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Abstract: Pectin and mucilage are polysaccharides from the cactus Opuntia ficus-indica, which are
also known as hydrocolloids, with useful properties in industries such as food, pharmaceuticals, and
construction, among others. In the present work, cactus hydrocolloids were hydrolyzed characterized
using two techniques: first, thin-layer chromatography, to identify the monosaccharides present in
the sample, followed by the phenol–sulfuric acid method to determine the monosaccharide content.
The hydrolyzing method allowed us to reduce the processing time to 180 min and, considering the
identification and quantification procedures, the proposed methodology is much simpler and more
cost-effective compared to other methods, such as high-performance liquid chromatography (HPLC),
nuclear magnetic resonance (NMR), and mass spectrometry. The analysis of the results revealed
that the maximum concentration of monosaccharides was obtained after hydrolyzing for 90 min.
Under such conditions, with pectin being the main component contained in the cactus hydrocolloids
analyzed here, galacturonic acid was found in the largest quantities.

Keywords: pectin; mucilage; hydrocolloid; polysaccharide; cactus; hydrolysis; chromatography;
phenol–sulfuric acid method

1. Introduction

The cactus Opuntia ficus-indica (L.) Miller, commonly known as the prickly pear or
cladode, is a vegetable that is widely consumed in Mexico. It is part of the cacti family that
covers around 30% of the continental surface of the semi-arid and arid world [1].There are
several factors that allow the cladodes to grow almost everywhere throughout the year
and remain perpetually green despite the harsh environmental conditions; among these
factors are the metabolism of the species and its peculiar adaptations to water scarcity and
solar radiation, the acid metabolism of the Crassulaceae, the reduction in foliar tissues,
and the cuticular waxes that cover the cladodes and the surface of the fruits. Due to their
nutritional properties, cladodes have a variety of uses, giving them an added economic
value. In addition, cacti are plants with diverse uses, such as food, ornamentation, foraging,
construction, cosmetics, and medicine, among others [2–10].

The main constituent of O. ficus-indica cladodes is water (80–95%), followed by carbo-
hydrates present as monosaccharides (3–7%), fiber (1–2%), and protein (0.5–1%). Cactus
cladodes contain a mix of two polysaccharides: mucilage and pectin, which are also known
as hydrocolloids. Such hydrocolloids can be used as materials for the development of
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edible biopolymers, since these can help improve the quality and increase the shelf life of
different fruit and vegetable products [3,9–16].

Pectin belongs to the group of heteropolysaccharides, and is present in all plants’
primary cells. it is derived from the breakdown of more complex protopectins, which can
be found in the middle lamella of the cell wall (Figure 1). It functions as a moisturizing agent
and cementing material for the cellulose networks. The backbone of pectin is mainly made
up of D-galacturonic acid and, to a lesser extent, rhamnose. This linear chain has branches
to other monosaccharides such as arabinose and galactose linked to the occupied sites of
rhamnose in the main chain. On the other hand, xylose is directly linked to galacturonic
acid. Figure 2 shows the structure of pectin in detail [15–22].
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Figure 2. Pectin’s structure. Adapted from Harholt, J., Suttangkakul, A. and Vibe Scheller, H (2010) 
[23]. 

Mucilage is a vegetal product containing L-arabinose, D-galactose (pyranose and 
furanose forms), D-xylose, L-rhamnose, glucuronic acid and, as the principal neutral 
sugar unit, D-galacturonic acid (Figure 3) [4,8,9,24–27]. It is located in extracellular spaces 
(Figure 1), synthesized from the polymerization of several monosaccharides associated 
with uronic acids [7,14], and excreted into the apoplast, forming a donut-shaped pocket 
between the membrane and the cell wall [9], where it helps to regulate cellular water con-
tent during the initial phase of dehydration [14,15,18]. 
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(2010) [23].

Mucilage is a vegetal product containing L-arabinose, D-galactose (pyranose and
furanose forms), D-xylose, L-rhamnose, glucuronic acid and, as the principal neutral
sugar unit, D-galacturonic acid (Figure 3) [4,8,9,24–27]. It is located in extracellular spaces
(Figure 1), synthesized from the polymerization of several monosaccharides associated with
uronic acids [7,14], and excreted into the apoplast, forming a donut-shaped pocket between
the membrane and the cell wall [9], where it helps to regulate cellular water content during
the initial phase of dehydration [14,15,18].
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The chemical structure (see Figure 3) shows great similarities to the highly
branched regions of cell-wall pectin, for this reason mucilage from O. ficus-indica, are
indistinctly referred to as pectin [13,14]. However, pectin is richer in galacturonic acid than
mucilage [6,13,17,18,20,21,25].

The main components of both pectin and mucilage are the monosaccharides, which are
involved in biological processes and functional applications [8,10,28–39]. These monosac-
charides have several functions; for example, galactose is a physiological constituent of
chemical compounds such as cerebrosides and gangliosides, which are essential in the
nervous tissues of the brain. Mannose is used as a food supplement to improve the func-
tioning of the urinary tract, and in cosmetics for its moisturizing and anti-inflammatory
properties. Xylose is used for the production of furfural [40]. Rhamnose is used for the
production of furanones, as a pharmaceutical precursor, and also for the production of
savory flavors. Arabinose is a component containing various polysaccharides, gums, and
hemicelluloses, while galacturonic acid is an acidifying agent in foods and a monomer of
pectin molecules [41].

There are different methods that can be used to determine the composition of polysac-
charides present in vegetables; among these methods, acid hydrolysis is one of the most
commonly used for depolymerization of polysaccharides to break them down into monosac-
charides [42,43]. This method requires a delicate balance between the acid concentration,
type of acid, and temperature to avoid unwanted side products [44]. The resulting indi-
vidual monosaccharides that make up the hydrocolloids of O. ficus-indica can be deter-
mined by several techniques, including chromatography, capillary electrophoresis, infrared
spectroscopy (IR), light scattering detection, and nuclear magnetic resonance (NMR) spec-
troscopy. However, a disadvantage of these methods is that they require considerable
financial investment and long processing times. One commonly used technique to identify
the hydrolyzed polysaccharides is thin-layer chromatography (TLC); this technique has
several advantages, such as the fact that it provides a reliable identification and sensitiv-
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ity to less than 1 µg of monosaccharide, it is adaptable in the selection of the stationary
and mobile phases, the sample preparation is simple, a considerable amount of the ana-
lyte can be evaluated, several samples can be analyzed simultaneously, chromatograms
show a well-defined pattern for each compound, and solvent consumption is small. In
addition, it allows the visualization of monosaccharides and qualitative chromatographic
characteristics [43–47].

An accurate technique to determine the concentration of monosaccharides is the
phenol–sulfuric acid method, which is a colorimetric method based on the reaction between
a solution of hydrolyzed polysaccharides and a coloring reagent; this reagent is detectable
in the visible range of the electromagnetic spectrum because it develops a yellow–orange
color [48,49]. It is simple, quick, sensitive, reproducible, and specific for monosaccha-
rides. The reagents are readily available and stable. All classes of monosaccharides,
including oligo- and polysaccharides, can be determined using the phenol–sulfuric acid
method [50,51].

In this research, we developed a fast and reliable methodology allowing us to identify
and quantify the monosaccharides present in the hydrocolloids of the cactus O. ficus-indica.
The identification of the monosaccharides was carried out by means of TLC, showing
well-defined chromatograms that enabled an excellent comparison with the standards.
The phenol–sulfuric acid method was used to quantify the release of monosaccharides
through the hydrolysis process. With the proposed methodology, the hydrolysis time and
the volume of the reagents were decreased considerably. The purpose of this work was
to identify and quantify the hydrocolloid composition through simple and cost-effective
techniques to provide us with a guide for techno-functional applications. The TLC and
phenol–sulfuric acid methods are validated techniques allowing us to obtain results quickly
and accurately [3,39,52–56].

We consider that the novelty of the methodology proposed here is that it is more
efficient due to the reduced reaction times and less severe conditions. We achieved rapid
and sensitive identification and quantification of the monosaccharides contained in the
hydrolyzed samples.

2. Results and Discussion

The composition of the hydrocolloids obtained from the cactus is variable; it depends
on several factors, such as the maturation time of the cladode, the place and time of
harvest, and the extraction method used. Additionally, the monosaccharides integrated
in the hydrocolloids are also variable; the biochemical processes of the cell wall and the
hydrolysis process itself cause the interconversion of monosaccharides, which explains the
presence of glucose, glucuronic acid, and fucose, among others [57].

The TLC conditions used here (the stationary and mobile phases and the developed
chromatograms) allowed us to characterize the specific patterns of the monosaccharide
standards (see Figure 4A,B). On the other hand, the acid hydrolysis conditions (i.e., type and
concentration of the acid, temperature, and reaction conditions) were adequate to obtain
distinctive chromatograms. The conditions used in both TLC and acid hydrolysis enabled
the identification of the monosaccharides released in the depolymerization process (see
Figure 4C,D). Table 1 shows the Rf of the standards used; the experiments were performed
in triplicate, thus ensuring their correct use for comparison with the sample.

Table 1. R f values for every monosaccharide standard (n = 3).

Galacturonic Acid Rhamnose Galactose Arabinose Xylose Mannose

Mean SEAM Mean SEAM Mean SEAM Mean SEAM Mean SEAM Mean SEAM

R f 0.4 0.006 0.47 0.015 0.39 0.044 0.40 0.009 0.43 0.013 0.4 0.009
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The importance of identifying the monosaccharides that make up the hydrocolloids
lies in the fact that it enables elucidation of the properties of the polysaccharides present in
the cactus (O. ficus-indica) and, thus, finding their functional application.

Figure 4C,D show the TLC of an acid-hydrolyzed sample of cactus (O. ficus-indica)
hydrocolloid that was monitored every 30 min for a total period of 180 min. From 30 to
150 min, we observed the defined patterns of galacturonic acid (reported as the main
monosaccharide), rhamnose (monosaccharides that form the main chain), and mannose.

At 90 min, the galactose pattern was gathered and rhamnose intensified, suggesting
the formation of a rhamnose–galactose–xylose complex, which remained constant until
150 min. In contrast to carrying out the hydrolysis for 24 h using 3.9 M HCl, in this work,
we reduced the time to 180 min using 2.5 N H2SO4. Both acids are known to prevent
monosaccharide degradation.

Figure 5 shows the light absorption in the entire visible range 600–420 nm of the
electromagnetic spectrum for all of the monosaccharide standard solutions prepared using
the phenol–sulfuric acid method but working with reduced reagent volumes. This figure
depicts the fraction of the light absorbed (y-axis) as a function of wavelength (x-axis).
Despite presenting a maximum at the same wavelength in nanometers, each standard of
the monosaccharides showed a different spectral pattern, with the maximum between
480 and 495 nanometers [58]. In addition, the calibration curve of each monosaccharide
that was evaluated is presented Figure 6. The results were analyzed by linear regression in
order to obtain the coefficient of determination, r2 [59]. The correlation coefficients obtained
in this work were 0.99, corroborating the linearity of the system and, therefore, allowing us
to identify and calculate the concentrations of each of the hydrolyzed samples.
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In other studies, Garna et al., [60] obtained a maximum concentration in the hydrolysis
at different times for each monosaccharide. However, under the hydrolysis conditions used
here, the maximum concentration of all of the evaluated monosaccharides was obtained at
90 min, as shown in Figure 7. Taking into consideration the experimental conditions of this
work, we may attribute the high concentration of galacturonic acid observed in Figure 7
to its presence as the principal component in the main chains of pectin and mucilage (see
Figures 2 and 3, respectively). The second highest monosaccharide concentration was
galactose, followed by arabinose; these two monosaccharides are linked to rhamnose,
and are substituents in the ramifications of both pectin and mucilage. The lowest con-
centrations corresponded to xylose, which is the terminal of the ramifications present in
the hydrocolloids.
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Figure 7. Concentration vs. time reaction of the monosaccharides present in O. ficus-indica hydrocol-
loids after acid hydrolysis: (A) galacturonic acid; (B) galactose, arabinose, and rhamnose; (C) mannose
and xylose.

In this work, the identification and quantification of the main monosaccharides re-
ported in pectin and mucilage were carried out; however, we also detected small amounts
of mannose (see Figure 7C), which is not reported as a constitutive monosaccharide of
either pectin or mucilage. Table 2 shows the mean and SEAM values for every concentra-
tion versus hydrolysis time. We suggest that this monosaccharide comes from cell wall
structures (Figure 1) present in the hydrocolloids due to the extraction process. We base
this assumption on the fact that the mannose concentration was relatively low compared to
those of the other monosaccharides [15,61–63]. These techniques provide us with a much
faster analysis method, with lower consumption of chemical reagents, and without the
need for expensive equipment. It is for all of the above reasons that we consider the results
of this research to be of importance, since they result in a new methodology that is easy to
use and cost-effective [64,65].
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Table 2. Mean and SEAM values for every monosaccharide.

Galacturonic Acid Rhamnose Galactose Arabinose Xylose Mannose

Time Mean SEAM Mean SEAM Mean SEAM Mean SEAM Mean SEAM Mean SEAM

30 650.71 18.89 155.58 4.47 240.27 6.20 173.70 5.07 50.49 1.49 111.41 2.89
60 753.95 31.65 180.00 7.49 273.78 9.16 201.40 8.49 58.66 2.50 127.01 4.27
90 784.98 29.59 187.34 7.00 287.54 10.35 209.73 7.94 61.11 2.34 133.42 4.82

120 743.96 26.74 177.64 6.32 272.32 9.13 198.72 7.17 57.87 2.12 126.33 4.25
150 745.38 26.47 177.97 6.26 273.49 9.10 199.10 7.10 57.98 2.10 126.88 4.24
180 767.76 11.20 183.27 2.65 282.13 3.39 205.11 3.00 59.75 0.89 130.90 1.58

3. Materials and Methods
3.1. Materials

The dried and pulverized hydrocolloids of O. ficus-indica were provided by the ICAT-
UNAM Process Engineering Laboratory. Concentrated sulfuric acid and phenol were
obtained from J.T. Baker (Phillipsburg, NJ, USA). Monosaccharide standards L-rhamnose,
D-xylose, D-mannose, L-arabinose D-galactose, and D-galacturonic acid, along with thin-
layer chromatography silica gel matrix 60 A with medium pore diameter, n-butanol, and
acetic acid, were all purchased from Sigma-Aldrich. The spectrophotometer was a Cary
5000 UV–VIS–NIR.

3.2. Methods
3.2.1. Acid Hydrolysis of O. ficus-indica Hydrocolloids

The hydrocolloids were extracted from fresh cladodes (15 days) of O. ficus-indica collected
in Milpa Alta, Mexico City, in 2018. The process is described by Reyes-Ocampo et al. [51]. The
hydrolytic treatment procedure consisted of adding 0.5 g of the sample and 7.5 mL of 2.5 N
H2SO4, and the reaction was maintained at 80 ◦C, taking aliquots of 100 µL every 30 min
until completing a period of 180 min. The samples were cooled to 0 ◦C in an ice bath before
analysis, to avoid degradation of the thin layer of silica.

3.2.2. Thin-Layer Chromatography

For TLC, 0.01 g of each monosaccharide standard was dissolved in 1 mL of 2.5 N
H2SO4. To follow the reaction, 3.0 µL of each hydrolyzed sample was deposited with a
capillary on the thin layer of silica. The eluent solution for the standards and samples
used was n-butanol, acetic acid, and distilled water at a 5:2.5:2.5 (v/v) ratio. The chromate
plates were prepared in triplicate and developed with a solution of 2% sulfuric acid and
water/EtOH at a 1:1 v/v ratio. To reveal the chromate plates, they were heated for 5 min at
a temperature of 80 ◦C.

3.2.3. Phenol–Sulfuric Acid Method

Once the hydrolysis was carried out, the quantification of the monosaccharide stan-
dards and samples was performed using the phenol–sulfuric acid method at reduced
volumes [44–46,51]. The detailed procedure of the method employed in this study is
as follows: A calibration curve was constructed as described by Dubois in 1956 [52] in
triplicate, using the monosaccharides being assayed. Then, 500 µL of each sample was
mixed with 300 µL of 5% phenol (v/v) in a test tube; 1.8 mL of concentrated sulfuric acid
was added to the mixture, and then the test tube was cooled in an ice bath for 2 min and
before being stored at room temperature for 15 min. The concentration of each sample was
determined according to the standard curve. The absorption maxima were determined at
480 nm for pentoses (i.e., galacturonic acid, rhamnose, arabinose, and xylose) and 490 nm
for hexoses (i.e., galactose and mannose). All regression analyses were performed using
Prism (GraphPad Software, San Diego, CA, USA).
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4. Conclusions

The acid hydrolysis conditions (2.5 N concentration of H2SO4, 80 ◦C temperature, and
180 min time) allowed the depolymerization of the cactus hydrocolloids (O. ficus-indica),
shortening the reported hydrolysis times [58–62]. Likewise, under these conditions, the
maximum concentration of all of the evaluated monosaccharides was obtained at 90 min,
as shown in the time vs. concentration graph.

In this study, the TLC chromatograms showed a specific fingerprint of the monosac-
charide standards, enabling a good comparison with the chromatograms of the hydrolyzed
samples and, thus, achieving a qualitative analysis of the cactus (O. ficus-indica) hydrocol-
loids, while effectively identifying whether the monosaccharides of interest were present
in the analyzed samples. Furthermore, the reduced-volume phenol–sulfuric acid method
was accurate for the identification procedure, given that each monosaccharide exhibited a
characteristic spectrum in the performed sweep (wavelength: 600 to 420 nm), and with the
additional benefit of allowing smaller volumes of reagents, generating less waste.

For the evaluated samples, galacturonic acid was present at higher concentrations,
since this monosaccharide comes from both the mucilage and the pectin of the prickly
pear hydrocolloid (O. ficus-indica). The proportion of monosaccharides can vary according
to the physiological needs of the plant, and this method makes it possible to know the
concentration of monosaccharides at any time during the plant’s growth.

In conclusion, under the experimental conditions described above, a methodology
was established consisting of (a) rapid depolymerization (optimizing the reaction time
72 h to 180 min), (b) simple identification by TLC, and (c) quantification via the phenol–
sulfuric acid method. The described methodology enables a fast, reliable, and cost-effective
procedure to depolymerize, identify, and quantify the monosaccharides that compose the
hydrocolloids extracted from the cactus O. ficus-indica.
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