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Abstract Existing crop models produce unsatisfactory simulation results and are operationally

complicated. The present study, however, demonstrated the unique advantages of statistical crop

models for large-scale simulation. Using rice as the research crop, a support vector machine-

based open crop model (SBOCM) was developed by integrating developmental stage and yield pre-

diction models. Basic geographical information obtained by surface weather observation stations in

China and the 1:1000000 soil database published by the Chinese Academy of Sciences were used.

Based on the principle of scale compatibility of modeling data, an open reading frame was designed

for the dynamic daily input of meteorological data and output of rice development and yield

records. This was used to generate rice developmental stage and yield prediction models, which were

integrated into the SBOCM system. The parameters, methods, error resources, and other factors

were analyzed. Although not a crop physiology simulation model, the proposed SBOCM can be

used for perennial simulation and one-year rice predictions within certain scale ranges. It is conve-

nient for data acquisition, regionally applicable, parametrically simple, and effective for multi-scale

factor integration. It has the potential for future integration with extensive social and economic fac-

tors to improve the prediction accuracy and practicability.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Crop model is the general term used to identify a series of
methods that use mathematical concepts to describe the pro-

cess of crop growth. However, based on a combination of pre-
vious definitions (Curry, 1971; Edwards and Hamson, 1990;
Gao, 2004; Sinclair and Seligman, 1996; Xiong, 2004) and
the findings of the present study, a crop model is defined in this
paper as a computer program that mathematically describes

and models the rules of crop growth and can be used to quan-
titatively and dynamically explain the process of crop growth,
development, yield, and reaction to environmental changes.

Crop models can be categorized as crop statistical models
and crop simulation models (or crop growth models) based
on the basic mathematical method of the modeling. Simulation

models were generally considered to be better than statistical
models because it facilitated the study of crop growth theory
in a physiological sense through the enablement of experimen-
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tal comparison. However, with increasing dissatisfaction with
the fit effect of the large-scale nonlinear problems associated
with early statistical models, simulation models were more

widely employed (Xie and James, 2002).
Famous crop models such as the CERES model

(Charles-Edwards, 1986; Jones and Kiniry, 1986; Ritchie,

1972) series of America, SUCROS (Lin et al., 2003) and
MACROS (Penning de Vries et al., 1989) models of Nether-
lands, and RSM model (Luo et al., 1990) of China are all crop

simulation models. Through the efforts of several generations
of experts, crop models and various agricultural production
and decision systems that primarily utilize crop models have
contributed to both crop development physiology studies

and agricultural production, in which field there has been
much achievement. Since the 1990s, a number of large-scale
agricultural decision system software packages taking these

crop models as kernels have been developed through
application modules, human–machine interface optimization,
integration of decision systems, and data normalization. Such

developments include the Decision Support System for
Agrotechnology Transfer (DSSAT) model of America, Agri-
cultural Production Systems sIMulator (APSIM) model of

Australia, and Crop Cultivational Simulation Optimization
Decision-making System (CCSODS) of China (Gao, 2004).
These models have been vigorously promoted and utilize to
different degrees in various countries around the world.

Although simulation models are more widely employed, it
is still difficult to determine whether they are actually presently
better than statistical models (Dhungana et al., 2006). This is

mainly because of the technological and practicality bottle-
necks encountered by the former in the early 21st century when
they were promoted as the main crop models. The technolog-

ical bottleneck regarded how to implement simple operations
and scaling up, while the practicality bottleneck was due to
the grey system feature in agricultural extension. The weak-

nesses of crop simulation models gradually became apparent
when they were put into practical use in the early 1980s. Mean-
while, statistical models had been found to be practical
through several large-scale studies (Stewart and Dwyer,

1990). This led to the emergence of the American school of
thought that used statistical models for simulation purposes
as need arose. The currently popular American CERES model

is a typical American school of thought, being a simulation
model in a general sense, but with an integrated statistical esti-
mation method (Swain et al., 2007).

While crop modeling was encountering its bottlenecks, non-
linear statistical theory, particular with regard to machine
learning, was making a huge breakthrough in the 1990s. Since
then, artificial intelligence has undergone comprehensive devel-

opment and application through the use of computer iterative
algorithms such as the support vector machines (SVMs)
(Vapnik, 1998, 1999; Cortes and Vapnik, 1995). Owing to their

good sparsity (Gunn, 1998), ability to fit small samples
(Suykens, 2001), and global optimization (Xu et al., 2007),
SVMs have outperformed other none-linear statistical models

(Gualtieri and Cromp, 1998; Viaene et al., 2001; Van Gestel
et al., 2001a,b; Xiong, 2009; Zhang, 2009). In recent years,
SVMs have also been applied in agricultural production for

purposes such as remote monitoring, moisture prediction,
and plant disease and insect pest warning (Gill et al., 2006;
Du et al., 2008; Kaundal et al., 2006; Trafalis et al., 2007;
Yang et al., 2008; Yu et al., 2008).
Rice, which is China’s main food crop, was considered in
the present study. An SVM was incorporated into the devel-
oped crop model, which is here presented as SVM-based open

crop model (SBOCM). The basic idea of this study was the use
of basic geographic information obtained from surface
weather observation stations in China (i.e., daily published

meteorological data and the 1:1000000 soil database published
by the Chinese Academy of Sciences [CAS] (Shi et al., 2002)) as
input, and the rice development and yield records of all agri-

cultural observation stations in China as output. A dynamic
open reading frame was designed to dynamically input the
daily meteorological data, and a scheduled developmental
stage prediction was obtained by SVM classification (SVC),

and yield prediction by SVM regression (SVR).
2. Materials and methods

2.1. Support vector machine

The SVM-by-Steve Gunn v2.1 software in the MATLAB kit
was adopted in our SVM program. The SVM software was
presented by Vapnik in the middle 1990s (Cortes and

Vapnik, 1995) and has been widely used for machine learning
over the last 15 years (Vapnik, 1998, 1999). The theoretical
basis of the SVM is the Structural Risk Minimization Principle
in statistical learning theory (Vapnik, 1998). Kernel functions

were used to convert the linear inseparability problem in
low-dimension space into a linear partition problem in high-
dimensional space. The optimal hyperplane was determined

to separate the two groups of eigenvectors based on their
respective longest distances from the interface.

For the given training set T ¼ fðx1; y1Þ; . . . ; ðxl; ylÞg 2
ðX�YÞl, where xi 2X¼R and yi 2Y¼ f�1;1gði¼ 1;2; . . . ; lÞ,
a real-valued function gðxÞ on X¼Rn was sort as the decision
function fðxÞ.
fðxÞ ¼ sgnðgðxÞÞ ð1Þ

The value of y corresponding to x in any mode could be

inferred by fðxÞ. In other words, a rule for dividing the points
on Rn into two parts was sought.

The linearly separable training set min 1
2
w2 þ C

Pl
i¼1ni was

obtained under the following constraint in SVM:

yiððw � xiÞ þ bÞ þ ni P 1; i ¼ 1; . . . ; l ð2Þ
where ni is the slack variable and C is the penalty coefficient,
which should be set artificially in practice.

After obtaining the optimal solutions x* and b*, the follow-
ing separating hyperplane was constructed:

ðw� � xÞ þ b� ¼ 0 ð3Þ
The decision function was then obtained as

fðxÞ ¼ sgnððw� � xÞ þ b�Þ ð4Þ
When the sample training set was non-linear and separable,

kernel functions (sometimes denoted by K in SVM programs)

were required in SVM to deal with the non-linear classification
problem and build a mapping relationship between the input
vectors and high-dimensional space vectors. Our study consid-
ered the non-linear inseparable problem, wherein, theoreti-

cally, the introduction of slack variables and kernel functions
did not affect the solution of simple linear separable problems.
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Hence, both slack variables and kernel functions were intro-
duced into the SVM training. Linear, polynomial, and radical
basis kernel functions were adopted in this study.

2.2. Open reading frame

Two types of SVM training samples were used: (1) SVC binary

classification samples, which were used to investigate the occur-
rence time of certain developmental stages of rice; (2) SVR sam-
ples, which were used to investigate certain yield records of rice;

a unit of which comprised a pair of input and output vectors,
with each pair constituting a record. Modeling requires consis-
tence of the unit structures within a sample. Five developmental

stages of rice were considered in this study, namely, sowing,
transplanting, tillering, heading, and milk, and the agricultural
production time varied significantly among the stations. Thus,
in the development of the training samples, we ensured as much

as was possible that the sample rules included the principle of
maintaining the biological significance of samples.

For the above reasons, the corresponding input vector of

each record consisted of both static and dynamic variables.
The static variables included basic information and soil infor-
mation of each station that generated records. Hence, the

records obtained from a particular station had the same static
variables irrespective of the developmental stage. Meanwhile,
the dynamic variables could vary with the developmental stage
of a record or yield prediction target. An open reading frame

was set to generate the dynamic variables.
The open reading frame was a fixed-length input window

for the daily meteorological data. The length was fixed for a

given sample so that the generated variables would be of a cer-
tain length. The frame could read the daily meteorological
data for a certain period in accordance with the requirements

for sample generation, and could generate input variables
using one developmental record and yield record. This is done
using the methods for generating positive samples in the devel-

opmental stages (Fig. 1) and for choosing two developmental
stages for the generation of dynamic variables (Fig. 2).

2.3. Data preprocessing

Historical data obtained from two sets of observation systems of
the China Meteorological Administration network database
(http://www.cma.gov.cn/) were used in this study. Three types

of rice plantings were considered, namely, middle-season, early,
and late planting. After organization of the station information,
soil information, and daily meteorological data, and screening

them based on their biological significance, we chose a seven-
day open reading frame. It was determined that the variables
consisted of the initial input variables (Table 1), which added

up to 53 dimensions. The samples were built in five developmen-
tal stages, namely, sowing, transplanting, tillering, heading, and
milk, respectively. Principal component analysis (PCA) was used
to screen the different factors, based on which all the classes of

the samples used for the SVM training were built.
The samples for modeling the SVC developmental predic-

tion were binary classified; i.e., the output of the samples for

determining whether a developmental stage had occurred
was labeled as ‘‘yes” or ‘‘no” The dynamic variables of the pos-
itive samples were the daily meteorological factors for seven

days before the occurrence of a given developmental stage,
while those of the negative samples were generated by off-
season (150 days in advance) and 30 days in advance strategies,
respectively. For convenient expression, the training samples

consisting of the positive samples and off-season negative sam-
ples were identified as sample class 1, while the ones consisting
of the positive samples and 30-days-in-advance negative sam-

ples were identified as sample class 2.
Thus, five developmental stage samples for each of the three

planting types were generated, adding up to 3 � 5 = 30 different

samples. These were respectively used to predict the five
developmental stages of sowing, transplanting, tillering, heading,
and milk, respectively. In the actual training, each set of
samples was randomly divided into five parts of equal sizes. Five-

fold cross-validation was then used for the model training and
testing.

2.4. Building developmental module

By SVC, a developmental module is capable of organizing the
data sets of the five developmental stages and separately mod-

eling middle-season rice, early rice, and late rice. In the present
study, by separately modeling the two classes of training sam-
ples and comparing the models, we finally obtained the best

prediction model of the occurrence time of the sowing stage.
The specific process was as follows. Linear (linearly separable

SVC without the use of kernel functions), polynomial, and rad-
ical basis kernel functions were chosen and used to conduct SVC

training. Fivefold cross-validation was then used to model and
test the prediction of the sowing stage for finding the optimal
kernel functions. For polynomial and radical basis kernel func-

tions, the optimal hyperparameters were determined via ergodic
tests on the corresponding hyperparameters. The SVC penalty
coefficient was subsequently further adjusted to improve the

optimal model, which had been tested and found to be partly
unsatisfactory. Through comparison of the two optimal models
developed by the two different strategies, the more suitable

model for sowing stage prediction was finally identified.

2.5. Building yield module

By SVR, a yield module is capable of yield prediction based on

SVM analysis of the information obtained from a given station
and the soil and daily meteorological data during different
developmental stages of the particular type of rice. The module

then outputs the record of the rice yield for the given year.
The SVR models developed in this study were respectively

based on samples for the tillering stage, heading stage, tillering

and heading stages, milk stage, and heading and milk stages.
The optimal yield prediction models for the heading, tillering
and milk stages were figured out after a comparison.

The specific modeling and optimization process was as fol-
lows. The linear (linearly separable SVR without using kernel
functions), polynomial, and radical basis kernel functions were
used for SVR training, after which fivefold cross-validation

was used for modeling and testing, respectively. For polyno-
mial and radical basis kernel functions, the optimal hyperpa-
rameters were determined via ergodic tests on the

corresponding hyperparameters. The SVR penalty coefficient
was subsequently further adjusted to improve the optimal
model, which had been tested and found to be partly unsatis-

factory. Through comparison of the several optimal models

http://www.cma.gov.cn/


Figure 1 Building input vector based on a special development record: Show a flow chart about how to build an input vector based on a

special development record in this study.

Figure 2 Building input vector based on a special yield record: show a flow chart about how to build an input vector based on a special

yield record in this study.
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Table 1 Original components of input vector.

Static variables Dynamic variables

Station

information

Soil information Daily information

(running days)

Longitude

(east); Latitude

(north);

Altitude (m)

Soil code, section

thickness, soil

composition entropy,

organic matter, pH,

total nitrogen, total

phosphorus, total

potassium

Daily air pressure,

average daily

temperature, average

daily relative

humidity, 24-h

precipitation, daily

wind speed, sunshine

hours

Table 2 Uses of different developmental samples in modeling.

Sample

name

Sample development strategy Modeling

purpose

Tillering 1 Eleven consecutive days in

tillering stage

Yield prediction

in tillering stage

Heading 1 Eleven consecutive days in

heading stage

Yield prediction

in heading stage

Heading 2 Eleven consecutive days in

tillering stage + Eleven

consecutive days in heading stage

Yield prediction

in tillering stage

Milk 1 Eleven consecutive days in milk

stage

Yield prediction

in milk stage

Milk 2 Eleven consecutive days in

heading stage + Eleven

consecutive days in milk stage

Yield prediction

in milk stage
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developed by the different strategies, we finally identified the
most suitable model for yield prediction.

3. Results

3.1. Development module

Two classes of samples, fivefold cross-validation, and different

kernel functions and hyperparameters were used for separate
Table 3 Optimization of each developmental stage for sample class

Middle-season rice

Developmental stage Sowing Transplanting

Kernel function Polynomial Polynomial

Hyperparameter D= 3 D= 1

F1 0.8282 0.9908

Early rice

Developmental stage Sowing Transplanting

Kernel function Polynomial Radical basis

Hyperparameter D= 3 p= 1

F1 0.7957 0.9665

Late rice

Developmental stage Sowing Transplanting

Kernel function Polynomial Polynomial

Hyperparameter D= 3 D= 3

F1 0.8136 0.9778
training of all the developmental stages of the middle-season
rice, early rice, and late rice. Based on the training perfor-
mances for the same developmental stages, we chose the sam-

ple class 1 optimal kernel functions and hyperparameters for
all the developmental stages (see Tables 2–4), for which the
SVC penalty coefficient was always 1.

Because of the satisfactory F1 value of the sample class 2,
the penalty coefficient C was further adjusted to improve all
the models after the optimal kernel functions and their

hyperparameters had been determined. We realized from
the findings of previous studies (Cai et al., 2003; Gill et al.,
2006; Gunn, 1998; Suykens et al., 2001; Van Gestel et al.,
2001b,c) that the penalty coefficient generally increases at a

rate of 102 and that an excessively large value of C signifi-
cantly decreases the computation efficiency (Fig. 3). Hence,
all the models were tested using C = 1, 10, 100, and

10000, respectively (Table 5). Through the adjustment of C,
we chose the sample class 2 optimal kernel functions and
hyperparameters for the training of all the developmental

stages (Table 6).
3.2. Yield module

Five classes of samples, fivefold cross-validation, and different
kernel functions and hyperparameters were used for the sepa-
rate training and testing of the three classes of rice plantings. A
penalty coefficient C of 1 was used to compute the root-mean-

square error (RMSE) (kg/h m2) and relative error (RE) (%) of
each training. We then chose the most suitable sample, optimal
kernel functions, and hyperparameters for all the developmen-

tal stages of the yield simulation (Table 7), for which the SVR
penalty coefficient was always 1.

Because the yield simulation was not sufficiently accurate,

we further adjusted the penalty coefficient C after the most
suitable sample, optimal kernel functions, and hyperparame-
ters had been determined (Fig. 4 and Table 8). This was done

to improve the accuracy of all the models as we did with the
development module. The most suitable prediction models
for all the developmental stages and their respective perfor-
mances (Table 9) were finally determined.
one (with unadjusted C).

Tillering Heading Milk

Polynomial Polynomial Polynomial

D= 2 D= 1 D= 2

0.9968 1 0.9968

Tillering Heading Milk

Polynomial Polynomial Polynomial

D= 2 D= 2 D= 4

0.9792 0.9938 0.9876

Tillering Heading Milk

Radical basis Polynomial Radical basis

p= 0.75 D= 3 p= 0.75

0.9921 0.9924 0.9721



Table 4 Optimization of each developmental stage for sample class two (with unadjusted C).

Middle-season rice

Development stage Sowing Transplanting Tillering Heading Milk

Kernel function Polynomial Linear Polynomial Radical basis Polynomial

Hyperparameter D= 2 – D= 2 p= 1.75 D= 2

F1 0.8455 0.8255 0.8000 0.7221 0.6933

Early rice

Development stage Sowing Transplanting Tillering Heading Milk

Kernel function Polynomial Linear Polynomial Radical basis Polynomial

Hyperparameter D= 1 – D= 2 p= 1.5 D= 2

F1 0.8075 0.8066 0.7990 0.7036 0.6903

Late rice

Development stage Sowing Transplanting Tillering Heading Milk

Kernel function Polynomial Linear Radical basis Radical basis Radical basis

Hyperparameter D= 2 – D= 2 p= 1.75 D= 2

F1 0.8546 0.8353 0.8075 0.7436 0.7028

Figure 3 Relationship between the C value and efficiency

(development module). All the models were tested using C= 1,

10, 100, and 10,000 in the development module. The operation

time increased with the increase in the C value.
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3.3. SVM-based open crop model

Based on the above results, an SVM-based open crop model
(SBOCM) was designed as an application-focused crop model

for regional rice development stage prediction and yield pre-
diction. The emphasis was on simplicity of operation.

The framework of the entire SBOCM system was quite sim-

ple, comprising five parts, namely, the database module, data
calling module, development prediction module, yield predic-
tion module, and human–machine interface (Fig. 5).

The SBOCM had the following functions and features:

– Perennial simulation: Historical meteorological data was
used as the basic input to directly simulate the time and

yield of all the developmental stages in the various regions.
– One-year prediction: The real-time meteorological data of a
particular year was used to dynamically follow and simulate

all the developmental stages at all the stations, thus
enabling real-time predictions of the developmental stages
and yield.
– Regional prediction: The input of the SBOCM was regional
data and the yield simulation of a particular place only
required the integration of the corresponding meteorologi-
cal data and soil and other information of the place. We

could thus simulate an entire region without conversion
between point and surface models. Previously, the applica-
tion of the function required users to write MATLAB

scripts by themselves and automatically and repeatedly
input all point data into the SBOCM.

– Extendibility: The features of the input variables of the

SVM imply the capability of the SBOCM for future absorp-
tion of more natural and social factor inputs. This is signif-
icant for the extension of the applicable functions of the

model.

4. Discussion

4.1. Kernel function, hyperparameter, and penalty coefficient

The key issue in SVM modeling is the determination of the
kernel functions, hyperparameters, and penalty coefficient. In
the present study, the SVC of five developmental stage predic-

tions of three rice planting types, namely, middle-season, early,
and late rice planting, and the SVR of the yield predictions of
three developmental points were separately determined.

It was observed from the final models that, as far as the ker-
nel functions were concerned, the developmental stage predic-
tions and yield prediction were all complicated nonlinear

segmentation problems. Thus, the performances of the polyno-
mial and radical basis kernel functions were better than those
of linear functions. This was especially so for yield prediction,
wherein the radical basis kernel function prediction accuracy

increased with increasing variable dimensions.
For most problems, the hyperparameters were found to be

within a rational range. For example, D for the polynomial

kernel functions was generally between 2 and 4, while p for
the radical basis kernel functions was between 1 and 1.5. In
conformity with the empirical range of hyperparameters deter-

mined in most previous studies (Cai et al., 2003; Gunn, 1998;



Table 5 SVC results for scanning C value (F1).

Kernel function Hyperparameter C= 1 C= 10 C= 100 C= 10000

Middle-season rice

Sowing Polynomial D= 2 0.8455 0.8219 0.7936 0.7641

Transplanting Linear – 0.8256 0.8113 0.7654 0.7421

Tillering Polynomial D= 2 0.8 0.7959 0.7758 0.7364

Heading Radical basis p = 1.75 0.7221 0.7286 0.7532 0.6213

Milk Polynomial D= 2 0.6933 0.6919 0.6854 0.6534

Early rice

Sowing Polynomial D= 1 0.8075 0.8013 0.7874 0.7544

Transplanting Linear – 0.8066 0.8062 0.7639 0.7217

Tillering Polynomial D= 2 0.799 0.7840 0.7710 0.7262

Heading Radical basis p = 1.5 0.7036 0.7341 0.6923 0.6741

Milk Polynomial D= 2 0.6903 0.6873 0.6660 0.6492

Late rice

Sowing Polynomial D= 2 0.8546 0.8384 0.7921 0.7635

Transplanting Linear – 0.8353 0.8289 0.7536 0.7305

Tillering Radical basis D= 2 0.8075 0.7926 0.7706 0.7223

Heading Radical basis p = 1.75 0.7436 0.7523 0.7213 0.6921

Milk Radical basis D= 2 0.7028 0.6950 0.6722 0.6431

SVC, support vector machine classification.

The bold values means the combinations of kernel functions and parameters which performed best in the same developmental stages.

Table 6 Optimization of each developmental stage for sample class two (with unadjusted C).

Middle-season rice

Developmental stage Sowing Transplanting Tillering Heading Milk

Kernel function Polynomial Linear Polynomial Radical basis Polynomial

Hyperparameter D= 2 – D= 2 p = 1.75 D= 2

Penalty coefficient C= 1 C= 1 C= 1 C= 3 C= 1

F1 0.8455 0.8255 0.8000 0.7532 0.6933

Early rice

Developmental stage Sowing Transplanting Tillering Heading Milk

Kernel function Polynomial Linear Polynomial Radical basis Polynomial

Hyperparameter D = 1 – D= 2 P = 1.5 D = 2

Penalty coefficient C = 1 C= 1 C= 1 C= 2 C= 1

F1 0.8075 0.8066 0.7990 0.7341 0.6903

Late rice

Developmental stage Sowing Transplanting Tillering Heading Milk

Kernel function Polynomial Linear Radical basis Radical basis Radical basis

Hyperparameter D= 2 – D= 2 p = 1.75 D= 2

Penalty coefficient C= 1 C= 1 C= 1 C= 2 C= 1

F1 0.8546 0.8353 0.8075 0.7523 0.7028

Support vector machine-based open crop model (SBOCM): Case of rice production in China 543
Trafalis et al., 2007; Van Gestel et al., 2001c), excessively
highly values of D and p were found no to be advantageous

to nonlinear space mapping.
The contribution of the penalty coefficient to improving

SVM segmentation was very limited. It led to a significant

increase in the computation complexity (see Figs. 3 and 4).
The actual crop modeling was a complicated nonlinear prob-
lem and it was very difficult to achieve optimal segmentation

using a high-dimensional SVM. The determination of the opti-
mal interface of the sample classes was thus often quite diffi-
cult. A higher penalty coefficient only increased this difficulty
of the SVM identifying the optimal interface, which happened
to be of no benefit to the present study (Gunn, 1998; Suykens
et al., 2001).
4.2. Effect of negative samples

In the SVC training, the quality of the negative samples had

greater effect on the results than the kernel functions and
hyperparameters. The information used for the SVC learning
was provided by both the negative and positive samples to

ensure optimal interfacing. However, for the developmental
SVC, the positive samples were determined by the dynamic



Table 7 Optimization of yield prediction at each stage.

Planting type Prediction point Sample Kernel function Hyperparameter RMSE (kg/h m2) RE (%)

Middle-season rice Tillering stage Tillering 1 Radical basis p= 1 126.8 22.1

Heading stage Heading 2 Radical basis p= 1.25 96.4 17.1

Milk stage Milk 2 Radical basis p= 1.5 109.4 19.2

Early rice Tillering stage Tillering 1 Polynomial D= 4 88.3 20.5

Heading stage Heading 2 Radical basis p= 1.25 68.0 15.8

Milk stage Milk 2 Radical basis p= 1.25 36.4 8.5

Late rice Tillering stage Tillering 1 Radical basis D= 4 89.2 21.0

Heading stage Heading 2 Radical basis p= 1.25 69.7 16.5

Milk stage Milk 2 Radical basis p= 1.5 46.5 11.1

RMSE, root-mean-square error; RE, relative error.

Figure 4 Relationship between the C value and efficiency (yield

module). All the models were tested using C = 1, 10, 100, and

10,000 in the yield module. The operation time increased with the

increase in the C value.
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variables generated by the daily factors that were inputted to
the open reading frame of ‘‘the occurrence day of a certain
developmental stage.” The use of the negative samples was

more difficult. Theoretically, any open reading frame that does
not correspond to the occurrence day of a certain developmen-
tal stage can generate negative samples. However, in practice,

it is necessary to maintain proper ‘‘distance” between the pos-
itive and negative samples so that the SVC can achieve perfect
classified learning.
Table 8 Results of SVR using scanning C value.

Planting type Prediction point Kernel function Hyp

Middle-season rice Tillering stage Radical basis p =

Heading stage Radical basis p =

Milk stage Radical basis p =

Early rice Tillering stage Polynomial D =

Heading stage Radical basis p =

Milk stage Radical basis p =

Late rice Tillering stage Radical basis D =

Heading stage Radical basis p =

Milk stage Radical basis p =

SVR, support vector machine regression.

The bold values means the combinations of kernel functions and parame
The off-season and 30-day-in-advance samples were used in
this study. The positive samples generated by the off-season

strategy contributed to the improvement of the SVC sensitivity
for developmental stage predictions, while low false positivity
was observed in the 30-day strategy, as well as much greater

SVC learning difficulty.
The question thus arises about whether the use of 30-day-

in-advance samples is a proper alternative. Apparently not

because the meteorological factors differed significantly for a
three-month time difference. The SVC sensitivity would thus
increase with the possible increase in false positivity. Actually,
the 30-day-in-advance strategy still showed rather high false

positivity because development is a complicated ecological,
physiological, and biochemical process. The process not only
includes metabolism and nutrition and water physiologies

related to many enzyme systems, but also involves the cultiva-
tion environment (sunlight, temperature, water, fertilizer, soil,
air, etc.) and the degree of coordination between the source,

sink, and flow of the ecosystem. Furthermore, the thermo-
sensitivities, photo-sensitivities, and basic vegetative growths
of middle season rice, early rice, and late rice are not identical,
being DNA-controlled. Concisely, genotype + environ-

ment = phenotype. Incidentally, there were phenotype differ-
ences (morphology, plant type, maturity, resistance, fertility,
etc.) among the three rice and planting types. It would thus

be difficult to improve the SVC accuracy by changing the
sampling strategy, hence the need for new factors and
methods.
erparameter C= 1 C= 10 C= 100 C= 10000

1 22.1 21.1 21.1 21.5

1.25 17.1 16.4 17.9 18.1

1.5 19.2 18.3 19.3 20.1

4 20.5 19.6 17.8 18.1

1.25 15.8 16.6 18.1 18.1

1.25 8.5 8.9 8.9 8.9

4 21.0 21.9 21.9 21.9

1.25 16.5 17.2 17.3 17.3

1.5 11.1 10.6 10.2 11.5

ters which performed best in the same developmental stages.



Table 9 Optimization of each developmental stage for yield prediction (with unadjusted C).

Planting type Prediction point Sample Kernel function Hyperparameter Penalty coefficient RE (%)

Middle-season rice Tillering stage Tillering 1 Radical basis p= 1 10 21.1

Heading stage Heading 2 Radical basis p= 1.25 10 16.4

Milk stage Milk 2 Radical basis p= 1.5 10 18.3

Early rice Tillering stage Tillering 1 Polynomial D= 4 100 17.8

Heading stage Heading 2 Radical basis p= 1.25 1 15.8

Milk stage Milk 2 Radical basis p= 1.25 1 8.5

Late rice Tillering stage Tillering 1 Radical basis D= 4 1 21.0

Heading stage Heading 2 Radical basis p= 1.25 1 16.5

Milk stage Milk 2 Radical basis p= 1.5 100 10.2

RE, relative error.

Figure 5 An SVM-based open crop model (SBOCM) was designed as an application-focused crop model for regional rice development

stage prediction and yield prediction. The emphasis was on simplicity of operation. The framework of the entire SBOCM system

comprised five parts, namely, the database module, data calling module, development prediction module, yield prediction module, and

human–machine interface.
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4.3. Error source analysis

4.3.1. Mechanism problems

Classic crop models are based on decades of research on the
internal growth and developmental mechanisms of crops and

are highly accurate for field application. As a typical machine
learning method, SVM is outstanding for nonlinear fitting. It is
characterized by a simple framework and explicit input and
output, although insufficient attention is given to the internal

physiology of the investigated object. SVMs were used in this
study to explore the feasibility of applying machine learning to
recent crop modeling, and the potential of an SVM open
framework. The target was to achieve a prediction accuracy
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comparable to that of a simple SVM within a short time. This
was found to be apparently impossible.

4.3.2. Sample defects

This study mostly employed historical data obtained from the
China Meteorological Administration, generated from stations
with uncontrolled data quality. After preprocessing, the data

still contained defects such as artificial errors, limited factors,
excessive effects of macroscopic soil factors, too short open
reading frame, insufficient field experiment data for referenc-

ing and correction, features that could not be explained by
meteorological factors, and limited sample size. These defects
could not be fully offset by statistical quality control and thus

affected the SVM training results.

4.3.3. Regional differences

The yield prediction results contained only small errors for

China’s south-eastern coastal areas, but large errors for the
western inland and north-eastern areas. There were two rea-
sons for this: (1) there were more sample records for the

south-eastern coastal areas, and this improved the correspond-
ing learning. (2) The effects of other regional factors apart
from longitude, latitude, and altitude, which were considered

during the learning process; possibly including relative humid-
ity (eliminated after PCA) and light angle.

4.3.4. Effects of water and fertilizer management

There is a common problem of current crop modeling, wherein
modeling under certain production conditions is inapplicable to
a complicated regional simulation. Hence, to simplify regional
simulation, production management was excluded from the

factors considered in the present study, and this reduced the
accuracy of the model. Generally, paddy field rice is more
affected by human water and fertilizer management than by

natural and meteorological conditions. The soil-related factors
too were more affected by human water and fertilizer manage-
ment than by natural and meteorological conditions. The lack

of this type of data reduced the accuracy of the study results.
It is certain that the irrigation and water conservation condi-

tions in present China are undesirable. Rainfall is the main

source of water supply and this was considered in the regional
simulation in this study. In future adjustments of the proposed
models, it would be necessary to consider the possibility of com-
bining them for real filed production, and to examine the rela-

tionship between natural rainfall and human water and
fertilizer management. The water and fertilizer management
factors should also be simplified on the regional scale and organ-

ically integrated with the SBOCM for enhanced performance.

5. Conclusions

The SVM machine learning method was used to develop an
SBOCM with simplified data acquisition, suitable for regional
simulation, and that can be effectively integrated with multiple

scale factors for early-stage theoretical investigations. The
model input side is open to future integration of additional
natural and social factors to improve the practicability and

prediction accuracy. The samples used in this study were built
through quality control of mass data. Dimensional reduction
was done by factor analysis methods such as PCA and the
models were evaluated by fivefold cross-validation. The objec-
tive of the SVM modeling was to determine the optimal kernel
functions, hyperparameters, and penalty coefficient to enable

separate investigations of three types of rice plantings and
the several developmental stages. We found that the penalty
coefficient made limited contribution to model optimization

and therefore first determined the optimal kernel functions
and hyperparameters, and then optimized the models by
adjustment of the coefficient. The search efficiency was thusly

improved fourfold.
The SVM modeling method proposed in this paper basi-

cally utilizes scale-independent factors and has an open input
framework, which facilitates integration with large-scale data

for scaling up. Because agricultural production involves both
natural and socio-economic inputs, factors such as grain price,
fertilizer price, seed price, labor cost, location, traffic condi-

tions, governmental support, real status of agriculture, and sci-
entific and cultural innovations may be further integrated into
the proposed model to enable more robust simulation.

Acknowledgements

This work was supported by a Grant from the National High
Technology Research and Development Program of China
(863 Program) (No. 2007AA10Z220). The authors wish to

thank Ms. Jiang Hong for the help in inproofreading this
paper.

References

Cai, C.Z., Wang, W.L., Chen, Y.Z., 2003. Support vector machine

classification of physical and biological datasets. Int. J. Mod. Phys.

C 14, 575–585.

Charles-Edwards, D.A., 1986. Modelling Plant Growth and Develop-

ment. Academic Press, London.

Cortes, C., Vapnik, V.N., 1995. Support-vector networks. Mach.

Learn. 20, 273–297.

Curry, R.B., 1971. Dynamic simulation of plant growth I. Dev. Model.

14, 946–959.

Dhungana, P., Eskridge, K.M., Weiss, A., Baenziger, P.S., 2006.

Designing crop technology for a future climate: an example using

response surface methodology and the CERES-wheat model.

Agric. Syst. 87, 63–79.

Du, H.Y., Wang, J., Hu, Z.D., Yao, X.J., Zhang, X.Y., 2008.

Prediction of fungicidal activities of rice blast disease based on

least-squares support vector machines and project pursuit regres-

sion. J. Agric. Food Chem. 56, 10785–10792.

Edwards, D., Hamson, M., 1990. In: Guide to Mathematical Model-

ing, vol. 2. CRC Press Inc., Florida.

Gao, L.Z., 2004. Foundation of Agricultural Modeling. Pegasus Book

Co., Ltd, Hong Kong.

Gill, M.K., Asefa, T., Kemblowski, M.W., McKee, M., 2006. Soil

moisture prediction using support vector machines. J. Am. Water

Resour. Assoc. 42, 1033–1046.

Gualtieri, J.A., Cromp, R.F., 1998. Support vector machines for

hyperspectral remote sensing classification. In: 27th AIPR Work-

shop on: Advances in Computer-Assisted Recognition, vol. 3584.

SPIE-International Society of Optical Engineering, Washington, D.

C., pp. 221–232.

Gunn, S.R., 1998. Support Vector Machines for Classification and

Regression: Technical Report. University of Southampton,

Southampton.

Jones, C.A., Kiniry, J.R., 1986. CERES-Maize: A Simulation Model

of Maize Growth and Development. A&MUniversity Press, Texas.

http://refhub.elsevier.com/S1319-562X(17)30033-5/h0005
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0005
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0005
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0010
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0010
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0015
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0015
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0020
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0020
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0025
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0025
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0025
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0025
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0030
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0030
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0030
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0030
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0035
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0035
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0040
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0040
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0045
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0045
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0045
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0050
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0050
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0050
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0050
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0050
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0055
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0055
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0055
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0060
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0060


Support vector machine-based open crop model (SBOCM): Case of rice production in China 547
Kaundal, R., Kapoor, A.S., Raghava, G.P.S., 2006. Machine learning

techniques in disease forecasting: a case study on rice blast

prediction. BMC Bioinform. 7, 485.

Lin, Z.H., Mo, X.G., Xiang, Y.Q., 2003. Research advances on crop

growth models. Acta Agron. Sin. 29, 750–758.

Luo, S.M., Zhen, H., Chen, C.H., Yang, W., 1990. Study on

application of computer simulation in rice high yield cultivation.

Guangdong Agric. Sci. 3, 14–17.

Penning de Vries, F.W.T., Jansen, D.M., ten Berge, H.F.M., Bakema,

A., 1989. Simulation of Ecophysiological Processes of Growth in

Several Annual Crops. Simulation Monographs. PUDOC,

Wageningen.

Ritchie, J.T., 1972. Model for predicting evaporation from a row crop

with incomplete cover. Water Resour. Res. 8, 1204–1213.

Shi, X.Z., Yu, D.S., Pan, X.Z., 2002. 1:1000000 Soil Database of

China. Institute of Soil Science, Chinese Academy of Sciences,

Nanjing.

Sinclair, T.R., Seligman, N.G., 1996. Crop modeling: From infancy to

maturity. Agron. J. 88, 698–704.

Stewart, D.W., Dwyer, L.M., 1990. A model of spring wheat (Triticum

aestivum) for large area yield estimations on the Canadian Prairies.

Can. J. Plant Sci. 70, 19–32.

Suykens, J.A.K., 2001. Nonlinear modelling and support vector

machines. In: 18th IEEE Instrumentation and Measurement

Technology Conference, Budapest.

Suykens, J.A.K., De Vandewalle, J., Moor, B., 2001. Optimal control

by least squares support vector machines. Neural Network 14, 23–

35.

Swain, D.K., Heranth, S., Saha, S., Dash, R.N., 2007. CERES-rice

model: calibration, evaluation and application for solar radiation

stress assessment on rice production. J. Agrometeorol. 9, 138–148.

Trafalis, T.B., Adrianto, I. Richman, M.B., 2007. Active learning with

support vector machines for tornado prediction. In: 7th Interna-

tional Conference on Computational Science, Beijing.

Van Gestel, T., Suykens, J.A.K., Baestaens, D.E., Lambrechts, A.,

Lanckriet, G., Vandaele, B., De Moor, B., Vandewalle, J., 2001a.

Financial time series prediction using least squares support vector

machines within the evidence framework. IEEE Trans. Neural

Network 12, 809–821.
Van Gestel, T., Suykens, J.A.K., De Brabanter, J., De Boor, B.,

Vandewalle, J., 2001. Least squares support vector machine

regression for discriminant analysis. In: International Joint Con-

ference on Neural Networks, Washington, D.C.

Van Gestel, T., Suykens, J.A.K., De Moor, B., Vandewalle, J., 2001.

Automatic relevance determination for least squares support vector

machine regression. In: International Joint Conference on Neural

Networks (IJCNN 01), Washington, D.C., pp. 2416–2421.

Vapnik, V.N., 1998. Statistical Learning Theory. Wiley, New York.

Vapnik, V.N., 1999. An overview of statistical learning theory. IEEE

Trans. Neural Network 10, 988–999.

Viaene, S., Baesens, B., Van Gestel, T., Suykens, J.A.K., Van den Poel,

D., Vanthienen, J., De Moor, B., Dedene, G., 2001. Knowledge

discovery in a direct marketing case using least squares support

vector machines. Int. J. Intell. Syst. 16, 1023–1036.

Xie, Y., James, R.K., 2002. A review on the development of crop

modeling and its application. Acta Agron. Sin. 28, 190–195.

Xiong, W., 2004. Modeling of Chinese Main Crops Based on Future

Climate Change. China Agricultural University, Beijing.

Xiong, W.W., 2009. The Study of Face Recognition Method Based on

Mixture Kernel Function Support Vector Machine. Wuhan

University of Science and Technology, Wuhan.

Xu, X.M., Mao, Y.F., Xiong, J.N., Zhou, F.L., 2007. Classification

performance comparison between RVM and SVM[C]. In: Interna-

tional Workshop on Anti-counterfeiting, Security, and Identifica-

tion, Xiamen, IEEE, pp. 208–211.

Yang, X.H., Huang, J.F., Wang, X.Z., Wang, F.M., 2008. The

estimation model of rice leaf area index using hyperspectral data

based on support vector machine. Spectrosc. Spectral Anal. 28,

1837–1841.

Yu, H.Y., Lin, H.J., Xu, H.R., Ying, Y.B., Li, B.B., Pan, X.X., 2008.

Prediction of enological parameters and discrimination of rice wine

age using least-squares support vector machines and near infrared

spectroscopy. J. Agric. Food Chem. 56, 307–313.

Zhang, X.M., 2009. The Study of Audio Classification Based on

Wavelet and Support Vector Machine. Yanshan University,

Beijing.

http://refhub.elsevier.com/S1319-562X(17)30033-5/h0065
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0065
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0065
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0070
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0070
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0075
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0075
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0075
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0085
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0085
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0090
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0090
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0090
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0095
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0095
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0100
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0100
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0100
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0110
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0110
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0110
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0115
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0115
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0115
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0125
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0125
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0125
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0125
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0125
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0140
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0145
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0145
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0150
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0150
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0150
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0150
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0155
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0155
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0160
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0160
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0165
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0165
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0165
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0175
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0175
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0175
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0175
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0180
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0180
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0180
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0180
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0185
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0185
http://refhub.elsevier.com/S1319-562X(17)30033-5/h0185

	Support vector machine-based open crop model �(SBOCM): Case of rice production in China
	1 Introduction
	2 Materials and methods
	2.1 Support vector machine
	2.2 Open reading frame
	2.3 Data preprocessing
	2.4 Building developmental module
	2.5 Building yield module

	3 Results
	3.1 Development module
	3.2 Yield module
	3.3 SVM-based open crop model

	4 Discussion
	4.1 Kernel function, hyperparameter, and penalty coefficient
	4.2 Effect of negative samples
	4.3 Error source analysis
	4.3.1 Mechanism problems
	4.3.2 Sample defects
	4.3.3 Regional differences
	4.3.4 Effects of water and fertilizer management


	5 Conclusions
	Acknowledgements
	References


