive and tensile meridians under different temperatures.
The octahedral tensile and compressive strength of the asphalt mixture decreases with increasing
temperature. Uniaxial compressive strength exhibits a linear characteristic with temperature. From
5 ◦C to 30 ◦C, the uniaxial compressive strength of the mixture decreased by 40%. The change in
temperature makes the asphalt molecules flow faster, and the contact angle between the asphalt and the
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aggregate becomes smaller [15], which in turn makes the asphalt mixture show a decrease in strength;
the performance is reduced due to the high-temperature dependence of the mixture will continue.
Selecting asphalt with better temperature stability can effectively maintain long-term service of asphalt
pavement. The failure envelope under different temperatures in π plane is shown in Figure 11.
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Figure 10. Linear compressive and tensile meridian under different temperature. (a) The compressive
and tensile meridian under six different temperatures (b) The strength comparison between six
different temperatures.
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3.4. Strength Test of Asphalt Mixture at Different Loading Rates

To study the effect of loading rates to the strength of asphalt mixture, the SBS+SMA-13 asphalt
mixture was performed, the test temperatures were 1 mm/min, 2 mm/min, 3 mm/min, 4 mm/min,
5 mm/min, the test temperature was 20 ◦C, the oil-stone ratio was 5.9%. The average test results are
shown in Table 10.

Based on the above strength test results, the simplified linear three-dimensional strength model
can be established based on the following:

Tensile meridian:
τt

oct
a3 + b3v

= A + B
σoct

a3 + b3v
R2 = 0.98 (15)

Compressive meridian:

τc
oct

a3 + b3v
= C×

(
A + B

σoct

a3 + b3v

)
R2 = 0.98 (16)
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Failure envelope curve:
τoct(θ) = τt

oct −
(
τt

oct − τ
c
oct

)
3θ/π (17)

where A, B, C, a3 and b3 are fitting parameters, and fc = a3 + b3v.
Where v is loading rates, the unit of v is mm/min. In addition, the model parameters are shown in

Table 11.

Table 10. Test results of asphalt mixture under different loading rates.

Loading Rates σ1/MPa σ2/MPa σ3/MPa σoct/fc τoct/fc θ/◦

1 mm/min

0 0 −5.678 0.317 −0.471 60
−0.2 −0.2 −7.359 0.435 −0.594 60
0.817 0 0 −0.05 −0.068 0
0.732 −0.5 −0.5 −0.01 −0.102 0

2 mm/min

0 0 −6.819 0.317 −0.471 60
−0.2 −0.2 −8.501 0.415 −0.574 60
0.981 0 0 −0.05 −0.068 0
0.905 −0.5 −0.5 −0.02 −0.097 0

3 mm/min

0 0 −7.555 0.317 −0.471 60
−0.2 −0.2 −9.268 0.407 −0.566 60
1.064 0 0 −0.05 −0.066 0
0.943 −0.5 −0.5 −0.02 −0.09 0

4 mm/min

0 0 −8.422 0.317 −0.471 60
−0.2 −0.2 −10.13 0.398 −0.556 60
1.192 0 0 −0.05 −0.067 0
1.107 −0.5 −0.5 −0.02 −0.09 0

5 mm/min

0 0 −9.546 0.317 −0.471 60
−0.2 −0.2 −11.26 0.389 −0.546 60
1.339 0 0 −0.05 −0.066 0
1.231 −0.5 −0.5 −0.03 −0.085 0

Table 11. Fitting parameters of linear model under different loading rates.

Asphalt type A B C a3 b3

SBS modified asphalt 0.1 −0.64 1.56 4.803 0.934

Figure 12 shows the tensile and compressive meridian under different loading rates. The results
show in the test loading rates range, as the loading rate increased, the tensile and compressive strengths
showed an increasing trend. From 1 mm/min to 5 mm/min, the uniaxial compressive strength increased
by 68%. The change of the loading rate is the change of the loading time. When the loading rate
increases, the time from when the asphalt mixture starts to crack to the failure of the specimen
gradually decreases. The asphalt mixture cannot show a complete mechanical response [32], so it
shows a reduction in deformation and the strength increases. The failure envelope under different
loading rates in π plane is shown in Figure 13.

The unified calculation model for the three-dimensional strength of asphalt mixtures considering
the effects of temperature, loading speed, and oil-stone ratio:

Tensile meridian:
τt

oct
fc,(t,v,p)

= A + B
σoct

fc,(t,v,p)
R2 = 0.98 (18)

Compressive meridian:

τc
oct

fc,(t,v,p)
= C×

(
A + B

σoct

fc,(t,v,p)

)
R2 = 0.98 (19)
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Failure envelope curve:
τoct(θ) = τt

oct −
(
τt

oct − τ
c
oct

)
3θ/π (20)

where fc,(t,v,p) is the uniaxial compressive strength function of SMA-13 asphalt mixture, and the model
parameters are shown in the above.
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The change law of linearized three-dimensional failure envelope surface can be obtained with the
temperatures, loading rates, and the oil-stone ratios. Figure 14 shows the linear failure criterion in the
σoct − τoct space. The middle symmetry axis in the three-dimensional failure envelope surface is the
hydrostatic stress axis as shown in Figure 14, the compressive meridian is composed of all points of
the lodes angle 60◦, and the tensile meridian is composed of all points of the lode angle 0◦. From the
above, in the temperatures range of 5 ◦C~30 ◦C and the loading rates range of 1 mm/min~5 mm/min,
the three-dimensional basic strength of the asphalt mixture changes linearly with the test conditions.
As the temperature increases, the enveloping surface of the asphalt mixture failure shrinks continuously,
and as the loading rate increases, the enveloping surface continues to expand until the strength limit is
reached. The change of the three-dimensional failure envelope surface with the oil-stone ratio is a kind
of non-linearity parabolic form, and the envelope surface appears to expand first and then contract.
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3.5. The Influence of Different Factors to the Strength of Asphalt Mixture

To quantitatively reveal the effects of four factors: temperature, loading speed, asphalt type,
and oil-stone ratio on the three-dimensional strength characteristics of SMA-13 asphalt mixture,
a three-factor three-level orthogonal experiment study was carried out [33]. This paper used two sets
of orthogonal tests L9

(
34

)
of SBS modified asphalt and base asphalt respectively. The orthogonal test

schemes are shown in Table 12, where N is the test number, T is the temperature, V is the loading
speed, O is the oil-stone ratio, and UC is the uniaxial compression, TC is triaxial compression, UT is
uniaxial tension.

Table 12. Design plane of orthogonal test.

Asphalt Type N T (◦C) V mm/min O(%) UC TC UT

Base bitumen

1 5 1 5.7 −4.598 −5.925 0.728

2 5 3 5.9 −5.449 −6.844 0.849

3 5 5 6.1 −6.556 −7.983 0.999

4 15 1 5.9 −3.848 −5.08 0.624

5 15 3 6.1 −4.071 −5.39 0.651

6 15 5 5.7 −6.165 −7.606 0.929

7 25 1 6.1 −1.938 −2.88 0.325

8 25 3 5.7 −3.432 −4.673 0.543

9 25 5 5.9 −3.929 −5.239 0.577

SBS bitumen

1 5 1 5.7 −6.595 −7.947 0.953

2 5 3 5.9 −8.352 −9.939 1.195

3 5 5 6.1 −8.778 −10.4 1.249

4 15 1 5.9 −5.848 −7.23 0.858

5 15 3 6.1 −6.014 −7.563 0.89

6 15 5 5.7 −8.62 −10.27 1.185

7 25 1 6.1 −3.028 −4.196 0.456

8 25 3 5.7 −5.458 −6.88 0.752

9 25 5 5.9 −5.903 −7.511 0.824
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In the orthogonal test, the range R j is an important index, and the value of this index increased
with the greatest influence factors. Therefore, the influence of various factors on the strength of the
asphalt mixture can be determined based on the range.

R j = max
(
K j1, K j2, . . . , K jm

)
−min

(
K j1, K j2, . . . , K jm

)
, where K jm is the sum of each test index under

j column element and m level, K jm is the average value of K jm. From the value of K jm, the optimal
combination can be judged by the superior level of the factor j and the combination of the superior
levels of each factor. The orthogonal analysis results are shown in Table 13. The range analysis is
shown in Figure 15.
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Table 13. The results of orthogonal test.

Base Asphalt SBS Modified Asphalt

T V O T V O

K11 5.534 3.462 4.732 7.908 5.157 6.891

K12 4.695 4.317 4.409 6.827 6.608 6.701

K13 3.1 5.55 4.188 4.796 7.767 5.94

K21 6.917 4.628 6.068 9.427 6.457 8.365

K22 6.025 5.636 5.721 8.353 8.127 8.227

K23 4.264 5.418 5.418 6.196 7.385 7.385

K31 0.806 0.525 0.733 1.124 0.75 0.963

K32 0.69 0.608 0.684 0.97 0.847 0.959

K33 0.452 0.835 0.658 0.672 1.086 0.865

R1 2.434 2.088 0.543 3.112 2.61 0.951

R2 2.654 1.008 0.65 3.231 1.67 0.98

R3 0.354 0.311 0.075 0.451 0.336 0.098

It can be seen from Table 13 and Figure 15 that the greatest influence on the strength of the mixture
is the asphalt type, the second most influence is the temperature, the less influence is the loading
rate, and the least influence is the oil-stone ratio. This is because compared with matrix asphalt,
SBS modified asphalt has a higher flexibility index [19], penetration and ductility are higher than Base
asphalt, which improves the adhesion between asphalt and aggregate. As the temperature increases or
the loading rate decreases, the strength of the mixture gradually decreases, which is mainly caused by
the accelerated flow of the asphalt molecules and the decrease in the contact angle between the asphalt
and the aggregate.

The combination of direct tensile, unconfined compression, and confining triaxial strength
better characterizes the three-dimensional strength characteristics of the asphalt mixture, and the
three-dimensional strength directly determines the mechanical properties of the mixture and the
durability of the asphalt pavement structure. To give the mixture sufficient strength, it needs some
reasonable control measures. Combining with the previous gradation and strength tests at different
asphalt, oil-stone ratio, temperature, and loading rate, it is proposed here that SMA asphalt mixtures
formulated with modified asphalt are preferentially used in pavement design. Under the requirements
of the void ratio, the result is slightly lower than Marshall oil-stone ratio.

4. Conclusions

Uniaxial compression, direct tension, and confining triaxial tests were performed on SMA-13
asphalt mixture under different test conditions. A linearized three-dimensional strength model
considering the influence of multiple factors was established. The effects of temperature, loading speed,
and asphalt type on the three-dimensional strength were analyzed. Some conclusions are as follows:

(1) The single use of either the direct tensile, unconfined compression, or confining triaxial test
reflects with difficulty the three-dimensional strength characteristics of the pavement material
under three-dimensional stress. The combining of these strengths can give the three-dimensional
strength of the asphalt mixture better characterized strength characteristics.

(2) Based on the linearized three-dimensional strength model, a unified three-dimensional strength
calculation method that takes into account the effects of temperature, loading speed, and oil-stone
ratio is proposed. It is revealing that the strength of the mixture decreases with increasing
temperature, increases with the increase of loading rate, and increases first then decreases with
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increasing oil-stone ratio. It provides a reference for the estimation of the three-dimensional
strength of the mixture.

(3) Two sets of three-factor three-level orthogonal tests were carried out on the SMA-13 asphalt
mixture. The effects of asphalt type, temperature, loading rate, and oil-stone ratios were analyzed.
The results show that the above test conditions have an impact on the strength of the mixture in
order. Two main measures are proposed to improve the strength of the asphalt mixture: (1) use the
modified asphalt and high-temperature stability high-quality asphalt; (2) use the lower oil-stone
ratio than the Marshall optimal oil-stone ratio.

Although this article has established a multi-factor impact criterion for the three-dimensional
strength of asphalt mixtures, with the intensification of heavy-duty traffic and overloading, hot and
freezing weather in northern and southern China has increased, and severe weather phenomena such
as acid rain have occurred frequently. It is necessary to analyze the strength of the complex stress state
of the mixture under multiple harsh environments, and carry out research on new materials such as
nano-modified asphalt mixtures to comprehensively improve the mechanical properties of the mixture.
It is recommended to use SMA and a high-performance modified asphalt mixture for subsequent
research in the future.
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