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Abstract: Melatonin production is induced by many abiotic and biotic stressors; it modulates the
levels of many plant hormones and their signaling pathways. This study investigated the effects
of plant hormones on melatonin synthesis. Melatonin synthesis in rice seedlings was significantly
induced upon exogenous gibberellin 3 (GA3) treatment, while it was severely decreased by GA
synthesis inhibitor paclobutrazol. In contrast, abscisic acid (ABA) strongly inhibited melatonin
synthesis, whereas its inhibitor norflurazon (NF) induced melatonin synthesis. The observed GA-
mediated increase in melatonin was closely associated with elevated expression levels of melatonin
biosynthetic genes such as TDC3, T5H, and ASMT1; it was also associated with reduced expression
levels of catabolic genes ASDAC and M2H. In a paddy field, the treatment of immature rice seeds
with exogenous GA led to enhanced melatonin production in rice seeds; various transgenic rice
plants downregulating a GA biosynthesis gene (GA3ox2) and a signaling gene (Gα) showed severely
decreased melatonin levels, providing in vivo genetic evidence that GA has a positive effect on
melatonin synthesis. This is the first study to report that GA is positively involved in melatonin
synthesis in plants; GA treatment can be used to produce melatonin-rich seeds, vegetables, and fruits,
which are beneficial for human health.
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1. Introduction

Melatonin is an indole alkaloid commonly found in plants and animals. In plants,
melatonin is involved in normal growth and development, and defense responses against
many biotic and abiotic stressors [1,2]. The mode of action of melatonin in plant growth
and development is presumably associated with the interactions of various plant hormones,
including gibberellins (GAs), ethylene, and brassinosteroids (BRs) [1]. The protective effects
of melatonin against multiple adverse environmental (e.g., biotic and abiotic) stresses
are attributable to its potent antioxidant and regulatory activities, which induce a vast
array of relevant genes [2,3]. A recent study showed that melatonin acts as a signaling
molecule in the regulation of starch synthesis during normal growth [4]; it also functions
in the regulation of molecular chaperones in response to heat stress [5]. The involvement
of melatonin in a diverse array of biological activities strongly suggests that, similar to
animals, plants possess melatonin receptors [6]. Although Cand2 was recently proposed as
a phytomelatonin receptor [7], its potential phytomelatonin receptor role is controversial [8].

The extremely low levels of melatonin during normal plant growth and develop-
ment [9] support a role for melatonin as a necessary signaling molecule for phytomelatonin
receptor function in plants. For example, rice produces melatonin at a rate of ca. 0.5 ng/g
fresh weight (FW) [10], whereas Arabidopsis and cassava produce melatonin at rates of 0.05
and 0.006 ng/g FW, respectively [11,12]. The low levels of melatonin in plants are consistent
with the low enzymatic activities of key melatonin biosynthetic enzymes such as serotonin
N-acetyltransferase (SNAT) and N-acetylserotonin O-methyltransferase (ASMT) [13]. How-
ever, melatonin is induced in response to many stress conditions; it helps to protect plants
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from stress damage [14,15]. For example, melatonin in rice leaves increased from 0.5 to
225 ng/g FW upon cadmium challenge [16]. Melatonin affects many plant hormones,
including auxin, GA, cytokinins, abscisic acid (ABA), ethylene, salicylic acid, jasmonates,
and BR under normal conditions and under various stresses [1]; despite investigations thus
far, the role of plant hormones in the regulation of melatonin synthesis remains poorly
understood. The effects of melatonin on plant hormones vary among plant species, which
suggests complex regulatory networks linking melatonin and plant hormones. As our
initial study of the roles of plant hormones in melatonin synthesis, we focused on GA
because Arabidopsis thaliana SNAT1 and SNAT2 knockout mutants (snat1 and snat2) showed
delayed flowering [4,17] in response to a significant decrease in ent-kaurene synthase (KS),
the key gene for GA synthesis [17]. Melatonin treatment increases GA content in some
plant species, including cucumber, cotton, rapeseed, apple, and pear [1]. Rice has long
been used as a model plant to study melatonin because rice synthesizes melatonin at a
rate of up to 0.5 ng/g FW, which can be easily measured using high-performance liquid
chromatography (HPLC), and because melatonin production increases dramatically in
response to cadmium treatment. These factors facilitate the investigation of melatonin
synthesis in rice plants. The goal of this study was to identify plant hormones that can
modulate melatonin synthesis, especially for hormones for inducing melatonin synthesis
to produce melatonin-enriched plants or fruits, which are beneficial to human health.

2. Materials and Methods
2.1. Plant Growth Conditions

Rice (Oryza sativa cv. Dongjin) seeds were sterilized and grown on half-strength
Murashige and Skoog medium under cool daylight fluorescent lamps (60 µmol m−2 s−1;
Philips, Amsterdam, Netherlands) with a 14 h light/10 h dark photoperiod (28/24 ◦C).
Germinated seeds were transplanted into soil as a field test. The plants were grown in a
paddy field at Chonnam National University (35◦09′ N, 126◦54′ W; 53 m a.s.l.), Gwangju,
Korea. To investigate the effects of GA on melatonin accumulation in rice seeds, com-
mercially available GA4+7 solution (100 µM; Daeyu Co., Ltd., Seoul, Korea) was sprayed
with handheld garden sprayer (Kyeyang Co., Cheongju city, Korea) onto immature rice
seeds at various time intervals (three applications, once every other day) beginning 1 week
after flowering. At 60 days after flowering (DAF) which was about 180 days after sowing,
rice seeds were harvested for melatonin quantification. Each treatment was replicated
three times.

2.2. Chemical Treatment

Seven-day-old rice seedlings in 50 mL polypropylene conical tubes containing 30 mL
water were rhizospherically pretreated with ABA (1 µM; Sigma-Aldrich, St. Louis, MO,
USA), norflurazon (10 µM; Sigma-Aldrich), GA3 (10 µM; Duchefa Biochemie, Haarlem,
The Netherlands), paclobutrazol (10 µM; Sigma-Aldrich), or 1% ethanol (mock control).
Pretreatments were applied for 24 h; seedlings were then transferred into new conical tubes
containing 0.5 mM CdCl2 for 3 days under continuous light (60 µmol photons m−2 s−1).
Leaves and stems were harvested for melatonin quantification.

2.3. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis

Total RNA of the rice plants was isolated using a NucleoSpin RNA Plant Kit (Macherey-
Nagel, Düren, Germany). First-strand cDNA was synthesized from 2 µg of total RNA
using MG MMLV Reverse Transcriptase (MGmed, Inc., Seoul, Korea) and an oligo dT18
primer at 42 ◦C for 1 h. qPCR was performed in a Mic qPCR Cycler system (Biomolecular
Systems, Upper Coomera, QLD, Australia) with specific primers and the Luna Universal
qPCR Master Mix (New England Biolabs, Ipswich, MA, USA), as described previously.
Gene expression was analyzed using Mic RQ software v2.2 (Biomolecular Systems) and
normalized to ACT1. Reverse transcription (RT)-PCR and qPCR were performed using
the following primer set: GA3ox2 forward 5′-CTT GAA GAA CCC GCT CTG-3′, GA3ox2
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reverse 5′-GAA ACT CCT CCA CAC GTC ACA-3′; G-alpha forward 5′-GAA ACT CCT
CCA TCA CGT CAC A-3′, G-alpha reverse 5′-CAT CGT CAC GCA TCT CAG-3′; UBQ5
forward 5′-CCG ACT ACA ACA TCC AGA AGG AG-3′, UBQ5 reverse 5′-AAC AGG AGC
CTA CGC CTA AGC-3′; TDC1 forward 5′-GGC TCA AGC TCT GGA TGG TCA TG-3′,
TDC1 reverse 5′-GCG AAG TTC CTC GGC ACG AC-3′; TDC2 forward 5′-ATG CCC AGA
GTA CCG ACA CC-3′, TDC2 reverse 5′-CCT TAA CCC ATA GCA AGG AAC AA-3′; TDC3
forward 5′-GTG GCT AAA ACA TCT CGG TAG G-3′, TDC3 reverse 5′-GCA GGA TTA
TTT TGC CGT GTC-3′; T5H forward 5′-CCT CGT CCT GGA CAT GTT CGT C-3′, T5H
reverse 5′-ATG GCG AAC GTG TTG ATG AAC AC-3′; SNAT1 forward 5′-CAG TAG AGC
CAC CAT CAG CA-3′, SNAT1 reverse 5′-ATC CCA CCT TGT CGC ATA AA-3′; SNAT2
forward 5′-GTC TGG GAC GTG GTC GTG-3′, SNAT2 reverse 5′-GTT GCC TTG AGC GGT
AGA AG-3′; COMT forward 5′-CCT GCT CGC CTC CTA CAA-3′, COMT reverse 5′-ATG
CCC TCG TTG AAG ACG-3′; ASMT1 forward 5′-GCC AAG GCT CCC AGT AAC AA-3′,
ASMT1 reverse 5′-CCT TTC CTC CAG CAT CCC TC-3′; ASDAC forward 5′-ATG GAA
CAG CTG TGG G-3′, ASDAC reverse 5′-ACC ACG ATG CTT CGA AGT-3′; M2H forward
5′-ACT AGT ATG CCC GCC GTG GCC-3′, M2H reverse 5′-GAG CTC GTG TCG TAC
CTG-3′; M3H forward 5′-ACT AGT ATG GCG GGA GCA AGA-3′, M3H reverse 5′-GAG
CTC GCT TTT AGT CTC TGA-3′; and ACT1 forward 5′-TGC TAT GTA CGT CGC CAT
CCAG-3′, ACT1 reverse 5′-AAT GAG TAA CCA CGC TCC GTCAA-3′.

2.4. Quantification of Serotonin, N-Acetylserotonin, and Melatonin

Frozen samples (0.1 g) were pulverized into a powder in liquid nitrogen using the
TissueLyser II (Qiagen, Tokyo, Japan) and then extracted with 1 mL methanol for serotonin
and N-acetylserotonin quantification, and with 1 mL chloroform for melatonin quantifi-
cation. Prior to serotonin and N-acetylserotonin measurements, methanol extracts were
centrifuged for 10 min at 12,000× g; supernatants (10 µL) were subjected to HPLC using a
fluorescence detector system (Waters, Milford, MA, USA). Prior to melatonin measurement,
chloroform extracts were centrifuged for 10 min at 12,000× g, and resulting supernatants
(200 µL) were completely evaporated and dissolved in 0.1 mL of 40% methanol; 10 µL
aliquots were subjected to HPLC using a fluorescence detector system (Waters), as described
previously [16]. All measurements were performed in triplicate.

2.5. Generation of GA3ox2- and Gα-Suppression Transgenic Rice Plants via RNA
Interference (RNAi)

The pTCK303 binary vector was used to suppress either the GA3ox2 (GenBank acces-
sion number Os01g0177400) or Gα rice gene (GenBank accession no. D38232), as previously
described [18]. Briefly, an N-terminal 130 bp GA3ox2 cDNA fragment was amplified by
RT-PCR using the following primer set: GA3ox2-F 5′-ACT AGT TCC TCC TTC TTC TCC
AAG-3′ (SpeI site underlined) and GA3ox2-R 5′-GAG CTC AAA CTC CTC CAT CAC GTC
ACA-3′ (SacI site underlined) with the cDNA templates synthesized from total RNA from
rice seedlings. For Gα, a C-terminal 267-bp Gα cDNA fragment was amplified using the
following primer set: Gα-F 5′-ACT AGT AGC GAA TAT GAT CAG ATG CTA-3′ (SpeI site
underlined) and Gα-R 5′-GAG CTC TTC AAA CTT CTT CTT GAC-3′ (SacI site underlined).
Both PCR products were subcloned into the T and A cloning vector (T and A:GA3ox2
and T and A:Gα; RBC Bioscience, New Taipei City, Taiwan) prior to additional cloning
procedures. From both T and A:GA3ox2 and T and A:Gα plasmids, the antisense GA3ox2
and Gα inserts were prepared by SacI and SpeI double digestion; sense GA3ox2 and Gα
inserts were prepared by KpnI and BamHI double digestion. The antisense fragments were
first ligated into the pTCK303 vector, followed by the sense fragments of both inserts. The
resulting pTCK303:GA3ox2 and pTCK303:Gα RNAi binary vectors were independently
transformed into Agrobacterium tumefaciens LBA4404; Agrobacterium-mediated rice trans-
formation was performed using embryogenic calli derived from O. sativa cv. Dongjin rice
seeds, as previously described [8,19].
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2.6. Statistical Analyses

All data were analyzed using analysis of variance (ANOVA) with IBM SPSS Statistics
23 software (IBM Corp., Armonk, NY, USA). Means with different letters or asterisks
indicate significantly different values evaluated using p values < 0.05, according to the least
significant difference test or Tukey’s post hoc honest significant difference (HSD) test. All
data are presented as means ± standard deviations.

3. Results
3.1. GA Pretreatment Increases Melatonin Synthesis in Response to Cadmium

To examine the effects of GA on melatonin synthesis, 7-day-old rice seedlings were
rhizospherically pretreated GA3, followed by cadmium treatment to induce melatonin
induction. A GA concentration of 10 µM GA is commonly used in GA assays for ger-
mination and third leaf sheath elongation tests [20]. Melatonin was produced at rates
of ca. 76 ng/g FW by mock control rice seedlings and 125 ng/g FW by GA3-pretreated
rice seedlings, representing a 1.8-fold difference (Figure 1). In contrast, pretreatment with
10 µM of paclobutrazol, a GA biosynthesis inhibitor, sharply inhibited cadmium-induced
melatonin synthesis, such that rice seedlings produced threefold less melatonin than the
mock control did (25 ng/g FW); this indicated the involvement of GA in cadmium-induced
melatonin biosynthesis. In sharp contrast, ABA pretreatment (1 µM) resulted in the lowest
melatonin production (12 ng/g FW), sixfold less than that of the mock control. To confirm
an inhibitory effect of ABA on melatonin synthesis, rice seedlings were pretreated with
the ABA biosynthesis inhibitor norflurazon and challenged with cadmium. Rice seedlings
pretreated with 10 µM norflurazon exhibited the highest melatonin production (160 ng/g
FW), indicating that ABA is a potent melatonin synthesis inhibitor. In summary, GA is a
potent melatonin synthesis inducer, whereas ABA is a potent melatonin synthesis inhibitor.
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lings after hormone and cadmium treatments. (B) Melatonin content. Seven-day-old rice seedlings 

Figure 1. Melatonin content in response to plant hormones. (A) Phenotypes of 7-day-old rice
seedlings after hormone and cadmium treatments. (B) Melatonin content. Seven-day-old rice
seedlings rhizospherically treated with various hormones independently for 24 h, then treated with
0.5 mM cadmium for 3 days. Different letters indicate significant differences (p < 0.05; analysis of
variance (ANOVA), followed by Tukey’s honest significant difference (HSD) post hoc tests). M, water
containing 0.1% ethanol; ABA, 1 µM abscisic acid; NF, 10 µM norflurazon; GA3, 10 µM gibberellic
acid 3; PB, 10 µM paclobutrazol.

3.2. GA Dose-Dependent Melatonin Production

To determine the optimal GA3 concentration for melatonin induction, we pretreated
7-day-old rice seedlings with various concentrations of GA3 (0.1–100 µM) for 24 h. The
resulting seedlings were challenged with cadmium for 3 days. We observed a GA dose-
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dependent increase in melatonin production (Figure 2A). Even in the 0.1 µM GA3 pre-
treatment, melatonin synthesis was significantly increased, with a peak of 180 ng/g FW
melatonin in the 100 µM GA3 treatment. In contrast, paclobutrazol treatment (10 µM)
inhibited melatonin induction. Norflurazon treatment showed no dose-dependent in-
crease in melatonin (Figure 2B); melatonin synthesis increased, peaked, and decreased
at norflurazon treatment levels of 1, 10, and 50 µM, respectively. At a 100 µM dose of
norflurazon, melatonin synthesis was comparable with synthesis in the mock control.
These adverse effects of high norflurazon concentration on melatonin synthesis may be as-
cribed to its inhibition of carotenoid biosynthesis, a key pigment for photosynthesis [21,22].
Because melatonin induction under cadmium treatment requires light and its receptor
phytochrome [23], pigment disruption appears to inhibit light absorption that is essential
to melatonin induction.
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Figure 2. Dose-dependent melatonin levels in response to (A) GA3 and (B) norflurazon. Various
concentrations of GA3 or NF were used to rhizospherically treat to 7-day-old rice seedlings for 24 h,
followed by treatment with 0.5 mM cadmium for 3 days. Melatonin content was quantified using
high-performance liquid chromatography (HPLC). Different letters denote significant differences
(p < 0.05; ANOVA, followed by Tukey’s HSD post hoc tests). M, water containing 0.1% ethanol; GA3,
gibberellic acid 3; PB, pachlobutrazol; NF, norflurazon.

3.3. Increased Melatonin Production in Rice Seedlings and Seeds after GA Treatment in the
Absence of Cadmium Treatment

To investigate whether GA treatment enhances melatonin production in rice seedlings
and rice seeds in the absence of cadmium treatment, we rhizospherically treated 7-day-old
rice seedlings with various concentrations of GA3 for 24 h and then performed melatonin
quantification. Leaves of the mock control produced 0.25 ng/g FW melatonin, whereas
1 µM GA3-treated leaves produced melatonin at a rate of 0.55 ng/g FW (Figure 3A). A
dose-dependent increase in melatonin production was not observed under increasing
GA3 concentrations, in contrast to our results for cadmium-treated leaves (Figure 2A). To
determine whether GA treatment could also induce melatonin production in seeds, we
sprayed immature rice seeds grown in the paddy field with 100 µM GA4+7, beginning
at 7 DAF, at various time intervals. At 60 DAF, rice seeds were harvested for melatonin
quantification. Untreated control rice seeds contained 0.35 ng melatonin/g rough seed,
whereas GA-treated seeds at 7 DAF contained 0.67 ng melatonin/g rough seed; this
represented a nearly twofold increase (Figure 3B). Melatonin levels gradually decreased
in rice seeds when GA was supplied later than 7 DAF. Among husked (brown) rice seed,
control rice seeds contained 0.07 ng melatonin/g brown seed, whereas GA-treated rice
seeds produced 0.14 ng melatonin/g brown seed; this represented a twofold increase.
Collectively, these data indicate that GA elicits melatonin synthesis in both leaves and seeds
of rice plants.
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Figure 3. Melatonin levels in (A) rice seedlings, (B) rough seeds, and (C) brown seeds after treatment
with GA in the absence of cadmium treatment. Seven-day-old rice seedlings were treated with
various concentrations of GA3 for 24 h; leaves or seeds were subjected to HPLC quantification of
melatonin. In addition, immature rice seeds were treated at various time intervals with 100 µM
of commercially available GA4+7 (Daeyu Co., Ltd.) three times every other day in the field. After
60 days after flowering (DAF), rice seeds were harvested for melatonin quantification. Different
letters denote significant differences (p < 0.05; ANOVA, followed by Tukey’s HSD post hoc tests). M,
water containing 0.1% ethanol; GA3, gibberellic acid 3.

3.4. Characterization of Genes Involved in Melatonin Biosynthesis and Catabolism in Response to
GA Treatment

Seven-day-old rice seedlings were challenged with 10 µM GA3 for 12 h; their meristem-
atic tissues were separated and harvested for total RNA extraction (Figure 4B). To determine
whether GA3 treatment altered the expression of genes responsible for melatonin synthesis
and degradation, we performed qPCR gene expression analysis using ACT1 as a reference
gene (Figure 4A). Expression levels of melatonin biosynthetic genes tryptophan decarboxy-
lase 3 (TDC3), tryptamine 5-hydroxylase (T5H), and N-acetylserotonin O-methyltransferase
1 (ASMT1) were elevated by GA3 treatment; expression levels of the biosynthetic genes
TDC1, SNAT1, SNAT2, and caffeic acid O-methyltransferase (COMT) were downregulated
(Figure 4C). SNAT1 and SNAT2 were downregulated in melatonin-treated rice seedlings,
suggesting feedback regulation upon melatonin response [24]. Among catabolic genes,
GA3 treatment inhibited the expression of N-acetylserotonin deacetylase (ASDAC) and
melatonin 2-hydroxylase (M2H), whereas the expression of melatonin 3-hydroxylase (M3H)
was not altered; the suppression of these two catabolic genes presumably facilitated mela-
tonin production under GA3 treatment compared with the mock control. Because GA
action occurs in meristem tissues, we applied qPCR analysis to meristematic tissues [25].
The expression profiles of genes related to melatonin biosynthesis and catabolism in rice
upper leaves were not significantly altered in response to GA3 treatment (data not shown).

3.5. Decreased Melatonin Production in Transgenic Rice Plants Downregulating the GA
Biosynthetic Gene GA3ox2

To verify the involvement of GA in melatonin production in vivo, we generated trans-
genic rice plants downregulating the key GA biosynthetic gene GA3-oxidase 2 (GA3ox2),
which catalyzes inactive GA9/GA20 into active GA4/GA1. Its knockout mutant, D18, is de-
ficient in GA1 and has a dwarf phenotype [26]. Three independent homozygous transgenic
RNAi lines downregulating rice GA3ox2 were generated; the resulting GA3ox2 RNAi lines
showed semidwarf phenotypes (Figure 5A,C), whereas seed phenotypes of the GA3ox2
RNAi lines were similar to the seed phenotypes of wild-type (WT) plants (Figure 5D).
These phenotypic features were similar to the features of d18 mutant rice [26]. GA3ox2
mRNA levels were suppressed in three independent GA3ox2 RNAi lines compared with
the levels in the nontransgenic WT (Figure 5E). When these GA3ox2 RNAi seedlings had
been challenged with cadmium to induce melatonin production, WT produced 75 ng/g FW
melatonin, whereas these RNAi lines produced threefold lower melatonin than that of the
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WT (Figure 5F). In the absence of cadmium treatment, WT rice produced about 0.3 ng/g
FW melatonin, whereas GA3ox2 RNAi lines produced half of the melatonin quantity in WT
seedlings (data not shown). These data indicate that endogenous GA levels are functionally
coupled to melatonin production as a positive melatonin synthesis-inducing factor.
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Figure 4. Expression levels of transcripts encoding melatonin biosynthetic and catabolic genes.
(A) Genes involved in melatonin biosynthesis and catabolism in plants. (B) Schematic representa-
tion of rice seedlings treated with GA3 and the apical meristem region. (C) Quantitative reverse-
transcription polymerase chain reaction (qPCR) analysis of various genes involved in melatonin
synthesis and catabolism. Asterisks (*) denote significant differences from the mock control (M)
(p < 0.05; ANOVA, followed by Tukey’s HSD post hoc tests). TDC1, tryptophan decarboxylase 1
(AK069031); TDC2 (AK103253); TDC3 (Os08g0140500); T5H, tryptamine 5-hydroxylase (AK071599);
SNAT1, serotonin N-acetyltransferase 1 (AK059369); SNAT2 (AK068156); COMT, caffeic acid O-
methyltransferase (AK064768); ASMT1, N-acetylserotonin O-methyltransferase (AK072740); ASDAC,
N-acetylserotonin deacetylase (AK072557); M3H, melatonin 3-hydroxylase (AK067086); M2H, mela-
tonin 2-hydroxylase (AK119413); ACT1, actin 1 (Os03g50885).

3.6. Decreased Melatonin Production in Transgenic Rice Plants Downregulating G-Protein
Alpha (Gα)

Gα participates in a key GA signaling component; its mutant rice d1 produces round
dwarf grains [27,28]. To determine whether transgenic rice suppressing Gα exhibits less
melatonin synthesis than that of its WT counterpart, we generated rice Gα RNAi transgenic
lines. As observed in Gα mutant rice (d1) plants [28,29], Gα RNAi plants exhibited typical
phenotypes characterized by round dwarf seeds (Figure 6A–E). When these Gα RNAi
rice seedlings had been challenged with cadmium to induce melatonin production, four
independent homozygous Gα RNAi rice seedlings produced melatonin at a mean of 20 ng/g
FW, which was threefold less than the quantity produced by WT seedlings, indicating a
positive effect of GA on melatonin production (Figure 6F). However, the GA3-induced
melatonin increase was not abolished in these Gα RNAi rice seedlings compared with
WT seedlings (Figure 7A,D). This result for Gα RNAi rice seedlings was similar to the
phenotype of d1 mutant rice, which does not completely lose GA sensitivity, suggesting the
presence of a Gα-independent GA pathway [29]. In contrast, the induction of melatonin
biosynthetic precursors serotonin but not N-acetylserotonin was abolished in these Gα
RNAi rice seedlings by GA treatment; these precursors were induced in a similar pattern
to melatonin induction upon GA treatment in WT seedlings (Figure 7B,C). The increase
in serotonin is presumably attributable to the enhanced expression of TDC3 upon GA
treatment in WT seedlings; the increase in melatonin may have resulted from the combined
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effects of increased TDC3 expression and decreased expression of catabolic genes such as
ASDAC and M2H.
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Figure 5. Structure of binary vector pTCK303-GA3ox2 and the generation of GA3ox2-suppressed
transgenic rice plants. (A) Schematic diagram of the pTCK303:GA3ox2 binary vector. (B) Seven-day-
old rice seedling phenotypes of wild-type (WT) and GA3ox2 RNAi transgenic rice (T2). (C) Shoot
length measurement. (D) Seed phenotype. (E) RT-PCR analysis results for WT and T2 lines. (F) Mela-
tonin levels of WT and transgenic lines. Seven-day-old rice seedlings challenged with 0.5 mM
cadmium for 3 days, then subjected to melatonin quantification. Asterisks (*) indicate significant
differences from the WT (p < 0.05; ANOVA, followed by Tukey’s HSD post hoc tests). Numbers in
parentheses indicate numbers of PCR cycles. GenBank accession numbers: Os01g0177400 (GA3ox2)
and Os03g13170 (UBQ5). Ubi-P, maize ubiquitin promoter; P35S, 35 S cauliflower mosaic virus 35S
promoter; HPT, hygromycin phosphotransferase; Tnos, nopaline synthase terminator.
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Figure 6. Structure of binary vector pTCK303-Gα and generation of Gα-suppressed transgenic
rice plants. (A) Schematic diagram of pTCK303:Gα binary vector. (B) Seven-day-old rice seedling
phenotypes of WT and Gα RNAi transgenic rice (T2). (C) Shoot length measurement. (D) Seed
phenotype. (E) RT-PCR analysis results for WT and T2 lines. (F) Melatonin levels of WT and T2 lines.
Seven-day-old rice seedlings challenged with 0.5 mM cadmium for 3 days and then subjected to
melatonin quantification. Asterisks (*) indicate significant differences from WT (p < 0.05; ANOVA,
followed by Tukey’s HSD post hoc tests). Numbers in parentheses indicate the numbers of PCR
cycles. GenBank accession numbers: D38232 (Gα) and Os03g13170 (UBQ5). Ubi-P, maize ubiquitin
promoter; P35S, 35 S cauliflower mosaic virus 35S promoter; HPT, hygromycin phosphotransferase;
Tnos, nopaline synthase terminator.
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homozygous Gα RNAi lines were used. Data are means of three replicates. Different letters denote
significant differences (p < 0.05; ANOVA, followed by Tukey’s HSD post hoc tests).

4. Discussion

Melatonin biosynthesis is initiated from aromatic amino acid tryptophan in four steps
catalyzed by tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), SNAT,
and ASMT [13]. In plants, melatonin synthesis requires light, reactive oxygen species
(ROS), and various photoreceptors (e.g., phytochromes and cryptochromes) [16,23,30].
Many biotic and abiotic stresses that cause ROS production can contribute to increased
melatonin production in plants. Increased melatonin production in response to stresses
counteracts the effects of ROS, either by directly scavenging ROS or by inducing an array
of antioxidant enzymes (e.g., superoxide dismutase, ascorbate peroxidase, and glutathione
S-transferase) [3,31,32]. For example, high light levels induced 38-fold higher melatonin
production compared with low light in St. John’s wort [33]; a sixfold increase in melatonin
synthesis was observed in barley roots in response to 10 mM hydrogen peroxide (H2O2)
treatment [34]. Furthermore, bacterial and fungal pathogens induced melatonin synthesis
in Arabidopsis [14] and cotton [35], respectively.

Commensurate with melatonin induction in response to many stresses, the adverse
effects of these stresses are mitigated by melatonin partly via crosstalk among various
endogenous hormones and melatonin, which was presumably acquired during plant evo-
lution after the advent of plant hormones [3]. The effects of melatonin on plant hormone
regulation are broad and vary among plant species and stress factors. For example, exoge-
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nous melatonin treatment increased indole-3-acetic acid production in Chinese mustard [36]
but decreased this production in Arabidopsis [37]. Contrasting effects of melatonin on other
hormones (e.g., ABA and ethylene) were also observed in other plant species [38]. Two
recent studies reported important discoveries regarding the inter-relationships of endoge-
nous melatonin with endogenous hormone levels. In the Arabidopsis SNAT2 knockout plant
(snat2) showing a delayed flowering phenotype, it was found to decrease the expression
of ent-kaurene synthase (KS), a key GA biosynthetic gene; this led to reduced GA lev-
els [17]. In contrast, exogenous melatonin treatment suppressed KS expression, indicating
contrasting effects of melatonin in vivo and in vitro. These data suggest that decreased GA
levels in Arabidopsis snat2 are indirectly caused by melatonin [17]. Similar to Arabidopsis
snat2, transgenic rice downregulating rice SNAT2 (snat2) exhibited decreased BR levels
accompanied by BR-deficient erect leaf and dwarf phenotypes [24]. Because BR regulates
GA levels [39], these data showing a GA decrease related to Arabidopsis snat2 and a BR
decrease related to rice snat2 suggest that GA is closely associated with melatonin synthesis
in plants.

As predicted, GA had a positive effect on melatonin synthesis in rice plants, but
the GA induction by melatonin was not observed (Figure 8). Generally, GA promotes
growth via cell expansion and division in parallel with many other physiological functions
including seed germination, flowering, and photomorphogenesis [40]. In particular, GA
orchestrates these functions through the negative transcriptional repressor protein DELLA.
GA triggers DELLA degradation, thereby releasing many active functions inhibited by
DELLA; conversely, DELLA accumulation in the absence of GA inhibits growth, flower-
ing, seed germination, and skotomorphogenesis, among other effects [40]. GA-mediated
DELLA degradation leads to increased ROS, resulting in growth promotion and decreased
stress tolerance; DELLA accumulation causes stress tolerance by decreasing ROS. A major
question related to GA-induced melatonin synthesis is why GA induces melatonin, while
melatonin does not induce GA. GA-induced growth promotion may be vulnerable to
many adverse stresses that are counteracted by GA-induced melatonin synthesis because
melatonin acts as a potent signaling molecule to protect plants from a diverse array of
abiotic and biotic stresses [3]. Regarding the failure of melatonin-induced GA production,
exogenous melatonin treatment does not induce KS, the key gene for GA synthesis [17];
this observation suggests that melatonin synthesis acts downstream of GA. The reduction
of GA in melatonin-deficient Arabidopsis snat2 was ascribed to decreased starch synthe-
sis [4], which eventually led to decreased GA synthesis [41]. The potent inhibitory effects
of ABA on melatonin biosynthesis are in sharp contrast to the effects of GA. Both ABA
and GA exhibit robust effects on plant growth and development processes including seed
germination, stem elongation, flowering, and seed development. However, GA and ABA
have antagonistic effects: GA generally promotes these plant processes, while ABA inhibits
them [42]. In parallel with the antagonistic effects of GA and ABA on many physiologi-
cal functions, these two hormones antagonistically regulate melatonin biosynthesis: GA
promotes melatonin biosynthesis, while ABA inhibits this process.

To our knowledge, this study is the first to demonstrate that GA can induce melatonin
production in rice seedlings and seeds. GA treatment onto mature rice plants grown in
the field condition starting at 1 week after flowering affected neither flower development
nor other growth parameters such as plant height. The direct involvement of GA in
melatonin synthesis was verified by genetic evidence that GA biosynthetic (GA3ox2 RNAi)
and signaling mutants (Gα RNAi) result in severe decreases in melatonin production.
Melatonin is a well-known health-promoting molecule with potent antioxidant activity
that is positively involved in anti-inflammatory, antiaging, innate immunity enhancement,
and anticancer activities [43]. GA is also widely used in the agricultural industry to
promote crop productivity by inducing seedlessness in fruits (e.g., grapes) or increasing
seed germination and fruit production in many plants [42,44]. Our results may contribute
to the development of a practical approach for increasing melatonin in rice leaves and seeds
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through exogenous GA treatment; the resulting melatonin-rich seeds and plants may be
used as functional foods for their health benefits.
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Figure 8. Proposed model of melatonin induction by endogenous hormones. GA induces melatonin
production, whereas ABA inhibits melatonin production. Norflurazon, an ABA biosynthetic inhibitor,
functions as a potent elicitor of melatonin production.

5. Conclusions

In the present study, we reported the mechanistic basis for a practical approach to
increase melatonin production in rice leaves and seeds through GA treatment; the resulting
melatonin-rich seeds and plants may be used as functional foods for their health benefits.
The role of GA as an endogenous elicitor of melatonin synthesis was verified in vivo using
transgenic rice plants downregulating GA synthesis and signaling pathway. Transgenic
rice plants downregulating GA3ox2 (GA biosynthesis) or Gα (signaling) synthesized less
melatonin than that of wild-type plants. Our findings imply that plants or seeds with
enriched melatonin levels can be produced through exogenous GA treatment under field
conditions. These melatonin-rich agricultural products benefit human health through their
aging prevention and antioxidant properties.
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