
MethodsX 8 (2021) 101592

Contents lists available at ScienceDirect

MethodsX

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x

Method Article

Netflow Python library – A free software tool for

the generation and analysis of pore or flow

networks

✩ , ✩✩

Daniel W. Meyer

Institute of Fluid Dynamics, ETH Zürich, Zürich, Switzerland

a b s t r a c t

State-of-the-art tomographic scanning techniques provide detailed pore-space geometries of natural porous

media, which are central for the study of subsurface flow and transport. Due to experimental and computational

limitations, the extraction of high-resolution images is limited to relatively small sample volumes. To reduce

the amount of data and the physical complexity, pore-space geometries are routinely translated into pore

network models. Subsequently, such networks are expanded in space with suitable computational methods to

determine effective medium parameters at larger scales relevant in engineering applications. While existing

methods can provide networks with effective flow parameters being consistent with experimental data for

comparably homogeneous media such as bead packs and sandstones, these methods are inadequate for more

complex heterogeneous rocks such as carbonates or become too expensive for large networks. The netflow

Python library accompanying this paper extends existing methods by preserving pore clusters that are a

key characteristic of heterogeneous rocks. To this end dendrograms are extracted from experimental data

and perturbed when generating larger networks. Moreover, the methods included in the netflow library are

implemented in computationally efficient ways and enable the generation of large periodic networks that

virtually eliminate boundary effects, which interfere in existing methods.
• The netflow Python library enables the generation of large irregular networks, as it preserves pore or node

clusters which are present in certain natural rock types.
• The netflow Python library allows for the generation and flow analysis of boundary-free periodic networks.

It further includes methods to convert periodic networks into conventional cubical ones.

© 2021 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

✩ Direct Submission or Co-Submission: Co-submissions are papers that have been submitted alongside an original research

paper accepted for publication by another Elsevier journal
✩✩ Co-Submission: Daniel W. Meyer, Random generation of irregular natural flow or pore networks, Advances in Water

Resources, Volume 152, 2021 DOI: 10.1016/j.advwatres.2021.103936

DOI of original article: 10.1016/j.advwatres.2021.103936

E-mail address: meyerda@ethz.ch

https://doi.org/10.1016/j.mex.2021.101592

2215-0161/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.mex.2021.101592
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2021.101592&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.advwatres.2021.103936
mailto:meyerda@ethz.ch
https://doi.org/10.1016/j.mex.2021.101592
http://creativecommons.org/licenses/by/4.0/

2 D.W. Meyer / MethodsX 8 (2021) 101592

a r t i c l e i n f o

Method name: Generation of large-scale pore or flow networks

Keywords: Dendrogram, Cluster, Heterogeneity, Connectivity, Porous media, Pathway, Periodic, Unbounded, Digital rock analysis

Article history: Received 4 June 2021; Accepted 22 November 2021; Available online 23 November 2021

Specifications table

Subject Area Earth and Planetary Sciences

More specific subject area Geology, Subsurface Hydrology

Method name Generation of large-scale pore or flow networks

Name and reference of

original method

Idowu, N.A., Blunt, M.J. Pore-Scale Modelling of Rate Effects in

Waterflooding.Transp Porous Med 83, 151–169 (2010).

https://doi.org/10.10 07/s11242-0 09-9468-0

Resource availability Method is contained in the supplemental material to this paper.

∗Method details

Library overview and structure

In the netflow library, an object-oriented programming approach has been followed that enables

compact implementations and intuitive use. The library relies besides a few standard Python

components on the h5py package (hdf5 file support) and the PyAMG library (algebraic multi-grid

solver for flow solutions) and is composed of the following two modules:

netgen.py contains functionality to generate and manipulate pore or flow networks from an

existing (typically smaller) base network. The generated networks are periodic in space and as

such do not suffer from boundary effects in comparison to bounded networks produced by existing

methods [e.g., 1]. This is because pores or network nodes are subject to the same conditions

irrespective of whether they are located inside the network domain or close to domain boundaries.

With periodic networks, the only limitation in comparison to infinite networks is the fact that the

largest scale of representation is limited by the domain size aka the period. In case pore or node

clusters are present in the base network, a dendrogram-based generator is available that preserves

clustering. For the connection of pores with throats, the pore neighborhood needs to be explored in

a computationally efficient way to avoid size-limitations of existing methods [e.g., 1]. To this end, the

netflow implementations rely on an optimized Delaunay triangulation being part of the SciPy library.

Algorithmic details about the construction of periodic throat connections are either available in the

code or are provided in one of our earlier contributions (section 2.1 in [2]) or (steps 5 and 6 on page

3 of [3]).

The second module netflow.py includes functions to determine flow and pressure distributions

in bounded and periodic networks. Here, we make use of the algebraic multi-grid solver provided

through the PyAMG library. The netflow library has been applied to compile the results contained in

[2] and it has been compared against method [1] in our companion paper [3] , where its computational

efficiency has been documented as well. The following table contains most of the functions and

objects that comprise the netflow library.

Functions for …

network generation generate_imperial, generate_dendrogram,

generate_simple_net

network

manipulation

cut_network, erase_network, open_periodic_network

flow analysis solve_flow_inout, solve_flow_periodic, flux_balance,

flux_plane

in-/output and

visualization

plot_network, imperial_read, load_network_from,

load_flow_from, save_network_to, save_flow_to

Objects with properties

Network

Pore

Throat

label, pores, throats, lb, ub

label, throats, pos, r

label, pore1, pore2, r

https://doi.org/10.1007/s11242-009-9468-0

D.W. Meyer / MethodsX 8 (2021) 101592 3

b

r

l

B

L

I

a

c

N

t

e

s
The most important methods are illustrated in the following examples. To reproduce the examples

elow and for a more complete documentation of the netflow functions and objects, the reader is

eferred to the jupyter notebook, which is included in the supplemental material together with the

ibrary source code and network-data.

asics

oad and inspect a demo network

Pore networks can be imported through the function imperial_read from text files available in the

mperial College network format defined in [4] . Alternatively, a network that was previously stored to

 hdf5 file with save_network_to can be imported with load_network_from . Below, the demo network

ontained in the supplemental material is imported from an hdf5 file and subsequently plotted:

In:
import matplotlib.pyplot as plt
from netflow import ∗
load demo network
demonet = netflow.load_network_from(’network.h5 ′)
_ = netflow.plot_network(demonet)
Out:

etwork data structure and objects

The network data is structured by means of a network object that contains sets with pore and

hroat objects. Moreover, a network object can be tagged with the string label and the spatial

xtension of the cubical network domain is set by the properties lb and ub . These two variables

tore lists with the coordinates of the lower resp. upper bounds. Except for the function plot_network ,

4 D.W. Meyer / MethodsX 8 (2021) 101592

which is limited to 3d networks, all implementations can accommodate 3d as well as 2d networks. A

network object has methods add_pore / remove_pore and connect_pores . Besides adding/removing pores

resp. connecting them with throats, these methods update the network’s pore and throat lists.

In the case of a pore, the label string can be used to identify pore groups serving, e.g., as in-/outlets

or having resulted from a network cutting operation as shown later in section 4.2. Labels of throats

on the other hand are used to describe periodic throats that connect pores at the opposite network

domain faces. Documentation strings are available for most library elements. For example, labels of

periodic throats are documented in the throat class:

In:
print(netflow.Throat.__doc__)
Out:
Class of a throat connecting two pores.
Periodic throats have a label ’X1 X 2 × 3 ′ with Xc being element of

{-1,0,1}.
For Xc = 1, pore1 is at the right or upper domain bound in the

c-direction
and pore2 is at the left or lower bound. Vice versa for Xc = -1. With
Xc = 0, the throat does not cross the bound periodically in

c-direction.

Generation of periodic cubical networks

Different random network generation algorithms are implemented that produce cubical networks

with periodic domain boundaries.

Networks with uniformly-distributed pores

The method generate_simple_net produces networks with n_pores uniformly-distributed pores with

radius r_pore that are connected to its closest neighbors through coordinatnumb throats of radius

r_throat . To identify neighboring pores, the computationally efficient implementation of the Delaunay

triangulation, which is part of the SciPy library, is used in generate_simple_net and in the other

generators contained in the netflow library. In generate_simple_net , the argument sd is the seed of

the random number generator that can be left random (set to None) or that can be prescribed to

generate networks under reproducible conditions.

In:
simplenet = netgen.generate_simple_net(n_pores = 1e2,

targetsize = [2,1.5,0.5], r_pore = 0.01,
r_throat = 0.001, coordinatnumb = 4, Lmax = 0.45, sd = 1)
_ = netgen.plot_network(simplenet)
Out:
Periodic network throats that connect pores located at the opposite faces of the network domain

were plotted with light gray lines in the above figure. While in the plot these connections traverse the

domain, in fact they cross domain faces and connect to pores located in neighboring periodic copies

of the network.

The network generation algorithm outlined by Idowu and Blunt [1] is implemented in the function

generate_imperial . Their method is based on a uniform pore distribution and accounts for the throat

statistics of an existing base network. Compared to the original implementation in [1] , which leads to

impractically high generation times for increasing pore counts, the present Python library applies a

computationally efficient triangulation-based pore-neighbor search and generates periodic networks.

While method [1] works well for bead packs and sandstones, it is not suited for irregular pore

networks encountered for example in carbonate rocks [3] .

D.W. Meyer / MethodsX 8 (2021) 101592 5

N

[

p

i

n

t

t

t

i

a

s

t

etworks with pore clusters

The dendrogram-based network generation algorithm introduced in our companion paper

3] accounts for throat statistics of a base network in a similar way as [1] and additionally preserves

ore clusters. The latter are characterized by means of a dendrogram [5] and our according generator

s implemented in generate_dendrogram . For illustration, a new network is generated from the demo

etwork that was imported in section 2.1:

In:
dendronet = netgen.generate_dendrogram(basenet = demonet,

argetsize = [1,1,1],
cutoff = 0.5 ∗(demonet.ub[0]-demonet.lb[0]),
sd = 1, mute = True)
_ = netgen.plot_network(dendronet)
Out:
Unlike in generate_simple_net , where the targetsize argument specifies the physical extension of

he generated network, in generate_dendrogram the physical extension results from multiplying the

argetsize with the extension of the base network. When generating large networks within the Python

nterpreter, generate_dendrogram with mute = False will provide progress information. With the cutoff

rgument, the size of the randomly perturbed clusters can be limited. In the example above, clusters

maller than 50% of the base network size were perturbed. Setting cutoff= 0 will not perturb any of

he clusters and retain the pore arrangement from the base network.

6 D.W. Meyer / MethodsX 8 (2021) 101592

Manipulate networks

Periodic networks have the advantage that they do not suffer from boundary effects. Nevertheless,

in many applications bounded networks are eventually needed. Through the following operations,

unbounded periodic networks can be transformed into conventional bounded ones.

Opening periodic throat connections

Periodic throat connections crossing network domain faces that are normal to the spatial direction

c (= 1, 2, or 3) can be opened by open_periodic_network . In the opening process of periodic throat

connections, pores that originally reside inside the network domain are copied outside of the domain.

These copies are referred to as in/out pores (copies beyond left resp. right domain boundary).

In:
inouts = {} # pore dict to avoid duplicate pore copies when opening

periodic throats
netflow.open_periodic_network(simplenet, c = 1, inouts = inouts)
netflow.open_periodic_network(simplenet, c = 2, inouts = inouts)
_ = netgen.plot_network(simplenet)
Out:
While opening periodic throat connections in the 1 and 2-directions, open_periodic_network

generated 40 in/out pores as seen in the above plot (red resp. blue pores).

D.W. Meyer / MethodsX 8 (2021) 101592 7

C

t

p

c

x

o

m

E

r

l

utting networks

Planar network faces can be generated by applying a cutting plane to a network and by erasing

he network section on one side of the cutting plane. When cutting a network with cut_network ,

ores with radii = 0 are introduced at the intersection points of throats and the cutting plane. The

utting plane is defined as being normal to the c -axis (with c = 1, 2, or 3) and located at position

 along the c -axis. Before cutting, periodic throat connections in c -direction are opened by invoking

pen_periodic_network .

In:
netflow.cut_network(simplenet, x = 0.5, c = 1)
_ = netgen.plot_network(simplenet)
Out:
plot_network has rendered pores that resulted from cut_network(simplenet, x = 0.5, c = 1, ...) with

agenta points.

rasing parts of a network

The method erase_network can be applied to remove pores that are located to the left or to the

ight of a point x on the c -axis. Throats that connect to these pores will be removed as well:

In:
netflow.erase_network(simplenet, x = 0.5, c = 1, direct = True,

abel = ’inlet’)
_ = netgen.plot_network(simplenet)
Out:

8 D.W. Meyer / MethodsX 8 (2021) 101592

In connection with cut_network(simplenet, x = 0.5, c = 1, ..., label = ’inlet’) from above, a network face

at x 1 = 0.5 parallel to the x 2 -x 3 plane resulted. The pores on that face were labelled with ’inlet’ .

Adding pores/throats

To connect for example the previously constructed pores with labels ’inlet’ to one single inlet pore,

the following operations are needed:

In:
source = netflow.Pore(pos = [0,0.75,0.25], r = 0, label = ’in1 ′) # single

inlet pore
simplenet.add_pore(source)
connect new source pore to pores labelled with ’inlet’
for pore in simplenet.pores:
if (pore.label == ’inlet’): # loop over inlet pores
pore.label = ’’
simplenet.connect_pores(pore1 = source, pore2 = pore, r = 0.05) # connect

to source
plotting
_ = netgen.plot_network(simplenet)
Out:

Flow simulation

In the case of a non-periodic network with distinct sets of in- and outflow pores, the function

solve_flow_inout can be applied where pressures p in resp. p out are prescribed and pore pressures and

throat fluxes are returned.

In:
solve flow
inpores = {source}

D.W. Meyer / MethodsX 8 (2021) 101592 9

i

z

z

s

outpores = {pore for pore in simplenet.pores if pore.label == ’out1 ′ }
(press,flux) = netflow.solve_flow_inout(simplenet, pin = 1e4, pout = 0,

npores = inpores,
outpores = outpores, mu = 1e-3)
plotting
ax = plt.figure().add_subplot(111, projection = ’3d’)
plot pressure bubbles (blue)
pnts = [pore.pos for pore in press]; pnts = list(map(list,

ip(∗pnts))) # transpose
size = [p/1e4 ∗ 400 for pore, p in press.items()]
ax.scatter(∗pnts, s = size, marker = ’.’, color = ’b’, depthshade = False)
plot outlet pores (green)
pnts = [pore.pos for pore in outpores]; pnts = list(map(list,

ip(∗pnts))) # transpose
ax.scatter(∗pnts, s = 100, marker = ’.’, color = ’g’, depthshade = False)
plot fluxes and throats (red)
for throat in flux:
p1 = throat.pore1.pos; p2 = throat.pore2.pos
ax.plot([p1[0], p2[0]], [p1[1], p2[1]], [p1[2], p2[2]],
linewidth = max(0.5,abs(flux[throat] ∗2e6)), color = ’r’,

olid_capstyle = ’round’)

10 D.W. Meyer / MethodsX 8 (2021) 101592

Out:
With flux_balance , for each pore or network node the balance of incoming and outgoing fluxes can

be verified:

In:
Qb = netflow.flux_balance(press, flux)
print(’the total inflow into the network is %e’ % Qb[source][2])
exclude pores in in-/outflow pore sets
Qb = {pore:Qb[pore] for pore in Qb if (pore not in inpores) and (pore

not in outpores)}
x = range(len(Qb))
Qp = [Qb[k][0] for k in Qb]; Qm = [Qb[k][1] for k in Qb];

Qs = [Qb[k][2] for k in Qb]
plt.plot(x,Qp,x,Qm,x,Qs)
plt.gca().set_xlabel(’pore index (without in-/outpores)’)
plt.legend([’outgoing’,’incoming’,’sum’])
Out:
the total inflow into the network is 9.454177e-06
For periodic networks, the flow problem is solved with solve_flow_periodic by postulating

periodicity in a fluctuating pressure part and by prescribing a driving mean pressure drop or gradient

P2L in a prescribed c -direction. The total pore pressure results then from adding the mean and

D.W. Meyer / MethodsX 8 (2021) 101592 11

fl

i

s

P

uctuating pressure parts. More details about the flow problem in periodic networks are provided

n section 2.2 of [2] . For the random network derived above from the demo network, the pressure

olution looks as follows:

In:
mu = 1e-3 # dynamic viscosity [kg/(m ∗s)]
P2L = 1e2 # pressure drop [Pa/m = kg/(m ∗s ̂ 2)/m]
c = 3 # spatial direction of pressure drop
(press,flux) = netflow.solve_flow_periodic(dendronet, mu = mu, c = c,

2L = P2L)
total pressure = fluctuating + mean pressure
for pore in press:
press[pore] = press[pore] - P2L ∗(pore.pos[c-1] - dendronet.lb[c-1])

https://doi.org/10.1016/j.jhydrol.2019.123937

12 D.W. Meyer / MethodsX 8 (2021) 101592
plot pore pressure bubbles
ax = plt.figure().add_subplot(111, projection = ’3d’)
pnts = [pore.pos for pore in press]; pnts = list(map(list,

zip(∗pnts))) # transpose
col = [press[pore] for pore in press]; col = (max(col) - col) /

(max(col) - min(col))
cmap = plt.cm.get_cmap(’plasma’)
col = [cmap(col) for col in col]
ax.scatter(∗pnts, s = 50, marker = ’.’, color = col, depthshade = False)
plot throats
for throat in flux:
if (throat.label == ’’): # don’t plot periodic throats
p1 = throat.pore1.pos; p2 = throat.pore2.pos
ax.plot([p1[0], p2[0]], [p1[1], p2[1]], [p1[2], p2[2]], linewidth = 0.5,

color = ’k’)

D.W. Meyer / MethodsX 8 (2021) 101592 13

u

D

A

d

v

d

Out:
To save and restore flow solutions to and from hdf5 files, save_flow_to resp. load_flow_from can be

sed.

eclaration of Competing Interest

None.

cknowledgements

The author gratefully acknowledges very helpful input from Anastasios Papageorgiou, ETH Zürich

uring several discussions at the initial stages of the library development. Moreover, the author is

ery thankful to Branko Bijeljic and Ali Raeini from Imperial College London for providing network

ata.

14 D.W. Meyer / MethodsX 8 (2021) 101592

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.

1016/j.mex.2021.101592 .

References

[1] N.A. Idowu , M.J. Blunt , Pore-Scale Modelling of Rate Effects in Waterflooding, Transp. Porous Media 83 (1) (2010) 151–169 .
[2] D.W. Meyer , A. Gomolinski , Flow in bounded and unbounded pore networks with different connectivity, J. Hydrol. 577

(2019) 123937 .
[3] D.W. Meyer , Random generation of irregular natural flow or pore networks, Adv. Water Res. 152 (2021) 103936 .

[4] T. Sochi , Pore-Scale Modeling of Non-Newtonian Flow in Porous Media, in: Department of Earth Science and Engineering,

Imperial College London, London, 2007, p. 172 .
[5] G. James , et al. , in: An Introduction to Statistical Learning, Springer-Verlag, New York, 2013, p. 426. Springer Texts in

Statistics, ed. R. DeVeaux and S.E. Fienberg .

https://doi.org/10.1016/j.mex.2021.101592
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0002
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0002
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0002
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0003
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0003
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0004
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0004
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0005
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0005
http://refhub.elsevier.com/S2215-0161(21)00382-4/sbref0005

	Netflow Python library - A free software tool for the generation and analysis of pore or flow networks
	Library overview and structure
	Basics
	Load and inspect a demo network
	Network data structure and objects

	Generation of periodic cubical networks
	Networks with uniformly-distributed pores
	Networks with pore clusters

	Manipulate networks
	Opening periodic throat connections
	Cutting networks
	Erasing parts of a network
	Adding pores/throats

	Flow simulation
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	References

