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Tsutomu Harada*

Graduate School of Business Administration, Kobe University, Kobe, Japan

The purpose of this study was to reexamine positivity learning biases through a Q
learning computation model and relate them to behavioral characteristics of exploitation
and exploration. It was found that while the positivity learning biases existed in the simple
asymmetric Q learning model, they completely disappeared once the time-varying
nature of learning rates was incorporated. In the time-varying model, learning rates
depended on the magnitudes of success and failure. The corresponding positive and
negative learning rates were related to high and low performance, respectively, indicating
that successes and failures were accounted for by positive and negative learning rates.
Moreover, these learning rates were related to both exploitation and exploration in
somewhat balanced ways. In contrast, under the constant learning parameter model,
positivity biases were associated only with exploration. Therefore, the results in the
time-varying model are more intuitively appealing than the simple asymmetric model.
However, the statistical tests indicated that participants eclectically selected between
the asymmetric learning model and its time-varying version, a frequency of which
differed across participants.

Keywords: positivity biases, exploitation, exploration, asymmetric Q learning, asymmetric time-varying Q learning

INTRODUCTION

In economics, the direction of technological change has sometimes been viewed as biased, a
phenomenon that is influenced by relative factors such as prices, history, or technical imbalances.
All of these assume that an underlying learning process removes bottlenecks that hinder more
profitable opportunities. The implicit assumption of these models is that learning is biased in
specific directions – this claim has not been investigated rigorously in economics. In standard
reinforcement learning (RL), the action values are assumed to be updated according to the reward
prediction error (RPE), which is the difference between the actual reward and the expected reward;
several studies have pointed out that the magnitude of a learning rate is biased depending on the
sign of the RPE (Frank et al., 2007; Gershman, 2015, 2016). From a RL perspective, differential
learning rates are represented by positive and negative RPEs.

This potential learning bias could be interpreted in terms of risk-seeking/aversion behaviors (Niv
et al., 2012) or cognitive biases such as positivity bias and/or confirmation bias (Kuzmanovic and
Rigoux, 2017; Lefebvre et al., 2017). Positivity bias describes the tendency to privilege positive news,
while confirmation bias indicates the tendency to give more weight to outcomes that are consistent
with one’s hypothesis (Palminteri et al., 2017). Numerous studies have indicated that differential
learning rates tend to be biased in the direction of learning from positive RPEs, compared with
negative RPEs (Frank et al., 2007; van den Bos et al., 2012; den Ouden et al., 2013; Aberg et al., 2015;
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Lefebvre et al., 2017). However, these studies did not fully explain
how asymmetric learning rates are related to behavioral and
cognitive properties.

Moreover, Katahira (2018) showed through simulation
analysis that the autocorrelation of choice (i.e., the tendency to
repeat the same choice or to switch to another choice irrespective
of past outcomes) leads to pseudo-positivity biases and vice
versa. Thus, without intrinsic autocorrelation, the RL model
generates a statistical artifact leading to “pseudo-positivity bias”
and “pseudo-confirmation bias.” Previous studies, therefore, have
suggested that the positivity bias should be reexamined by
removing the autocorrelation effects.

The purpose of this study was to investigate the determinants
of learning biases in the asymmetric RL framework. In particular,
we were interested in examining the relation between learning
biases (Hills et al., 2015) and exploitation versus exploration.
How does exploitation versus exploration affect learning biases?
Although the related literature investigating learning biases
does not consider these effects, we believe that the behavioral
properties of exploitation and exploration play critical roles in
human cognitive operations. This has been demonstrated by
the success of RL in achieving higher performance than human
beings in cognitive tasks (this does not imply the RL algorithms
are superior to human cognitive systems). For example, in 2017,
AlphaGo, a RL program that is applied to the board game
Go, beat Ke Jie, the top-ranked player in the world at the
time. AlphaGo consists of exploitation facets that suggest the
best moves based on the knowledge obtained through a deep
learning method. In addition, with certain probability, AlphaGo
incorporates exploration aspects whereby the best moves that
were suggested by the exploitation parts are designed to not be
chosen; the purpose is to gain information with a view to figuring
out new strategies to win the game. Thus, both exploitation and
exploration facilitate learning in the AlphaGo program.

In creativity research, there is growing support for taking
both divergent and convergent thinking into account (Gabora,
2010). Divergent thinking is defined as the ability to produce
new approaches and original ideas by forming unexpected
combinations from available information, and by applying
abilities such as semantic flexibility, and fluency of association,
ideation, and transformation (Guilford, 1967). Convergent
thinking is defined as the ability to apply conventional and logical
search, recognition, and decision-making strategies to stored
information to produce an already known answer (Cropley,
2006). These two thinking processes could also be thought of
in terms of exploitation and exploration. Exploitation refers to
the optimization of current tasks under existing information
and memory conditions, while exploration implies wider and
sometimes random searches and trials that do not coincide
with the optimal solutions provided by exploitation (see Sutton
and Barto, 2018, for the trade-off between exploitation and
exploration in the RL framework). Divergent thinking requires
exploration rather than exploitation, whereby a wider search for
a greater range of information should be undertaken. In contrast,
convergent thinking seems to rely more on exploitation because
the efficiency of search in a much narrower space should take full
advantage of existing information.

In the Q learning model (see for example, Sutton and
Barto, 2018), exploitation implies selection of the choices that
yield the highest Q values, whereas exploration entails other
non-optimal choices. Thus, both exploitation and exploration
could be measured by the numbers of optimal and non-
optimal choices, respectively. The present study assessed these
measures to examine their effects on learning biases. We
conjectured that exploration tends to be promoted more
from good news and exploitation from bad news. On the
one hand, exploration requires wider searches beyond current
contexts, processes that could be bolstered by optimistic views
generated by good news. That is, bad news seem more likely to
discourage exploration. On the other hand, exploitation requires
logical reasoning and deduction, so learning from bad news is
essential for removing errors. Therefore, learning asymmetry
exists between exploitation and exploration. Of course, it is
also possible to argue that bad news could evoke exploration.
Hence, using behavioral data, these hypotheses should be
empirically tested.

First, we examined whether learning biases exist by estimating
a standard Q learning model for the data obtained from
the Iowa Gambling Task (IGT). Second, we related learning
biases to performance in the IGT. The adaptive properties of
asymmetric value updates have also been discussed in Cazé
and van der Meer (2013); they showed that even in simple,
static bandit tasks, agents with differential learning rates can
outperform unbiased agents. Cazé and van der Meer (2013)
suggested the existence of a situation in which the steady-
state behavior of asymmetric RL models yields better separation
of the action values compared with symmetric RL models.
While this proposition was proved mathematically as asymptotic
properties, real performance in cognitive tasks includes not only
asymptotic properties but also transient outcomes (Katahira,
2018). Therefore, we tested empirically the relationship between
learning biases and their performance in a cognitive task. Third,
given these results, we examined the determinants of learning
biases in terms of exploitation and exploration while controlling
for related variables such as psychological personalities and
working memory capacities.

Finally, a number of learning models have incorporated the
modulation of learning rates (Daw et al., 2006; Behrens et al.,
2007; Mathys et al., 2011); therefore, it is of critical importance
to allow for this modulation. Thus, we incorporated the time-
varying nature of learning rates in an asymmetric learning
framework, and examined the learning biases.

MATERIALS AND METHODS

Participants
A sample of 113 healthy undergraduate students at Kobe
University (49 females, age range = 18–20 years, SD = 0.66)
participated in the study. All participants were native Japanese
with normal or correct-to-normal vision. The local Ethics
Committee approved this study, and all participants signed an
informed consent form before the experiment and were paid JPY
3,000 (approximately USD 28).
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FIGURE 1 | Example of trial in the Iowa Gambling Task in which the participant chose a card from Deck B. The participant received a reward of $100 (left),
immediately followed by a punishment of $250 (right).

Asymmetric Q Learning Model
We adopted a Q learning framework (Sutton and Barto, 2018) to
account for decision making in the IGT (Bechara et al., 1994). In
the IGT, participants make a series of 100 choices from four decks
of cards (see Figure 1). Two of the decks are advantageous and
two of them are disadvantageous. The two disadvantageous decks
always give rise to relatively high gains ($100) but also, with a
50% chance, to occasional large losses ($250), which results in an
average loss of -$50 per trial. The two advantageous decks always
generate lower gains each time ($50) but produce smaller losses
($50) with a 50% chance, resulting in an average gain of +$25 per
trial. The goal is to maximize net scores across trials.

At each trial t, the action value Qi (t) of the chosen option
(deck) i is updated via the following rule:

Qi (t + 1) =
{

Qi (t)+ α+δ (t)+ φ if δ (t) ≥ 0,
Qi (t)+ α−δ (t)+ φ if δ (t) < 0,

(1)

with
δ (t) = Ri (t)−Qi (t) , (2)

where Ri (t) is the reward of the option i at trial t, and α+ and
α− indicate the learning rates. φ is added in (1) as the choice
trace to accounts for autocorrelation of choice which could affect
the learning biases (Katahira, 2018). The updating equation (1)
differs from the standard Q learning model in that the learning
rates are assumed to be asymmetric between positive and negative
RPEs. Our primary interest lies in the sign condition of α+ − α−.
If this is positive, it indicates that participants have learned more
from success or good news, whereas the negative sign indicates
they have learned more from failure or bad news. The RPE δ (t)

is computed by subtracting the current value estimate from the
obtained reward R. Participants thus update the action value
estimate by scaling the prediction error with the learning rate
and then adding this to the estimated value at the previous trial.
Learning rates close to 1 indicate that a person has made fast
adaptations based on prediction errors, and learning rates closer
to 0 indicate slow adaptation. In the default setting, the initial
action values are set to zero so that Qi (1) = 0 for i = 1, . . . , 4.

For the unchosen option j (i 6= j), the action value is updated
as:

Qj (t + 1) = Qj (t) (1)

Assume the chosen action at trial t is denoted by a (t) ∈
{1, 2, 3, 4}. The action value estimates of these four options are
used to determine the probability of choosing either option. This
probability is computed via the following softmax decision rule:

P (a (t) = i) =
exp (βQi (t))∑4
j=1 exp

(
βQj (t)

) , (2)

where P (a (t) = i) is the probability of choosing the action
a (t) = i at trial t. The parameter β is the inverse temperature,
a parameter that indicates the sensitivity of a participant’s choice
to the difference in action value estimates.

The parameters of α and β in this model were estimated by
optimizing the maximum a posteriori (MAP) objective function,
that is, finding the posterior mode:

θ̂ = argmax p (Ds|θs) p (θs) , (3)

where p (Ds|θs) is the likelihood of data Ds for subject s
conditional on parameters θs =

{
α+S, α−S, βS

}
, and p (θs) is the
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prior probability of θs. We assume each parameter is bounded
and use constrained optimization to find the MAP estimates.
More specifically, since α is bounded between 0 and 1 and β takes
non-negative values, their priors were assumed to follow beta
distributions for α, and gamma distributions for β.

Asymmetric Time-Varying Q Model
The asymmetric Q learning model is flexible in allowing for
different learning rates from success and failure. However, it
assumes these learning parameters are constant during the IGT
for each participant. Following the time-varying Q learning
model proposed by Pearce and Hall (1980) and Bai et al.
(2014), we incorporated the time-varying learning parameters
into the above asymmetric model in which Q values are updated
according to

Qi (t + 1) =
{

Qi (t)+ α+t δ (t)+ φ if δ (t) ≥ 0,
Qi (t)+ α−t δ (t)+ φ if δ (t) < 0,

(4)

α±t+1 = η
± |δ (t)| +

(
1− η±

)
α±t (5)

Now, the learning rate α±t depends on the absolute value of
previous RPEs |δ (t)| and the constant parameter η controls the
level of its influences. This asymmetric time-varying Q learning
model differs from the previous model only in this updating
characteristic, so equations (6)–(5) remain the same as before.

Measures
This paper tested whether learning biases exist or not, and then,
examined the determinants of learning biases, each learning
parameter, and performance (total scores) in the IGT, which
were used as dependent variables in the regression analysis.
As explanatory variables, we used exploitation, exploration, its
ratio (exploitation/exploration), the sum of RPEs, because our
primary interest lies in the effects of exploitation and exploration
on these dependent variables. As control variables that might
affect learning biases, we used working memory capacities and
personality scales.

Exploitation and Exploration
As measures for exploitation and exploration, we used the
number of choices that exhibited the highest Q values and
the number of choices that exhibited the lowest Q values,
respectively. As related variables, the sum of RPEs δ (t) and
the variance of the time-varying learning rate αt were used,
respectively, to measure the success and time flexibility of
the underlying learning model. We also used the ratio of
optimal and non-optimal choices to measure the relative strength
of exploitation.

Working Memory Capacity (WMC)
Working memory capacity was measured using reading span,
operation span, and matrix span tests, which are representative
working memory tests (Conway et al., 2005). Reading span and
operation span tests evaluate the capacity of verbal WMC and
logical WMC, respectively, which in turn correspond to the
phonological loop, according to Baddeley (2000). The matrix

span test measures spatial WMC, corresponding to the visuo-
spatial sketchpad in Baddeley’s model.

Big Five Scale of Personality
Big Five Scales (BFS) of personality traits are widely used
to describe personality differences, which consist of five
factors, namely openness to experience (inventive/curious
vs. consistent/cautious), conscientiousness (efficient/organized
vs. easy-going/careless), extraversion (outgoing/energetic vs.
solitary/reserved), agreeableness (friendly/compassionate vs.
challenging/detached), and neuroticism (sensitive/nervous vs.
secure/confident) (Barrick and Mount, 1991; Miller, 1991;
Piedmont et al., 1991). These scales were measured by 60
questions in Japanese, developed by Wada (1996). The scores
were measured in descending order so that high scores in
openness to experience, for example, imply lower openness
to experience.

Procedure
Participants completed reading span, operation span, matrix span
tests (Conway et al., 2005), IGT, and BFS tests, which took
approximately 60 min. This session was arranged for groups with
a maximum of 50 participants in the presence of the instructor.
The tests were performed on a 17′′ CRT monitor with PsytoolKit
(Stoet, 2010, 2017). A break of at least 1 min was taken between
the three tests. The order of these tests was randomly assigned in
this session. In the following discussion, reading span, operation
span, and matrix span test scores are denoted by verbal WMC,
logical WMC, and spatial WMC, respectively.

Learning Convergence
In the IGT, some of the participants eventually learned to
keep picking the best (low risk, low return) decks. When
participants remained in the best decks at least four times until
the end of the game, we defined learning convergence took place
for those participants. Based on this definition, we identified
60 participants who succeeded in learning convergence where
the average number of trials before learning convergence was
70.9 (SD = 29.5).

The descriptive statistics of variables used in this study are
reported in Table 1.

RESULTS

Positivity or Negativity Biases
To examine the existence of positivity and negativity biases, we
estimated learning rates in the asymmetric Q learning and its
time-varying version. In the former model, we found that the
positive learning rate was significantly higher than the negative
one [T(224) = 4.49; P = 1.13e-05] (Figure 2, left), which is
consistent with related studies. However, in the asymmetric time-
varying version, the biases disappeared in terms of the differences
between the average values of ᾱ+ and ᾱ− [T(224) = −0.07;
P = 0.94] (Figure 2, middle). The averages were taken here
because these variables change over time for each participant
as specified in (7). In addition, we also examined the difference
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TABLE 1 | Descriptive statistics.

Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1. α+ − α− 0.15 0.32

2. α+ 0.64 0.17 0.33** –

3. α− 0.64 0.17 0.32** 0.97** –

4. Performance 2399.12 940.65 −0.46** −0.12 −0.16+ –

5. Exploitation (Model 1) 43.73 16.39 −0.13 −0.08 −0.08 0.56** –

6. Exploration (Model 1) 17.7 8.64 0.21* 0.06 0.06 −0.51** −0.74** –

7. Ratio (Model 1) 5.13 8.08 −0.11 −0.21* −0.21* 0.47** 0.73** −0.68** –

8. RPE (Model 1) −51.58 406.42 −0.17* 0.08 0.06 0.03 0.36** −0.23** 0.07 –

9. Exploitation (Model 2) 39.84 13.83 0.10 0.14 0.10 0.33** 0.73** −0.54** 0.72** −0.10 –

10. Exploration (Model 2) 19.26 7.52 −0.08 −0.06 0.15+ −0.28** −0.62** 0.50** −0.60** −0.56** −0.73** –

11. Ratio (Model 2) 3.19 3.97 −0.03 −0.09 −0.07 0.37** 0.61** −0.48** 0.89** 0.80** 0.74** −0.73** –

12. RPE (Model 2) 13.95 117.44 0.14 0.15+ −0.09 −0.16+ −0.07 0.02 −0.24** −0.07 0.04 0.04 −0.01 –

13. Extraversion 3.61 0.95 0.06 0.02 0.05 −0.03 −0.05 0.04 0.03 −0.05 0.03 0.10 0.04 0.10 –

14. Neuroticism 3.29 0.97 −0.10 −0.01 −0.06 0.09 −0.04 −0.06 0.05 0.11 −0.08 0.00 0.00 −0.04 −0.40** –

15. Openness 3.89 0.83 0.01 0.02 0.06 −0.01 −0.05 0.08 0.04 −0.09 −0.04 0.08 0.01 0.09 0.23* −0.21* –

16. Conscientiousness 4.19 0.69 −0.14 −0.19* −0.22** 0.17* 0.12 −0.16+ 0.13 0.10 −0.04 −0.09 0.11 −0.13 0.08 0.10 0.04 –

17. Agreeableness 3.4 0.89 −0.01 −0.01 0.03 −0.24** −0.18* 0.23** −0.05 −0.30** −0.10 0.17* −0.04 0.00 0.37** −0.24** 0.14 0.29** –

18. Spatial WMC 23.81 13.38 −0.15 0.08 0.04 0.17* 0.14 −0.07 0.05 0.12 0.08 0.14 −0.07 0.03 0.04 0.00 −0.10 0.01 0.02 –

19. Verbal WMC 25.73 12.75 −0.10 0.09 0.06 0.16+ 0.07 −0.10 −0.01 0.07 0.01 0.16+ −0.14 −0.03 0.05 −0.07 −0.02 0.01 −0.08 0.37** –

20. Logical WMC 28.18 11.65 0.16+ 0.03 0.02 0.06 0.11 −0.07 0.08 0.12 0.05 0.06 −0.06 0.02 −0.02 0.01 0.07 −0.01 −0.02 0.22* 0.24**

+p < 0.10, *p < 0.05, **p < 0.01. RPE refers to the sum of reward prediction errors. Model 1 and Model 2 indicates, respectively, an asymmetric Q learning model and an asymmetric time-varying Q learning model.
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FIGURE 2 | Learning rate analysis of the asymmetric Q learning model (left) indicated that learning was positively biased. Learning rate analysis of the asymmetric
time-varying Q learning model (middle and right) indicated that the average learning rates (ᾱ+ and ᾱ−) and the underlying learning parameters (η+and η−) did not
yield significant differences. **p < 0.01.

between η+ and η−, yet no statistical significance was observed
between the two [T(224) = −0.19; P = 0.85] (Figure 2, middle).
In contrast to the former model, the signs of the differences in
this model became negative in ᾱ± and η±, though they were not
significant. Note that in the subsequent analysis, since η± did
not exert statistically significant effects, we henceforth considered
only ᾱ± in the time-varying asymmetric model.

Thus, in the standard asymmetric model, even after
controlling for pseudo bias arising from the autocorrelation, we
still confirmed the positivity biases. Once we allowed for the time-
varying nature of learning rates, however, the biases, whether they
were positive or negative, no longer emerged.

Effects on Performance
Given the positivity biases in the asymmetric Q learning model as
indicating a general tendency to respond more to positive RPEs,
a question arises as to how this bias relates to performance in the
IGT. To examine the effects of the positivity bias on performance,
we regressed α+, α− and its difference on the total sum of rewards
in the IGT. The results are presented in Table 2.

It may be surprising that both α+ and α+ − α− had negative
effects, whereas α− had positive effects, on performance. This
implies that the positivity bias did not contribute to higher
performance. Instead, the negativity bias was required to achieve
higher rewards. This result was consistent with the stochastic
structure of the IGT setting because the expected rewards were
higher from low risk, low return decks than from high risk,

high return decks. Hence, participants should be more sensitive
to negative RPEs and quickly converge to low risk, low return
decks. Despite this stochastic structure of the IGT, participants
who were not informed of these stochastic properties showed
a significant tendency toward preferential learning at the risk
of losing rewards.

In the asymmetric time-varying model, since the learning
biases did not exist, we examined the effects of each learning
parameter on IGT performance. The results are shown in
Table 3. In contrast to the previous results, ᾱ+ was positively
related to performance, while ᾱ− exerted negative effects on
performance. Hence, these effects were completely opposite to
the previous results on α+ and α−. Note that the magnitude of
ᾱ− depends on that of failure as specified in (7). This implies
that the greater loss in rewards was reflected in the learning
parameter ᾱ−, whereas the greater gain was absorbed in ᾱ+.
Consequently, ᾱ+ and ᾱ− are related to performance, as shown
in Table 3.

Determinants of Learning Rates
The results showed that the positivity bias disappeared once the
time-varying nature of learning parameters was incorporated.
This stands in sharp contrast to related studies in which
positivity biases were exhibited. To further examine the
differences between positivity biases and no biases in the
two models, we evaluated the effects of exploitation and
exploration on these learning parameters while controlling
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TABLE 2 | Effects of learning parameters on performance (SE in parentheses).

Variables (1) (2)

Constant Terms 2602.3** (87.5) 2543.7**
(144.9)

α+ − α− −1341.3**
(247.2)

α+ −1266.1**
(289.0)

α− 1478.2**
(366.5)

R-squared 0.21 0.212

**p < 0.01.

TABLE 3 | Effects of learning rates on performance (SE in parentheses).

Variables

Constant Terms 2917.8**
(347.6)

α+ 4440.9+

(2321.1)

α− −5237.8*
(2326.4)

R-squared 0.06

+p < 0.10, *p < 0.05, **p < 0.01.

for personality and working memory characteristics of
the participants.

First, we examined the effects of exploitation and exploration
on the positivity biases, α+ − α−, in the asymmetric Q learning
model. The results are shown in Table 4.

The results showed that positivity bias was not directly related
to personalities. Instead, it was accounted for by exploration, the
sum of RPEs, and logical WMC. Note that exploration indicates
the selection of the decks with the lowest Q values. The question
arises as to how they selected these least optimal choices in terms
of the underlying learning model. The result suggests that this was
facilitated by the positivity bias. That is, participants responded
more to the choices that generated high rewards, and tended to
repeat the same choices. However, since the IGT was designed
to set high risk, high return decks with lower expected rewards,
these choice patterns led to the selection of the decks with the
lowest Q values. Hence, exploration was related to the positivity
bias, although they did not give rise to higher performance.
This interpretation was supported by the negative effect of RPEs,
indicating that participants showing the positivity bias were more
likely to lower their sum of RPEs.

Logical WMC was positively related to the positivity bias.
This logical WMC was measured by the capacity to memorize
the results of the previous mental calculation while undertaking
current calculation tasks. In the IGT, participants with a positivity
bias have to remember the results of the past four decks,
in particular, those generating higher rewards. Logical WMC
facilitated these cognitive operations, leading to its positive effects
on the positivity bias.

Next, we examined the effects of exploitation and exploration
on the learning parameters, ᾱ±, in the asymmetric time-varying

TABLE 4 | Determinants of positivity biases (SE in parentheses).

Variables

Constant Terms 0409**
(0.373)

Exploitation −0001**
(0.003)

Exploration 0.012+

(0.007)

Exploitation/Exploration 0.002
(0.003)

Reward Prediction Errors 0.000

Exraversion 0.029
(0.036)

Neuroticism −0.038
(0.035)

Openness −0.021*
(0.037)

Conscientiousness −0.04
(0.046)

Agreeableness −0.05**
(0.041)

Spatial WMC −0.003
(0.002)

Verbal WMC −0.003
(0.003)

Logical WMC 0.006
(0.003)

R-squared 0.18

+p < 0.10, *p < 0.05, **p < 0.01.

model. In this case, since no significant learning biases had
been identified, we examined the determinants of each learning
parameter. Because the learning parameters only take values
between 0 and 1, we transformed these into

α̃ = log α
1−α

, (6)

where the original regression model is assumed to be α =

1/
(
1− exp (−X)

)
and X indicates explanatory variables. With

this log transformation, the ordinary least squares (OLS)
generates statistically consistent estimates. The results are shown
in Table 5.

As expected from the results of no learning biases, both
ᾱ+ and ᾱ− showed quite similar patterns. Exploitation had
positive effects whereas the ratio of exploitation and exploitation
exhibited negative effects. This implies that exploitation was
positively related to ᾱ+ and ᾱ−, yet exploration exerted positive
effects, relative to exploitation. However, in ᾱ−, exploration
itself had negative effects, although its significance level was
lower than that of the ratio of exploitation and exploitation.
Therefore, in ᾱ+ and ᾱ−, the net effects of exploitation and
exploration were positive.

These results suggest that on the one hand, the positivity
biases were positively related to exploration. On the other
hand, however, the learning parameters in the time-varying
model were balanced in terms of reflecting exploitation and
exploration. Therefore, incorporating the time-varying nature
of learning parameters that reflect the magnitude of success or
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TABLE 5 | Determinants of learning parameters (SE in parentheses).

Variables α+ α−

Constant Terms 1.124
(1.220)

1.339
(1.171)

Exploitation 0.021+

(0.012)
0.020+

(0.012)

Exploration −0.036
(0.023)

−0.042+

(0.022)

Exploitation/Exploration −0.112*
(0.041)

−0.115**
(0.040)

Reward Prediction Errors 0.001
(0.001)

0.001
(0.001)

Exraversion 0.035
(0.121)

0.052
(0.116)

Neuroticism 0.056
(0.115)

0.034
(0.110)

Openness 0.050
(0.124)

0.087
(0.119)

Conscientiousness −0.315+

(0.156)
−0.398**
(0.150)

Agreeableness 0.116
(0.128)

0.200
(0.123)

Spatial WMC 0.006
(0.008)

0.003
(0.008)

Verbal WMC 0.006
(0.009)

0.004
(0.008)

Logical WMC −0.001
(0.009)

−0.002
(0.008)

R-squared 0.16 0.21

+p < 0.10, *p < 0.05, **p < 0.01.

failure led to counting on both exploitation and exploration,
rather than depending exclusively on either exploitation or
exploration. Under these conditions, the positivity or negativity
biases disappeared so that learning rates from success and failure
exhibited similar magnitudes.

Model Fits
To compare the above two models, we calculated the Bayes
factors on an individual basis following the criteria suggested
by Kass and Raftery (1995). According to this criteria, 55
participants were selected in favor of the simple asymmetric
model and 54 participants in favor of the time-varying
asymmetric model. This implies that the models cannot be
differentiated statistically. Therefore, we cannot completely deny
the positivity biases in this study. What is implied in this analysis
is the role of time-varying assumption on learning parameters in
generating results of no positivity biases.

DISCUSSION

In this study, we found that participants displayed a positivity bias
in the IGT, even though it was related to lower performance, as
far as the simple asymmetric Q learning model was concerned.
However, once the time-varying nature of learning rates was
added to the model, learning biases – whether positivity or
negativity – were completely eliminated. In contrast to related

studies, in particular those exhibiting positivity biases (Frank
et al., 2007; van den Bos et al., 2012; den Ouden et al.,
2013; Lefebvre et al., 2017; Palminteri et al., 2017), we could
not identify such learning biases in our study. Although the
pseudo positivity bias could emerge with the autocorrelation
of choices (Katahira, 2018), this study still found the existence
of the positivity bias after controlling for the autocorrelation
effects. Only after controlling for the time-varying nature of
learning rates did the biases disappear, implying that the pseudo
positivity bias could also emerge from the time-dependency
of learning rates.

Palminteri et al. (2017) showed through experiment that the
positivity bias could be interpreted as the confirmation bias,
which implies that participants preferentially took into account
the outcomes that confirmed their current behavioral policy and
discounted the outcomes that contradicted it. Furthermore, they
suggested that these learning biases can be maladaptive in the
context of learning performance, but can serve as adaptive in
other cognitive domains, thus generating a net adaptive value.
Indeed, some studies have demonstrated the relation between
optimism and high adaptive values (MacLeod and Conway, 2005;
Tindle et al., 2009; Carver et al., 2010; Johnson and Fowler, 2011).
Regarding the more specific context of optimism in RL, Cazé and
van der Meer (2013) showed that in low-reward environments, an
agent learns asymmetrically in an optimistic manner. As a result,
they speculated that positivity or confirmation biases promote
self-esteem and confidence, and have overall favorable real life
outcomes (Weinstein, 1980).

However, these results presupposed, as in our asymmetric
Q learning model, that learning parameters remained constant
during the experiments. It is more likely that participants change
how much to learn from success or failure, depending on the
magnitudes of each. If participants face huge successes (failures),
they will significantly improve (decrease) the Q values of the
corresponding decks. However, if the gains (loss) are modest, the
improvement (reduction) remains modest.

The positivity biases observed in the asymmetric Q learning
model in our study seemed to reflect the underlying stochastic
structure of the game, rather than an adaptive strategy that
promotes self-esteem and confidence. In our study, for instance,
higher rewards were expected when participants kept selecting
low risk, low return, instead of high risk, high return, decks.
Although learning rates might differ across participants, they
could have converged to the former choices sooner or later
during the game. Once they reached the steady state of choosing
the same decks, more frequent gains were expected, and they
did not switch to different decks, implying that high Q values
were put on the corresponding decks. Hence, the biases might
have been caused by the convergence to and discovery of low
risk, low return decks. This might also account for why the
positivity and confirmation biases suggested in Palminteri et al.
(2017) induced overall favorable real life outcomes. The causality
was not positivity biases toward high performance; rather, high
adaption to remaining in steady states led to the generation of
positivity biases because steady states imply repeating the same
choices over time, which induces higher Q values with more
frequent success.
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However, before reaching a steady state, a number of
failures take place. Indeed, the results for the determinants
of performance in our study indicated that the positivity
biases in the asymmetric learning model were related to lower
performance. This suggests that the positivity biases, under
the constancy of learning parameters, reflected a series of
failures before participants reached their steady states, leading to
negative effects on performance. Once the time-varying nature of
learning rates was added, the positive (ᾱ+ and η+) and negative
learning parameters (ᾱ− and η−), respectively, accounted for
high and low performance. As stated above, the magnitude
of ᾱ− depends on that of failure as specified in (7) so that
more loss was reflected in the learning parameter ᾱ− whereas
more gain was absorbed in ᾱ+. Similar reasoning could also be
applied to η+ and η−. Therefore, under more flexible, time-
varying learning parameters, the positive and negative learning
parameters, respectively, follow success and failure without
biases. The positivity biases were caused by converging to steady
states, yet exhibited negative effects on performance because of
the search phase before reaching steady states in which a number
of failures was expected.

We also examined the relationship between positivity biases
and dynamic policies of exploitation and exploration. The
results indicated that the positivity biases were more related
to exploration, suggesting that they were associated with
information-gathering activities at the sacrifice of optimization.
If the confirmation biases are correct, it follows that some
confidence is required to select seemingly unfavorable choices
with the aim to collect information. Obviously, exploitation
alone easily gets stuck with local optimums. To escape from
this sub-optimal state, wide information searches beyond current
contexts are necessitated, which corresponds to exploration.
However, in the time-varying learning parameters, both positive
and negative learning rates were related to exploitation and
exploration simultaneously. This indicates that participants
showed a balanced cognitive tendency toward exploitation and
exploration, rather than exclusively toward exploration at some
sacrifice of exploitation. This balance seems to generate no
learning biases under the time-varying learning parameters.
Obviously, some balance between exploitation and exploration
is required to enhance the adaptive value even in broader
cognitive contexts.

It has been proposed that organisms can change their
behavioral patterns flexibly by choosing actions on the basis of
on their expected returns (Dayan and Abbott, 2001; Bogacz,
2007; Sutton and Barto, 2018). However, the present study
indicates that human beings not only determine their behavioral
patterns according to the expected returns, but also consider
information sampling as exploration. The balance between
optimization and information acquisition is a key to higher
adaptive values.

In this respect, it should be noted that compared with
related studies that adopt two-armed bandit games, our study
used the IGT in which four alternatives were presented to
participants because an increase in the number of alternatives
could have had non-negligible effects on exploration. The
related studies show that an increase in the number of

choice alternatives can reduce the probability that one of
the alternatives will be selected (Iyengar and Lepper, 2000;
Boatwright and Nunes, 2001). This is because adding choices
increases choosers’ confusion (Huffman and Kahn, 1998; Iyengar
and Lepper, 2000) and leads to weaker preferences (Dhar,
1997; Iyengar and Lepper, 2000; Chernev, 2003; Gourville and
Soman, 2005), which in turn leads to increases in risk-seeking
(Ert and Erev, 2007). This implies that the IGT arguably
encourages more exploration than the two-armed bandit
game. Indeed, in the simple asymmetric learning model, only
exploration accounted for learning parameters. Nevertheless,
once the time-varying nature of learning parameters was allowed,
exploitation, as well as exploration, mattered in determining
the magnitude of learning parameters. Therefore, participants
seem to balance exploitation against exploration, even if
increases in the number of choices induce the latter. It would
be interesting to examine how the effects of exploitation
and exploration are altered as the number of alternatives
increases beyond four.

It appears that the asymmetric time-varying model is better
than the simple asymmetric one because learning seems to reflect
not only success and failure, but also their magnitudes. Regardless
of success or failure, if the magnitudes are sufficiently large,
they should significantly affect subsequent choice behaviors,
indicating substantial updating of corresponding Q values in our
framework. Hence, it would be more intuitive and reasonable to
assume that humans learn more from huge, rather than modest,
successes or failures. The standard asymmetric learning model
failed to incorporate this learning feature. In the time-varying
version, learning rates were associated with both exploitation
and exploration in balanced manners, results that are also
intuitively appealing.

However, when we calculated the Bayes factors and compared
the two models on an individual basis following the criteria
suggested by Kass and Raftery (1995), 55 participants selected
the simple asymmetric model and 54 chose the time-varying
asymmetric model. This implies that the models cannot be
differentiated statistically. Therefore, it seems more reasonable
to assume that participants eclectically selected either model,
the frequency of which varied across participants. Thus, this
study proposed the alternative model with no learning biases,
as opposed to the standard asymmetric Q learning model with
the positivity biases. In reality, the participants seemed to switch
between the two models.

Finally, a remark is deserved for the result that personality
characteristics had almost no effects on learning parameters,
not only in the asymmetric learning model but also in
the time-varying version. Behavioral, cognitive, and emotional
characteristics are defined as personality (Corr and Matthews,
2009). However, valence-induced learning had nothing to do
with personality characteristics in this study. This suggests that
learning rates underlie the learning system in human brains at
a more subconscious level. Thus, we expect that learning is built
into the neural system to facilitate exploitation and exploration so
as to improve the adaptive value in broader cognitive contexts. In
particular, in the time-varying model, each underlying learning
parameter showed close association with both exploitation and
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exploration. In the current study, the participants were not
informed of the underlying stochastic structure in the IGT. In
uncertain situations, the participants implemented their innate
learning tendencies to put a balanced emphasis on success and
good news, rather than either bias, inducing both exploration
and exploitation in their cognitive operations. We conjecture that
after uncertainty is reduced through learning, they might change
this balance to put more weight on exploitation, reflecting a stable
environment. This adaption to uncertainty through learning
via exploitation and exploration was shared by participants,
regardless of personality characteristics.

CONCLUSION

By investigating learning biases through computation models,
the current study demonstrated that while positivity learning
biases existed in the simple asymmetric Q learning model,
even after controlling for autocorrelation effects, they completely
disappeared once the time-varying nature of learning rates was
incorporated. In the time-varying model, learning rates depend
on the magnitude of success and failure. If gains or losses are
large, Q values are sufficiently updated to reflect such magnitudes.
The corresponding positive and negative learning rates were
related to high and low performance, respectively, indicating that
successes and failures were accounted for by positive and negative
learning rates. Moreover, it was found that these learning rates
were related to both exploitation and exploration in somewhat
balanced ways. Thus, positive and negative learning rates,
respectively, in charge of success and failure, simultaneously take
into account exploitation and exploration. In contrast, under
the constant learning parameter model, positivity biases were
associated only with exploration. Therefore, results in the time-
varying model are more intuitively appealing.

However, the statistical tests indicated that we cannot
differentiate between the two models statistically. Therefore, the
positivity or confirmation biases found in the simple asymmetric
model cannot completely be denied. Nevertheless, the current
study at least highlighted that the results were sensitive to
the assumption of the constancy of learning parameters. This
does not imply that the question of asymmetric learning
rates was resolved.

Obviously, our results critically depended on functional
specifications such as in (4) and (7). To make the results

comparable with those in the related study, we retained them
in the current study. However, it could be one of our future
challenges to consider alternative functional specifications and
examine how the results are altered.

Thus, further studies are needed to figure out what determines
the switch between the two models and the resulting positivity
or no learning biases. Moreover, neural correlates of exploitation
and exploration that are expected to have critical effects on
learning biases should be examined. This also constitutes one of
our future research challenges.
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