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Abstract  
This study was aimed to explore the associations between the combined effects of several polymorphisms in the 

PPAR-γ  and RXR-α  gene  and environmental factors with the risk of metabolic syndrome by back-error propaga-
tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syn-
drome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input 
variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized 
multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-γ  and RXR-α  based on the results 
from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac-
tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family his-
tory of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, 
rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. 
However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling 
for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the 
best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interac-
tion of the PPAR-γ  and RXR-α  gene could play a role in susceptibility to metabolic syndrome. A more realistic 
model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic 
syndrome.

Keywords:  back-error propagation artificial neural network (BPANN), metabolic syndrome, peroxisome prolif-
erators activated receptor-γ  (PPAR) gene, retinoid X receptor-α  (RXR-α) gene, adiponectin
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INTRODUCTION
Metabolic syndrome is characterized by the simul-

taneous presence of interrelated metabolic risk factors, 
such as visceral obesity, high blood pressure and car-
bohydrate and lipid metabolism abnormalities[1], and it 
leads to an increased risk for type 2 diabetes mellitus 
and cardiovascular diseases[2,3]. Although the crite-
ria used to diagnose the metabolic syndrome may be 
different, several studies have demonstrated that the 
prevalence of metabolic syndrome has increased dra-
matically in the past two decades[4-6]. Metabolic syn-
drome is subjected to multifactorial influences includ-
ing both environmental and genetic factors. Current 
researches focus more on the cause of one or certain 
metabolic syndrome components, but rarely pay at-
tention to the etiology of metabolic syndrome.

Reportedly, adiponectin is an adipose tissue-derived 
cytokine with anti-inflammatory, anti-atherogenic 
and cardioprotective properties. Increasing evidence 
suggested that adiponectin, linked to central obes-
ity and insulin resistance, is a key contributor to the 
development of metabolic syndrome[7]. The ADIPOQ 
gene encoding adiponectin is located on chromosome 
3q27 and this chromosome region had been mapped 
as a susceptibility locus for metabolic syndrome and 
coronary heart disease by genome-wide scans[8]. There 
are specific functional peroxisome proliferator re-
sponse elements (PPREs) in the promoter region of 
adiponectin. PPAR-γ  binds to PPREs as a heterodimer 
with members of the retinoid X receptor (RXR) nu-
clear receptor subfamily[9], and increases adiponectin 
promoter activity in cells from humans[10]. The ex-
pression of adiponectin in the adipose tissue is main-
tained and induced by direct binding of endogenous or 
exogenous PPAR-γ /RXR heterodimer to the PPRE in 
the adiponectin promoter[10]. Therefore, the PPAR-γ and 
RXR-α genes in the adiponectin pathway are candi-
dates for obesity and metabolic syndrome.

The back-error propagation artificial neural network 
(BPANN) is a computer-based algorithm that is trained 
to recognize and categorize complex patterns. BPANN 
as a new approach to etiology research avoids the 
limitations of case control study and logistic regres-
sion without the distribution form and independence 
of variables. Our group has previously found the asso-
ciation of single nucleotide polymorphisms (SNPs) in 
thePPAR-γ  and RXR-α  genes with metabolic syndrome 
or type 2 diabetes risks in different populations[11,12]. In 
the present study, we further explored the application 
characteristics of BPANN in studying the combined 
effects of genetic variants in the PPAR-γ  and RXR-α 
gene and metabolic syndrome risks in a Chinese Han 

population. We compared the results of BPANN with 
those of traditional logistic regression analysis to bet-
ter understand and use artificial neural network in the 
study of diseases of multiple etiologies. 

SUBJECTS AND METHODS

Subjects
A total of 2,081 Chinese patients, including 1,012 

metabolic syndrome and 1,069 non-metabolic syn-
drome controls, were recruited for metabolic studies 
with their informed consent. The protocol was ap-
proved by the Research Ethics Committee of Nanjing 
Medical University. All participants were geneti-
cally unrelated ethic Han Chinese. The cases were 
consecutively recruited from the inpatient or out-
patient departments of three affiliated hospitals of 
Nanjing Medical University (the Second Affiliated 
Changzhou Hospital, the Third Affiliated Hospital 
and the First Affiliated Hospital) between March 2008 
and August 2010, without any restriction on age and 
sex (430 males and 582 females with a mean age of 
55.35±10.62 years). Age (±5 years) and sex-matched 
non-metabolic syndrome controls who underwent 
routine annual health examinations within the same 
geographical area and the period (478 males and 591 
females with a mean age of 55.78±13.10 years) were 
also recruited for the study. In order to collect demo-
graphic data and information in environmental expo-
sure history, each participant was interviewed face-to-
face using a standard questionnaire. After the interview, 
5 mL venous blood sample was collected from each 
participant. The level of physical activity was defined 
as walking or riding ≥ 15 minutes/day and/or lifting 
or carrying heavy objects at work daily and/or doing 
sports or physical exercise > 2 hours/week. Tobacco 
smokers were defined as patients who smoked at least 
one cigarette per day for over 1 year. Alcohol drinkers 
were defined as those who had the sum of milliliters of 
alcohol per week from wine, beer, cider or spirits.

The new (2009) criteria of metabolic syndrome was 
based on a joint interim statement of the International 
Diabetes Federation (IDF); National Heart, Lung and 
Blood Institute (NHLBI); American Heart Associa-
tion (AHA); World Heart Federation; International 
Atherosclerosis Society and International Association, 
which define metabolic syndrome as the presence of 
three or more of the following features: triglycerides 
(TG) ≥ 150 mg/dL (1.7 mmol/L) (or drug treatment 
for elevated triglycerides), high-density lipoprotein cho-
lesterol (HDL-C) < 40 mg/dL (1.0 mmol/L) in mates 
and < 50 mg/dL (1.3 mmol/L) in females (or drug 
treatment for reduced HDL-C), fasting plasma glucose 
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(FPG) ≥ 100 mg/dL (or drug treatment for elevated 
glucose), systolic blood pressure (SBP) ≥ 130 and/or 
diastolic blood pressure (DBP) ≥ 85 mmHg (or anti-
hypertensive drug treatment in a patient with a history 
of hypertension), and waist circumstances (WC) ≥ 85 
cm in men and 80 cm in women (current recom-
mended waist circumstance thresholds for abdominal 
obesity for people in China)[13].

Measurements
Weight and height were measured by trained per-

sonnel, and body mass index (BMI, in kg/m2) was cal-
culated. Blood pressure was measured on the right arm, 
with the patient in a sitting position and after a mini-
mum 10-min rest, using a standard mercury sphyg-
momanometer. After an overnight fast, venous blood 
samples were drawn and promptly centrifuged and the 
plasma was stored at -20°C. Serum adiponectin, FPG 
and TC, HDL-C, LDL-C and TG were analyzed using 
human adiponectin ELISA kit (RapidBio Co., Cala-
basas, CA, USA), glucose oxidase method and enzy-
matic colorimetric method (Au5400; Olympus, Japan), 
respectively. DNA was extracted from blood samples 
by using a phenol-chloroform technique. All measure-
ments were conducted by the manufacturers' protocols.

SNP selection and genotyping
In the present study, we first used NCBI dbSNPs 

database (http://www.ncbi.nlm.nih.gov/), the public 
HapMap SNP database (http://www.hapmap.org/) 

and previously reported literatures to identify poten-
tially functional SNPs of the PPAR-γ  and RXR-α  gene. 
Three potentially functional SNPs of the PPAR-γ  gene 
(rs2920502, rs3856806 and rs1801282) and four of the 
RXR-α  gene (rs1045570, rs3132291, rs4240711 and 
rs4842194) with minor allele frequency (MAF)≥ 0.05 
in the Chinese Han population were identified, includ-
ing four at the coding region and three at the 3' un-
translated region. Then, we used public HapMap SNP 
database to identify PPAR-γ  and RXR-α  gene tagging 
SNPs by using tagger with greedy algorithm. Finally, 
two tagging SNPs (rs17817276 and rs38566806) of the 
PPAR-γ gene and two of the RXR-α gene (rs1045570 
and rs6537944) were selected based on pair-wise tag-
ging (r2 ≥ 0.80, MAF ≥ 0.05) by using genotype data 
from unrelated HapMap CHB individuals. Genomic 
sequences were obtained from the HapMap database. 
Primer version 5.0 and polymerase chain reaction 
(PCR) primer-introduced restriction analysis were 
used to design the nine primer sets (Table 1).

Genetic analyses were performed on genomic DNA 
extracted from leucocytes of venous blood. We used 
the TaqMan allelic discrimination assay to genotype 
the polymorphisms on the platform of 7900HT Real-
time PCR System (Applied Biosystems, Foster City, 
CA). The information on assay conditions and the 
primers and probes are available upon request. Two 
negative controls were included in each 384-well re-
action plate and individual genotype identification 
were determined by SDS software 2.0 (ABI). Moreo-

SNP Primers Probes
PPAR-γ 

rs17817276 Sense CTCCCTGACAGCAGCTATCC Probe 1 AAATAGTAATATATGACAACCT
Antisense TTCCCAGGATTATCCTAACAGA Probe 2 AATAGTAATACATGACAACC

rs3856806 Sense TGTTTGCCAAGCTGCTCC Probe 1 CTGCACGTGTTCC
Antisense TTGGCAGTGGCTCAGGAC Probe 2 CTGCACATGTTCC

rs1801282 Sense TGCTGTTATGGGTGAAACTCTG Probe 1 CTATTGACCCAGAAAG
Antisense ATAGCCGTATCTGGAAGGAACT Probe 2 CTATTGACGCAGAAAG

rs2920502 Sense GCACAGTAGGGCCCACG Probe 1 CCACTCTCTGCCC
Antisense GGATCCCTCCTCGGAAATG Probe 2 CCACTGTCTGCCC

RXR-α 
rs6537944 Sense CGTGAATGCTGCTCTCTCTGT Probe 1 CGTTCCGTCAGGCA

Antisense AACTGGATATGGGCAGCACT Probe 2 CGTTCCATCAGGCA
rs1045570 Sense AGCCTTGCTCTGTTGTGTCC Probe 1 CACCTGCGGCCAC

Antisense ACTTCTCCCTTTGCGTGTTC Probe 2 CACCTGAGGCCAC
rs4842194 Sense TGGTGGAAATGGCAGGAG Probe 1 TGCCTTCTGCAGCC

Antisense CCCTGGGCTTTTTCCTCT Probe 2 TGCCTTCTGCAGCC
rs3132291 Sense CTTCAGTGTGTCTGGTGCCTC Probe 1 AGGGCTCCGGGCA

Antisense GCATTGTCTCCTGTGATAAACG Probe 2 AGGGCTCTGGGCA
rs4240711 Sense GACTCCCCGTTCAGACCAG Probe 1 AGGACAAGTCTCAGC

Antisense CTCCAGCAAGGCCAGTGA Probe 2 AGGACAAGCCTCAGC

Table 1 Primers and annealing temperature used for RET sequencing
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ver, to confirm genotyping results, 10% of samples 
were randomly selected to repeat the procedure and 
the results were 100% concordant.

Statistical analysis
Hardy-Weinberg equilibrium was assessed within 

controls using the goodness-of-fit χ2 test. The distri-
bution of the general characteristics between meta-
bolic syndrome and non-metabolic syndrome controls 
was compared by using two-sided Chi-square test and/
or Student's t test. The significance level was set at P < 
0.05. Both univariate and multiple logistic regression 
analyses were performed to estimate crude and ad-
justed standardized partial regression coefficient (β), 
odds ratios (ORs) and 95% confidence intervals (CIs) 
for the association between genotypes and metabolic 
syndrome risks. All statistical analyses were per-
formed by SPSS software (SPSS version 13.0, Chi-
cago, IL, USA). Generalized multifactor dimensional-
ity reduction (GMDR) software (version 1.0.1) (www.
healthsystem.virginia.edu/internet/Addiction-Genom-
ics/) was applied for detecting gene-gene and gene-
environment interactions[14]. BPANN prediction model 
was established and each input neurons' mean impact 
value (MIV) was calculated using MATLAB7.0 soft-
ware (MathWorks, Natick, MA)[15].

RESULTS

Univariate logistic regression analysis of as-
sociations between risk factors and metabolic 
syndrome

The clinical characteristics of the 2081 subjects are 
shown in Table 2. The genotype distributions of all 

the SNPs satisfied Hardy-Weinberg equilibrium (all 
P > 0.05 in controls). The associations between the 
19 variables, including four of the PPAR-γ  gene, five 
of the RXR-α  gene, serum adiponectin concentration 
and other environmental factors, was estimated by 
binary logistic regression analysis. Table 3 shows the 
sequences of the impact of various factors on meta-
bolic syndrome risk. The top ten were family history 
of hyperlipidemia or type 2 diabetes, physical activity, 
family history of hypertension, BMI, alcohol drinking, 
gender, rs6537944, rs1801282 and rs4842194. 

Multiple logistic regression analysis of as-
sociations between risk factors and metabolic 
syndrome

Multiple logistic regression analysis was performed 
to determine the association between the 19 variables 
and metabolic syndrome with the stepwise regressive 
method (the removal probability was 0.1). Table 4 il-
lustrates nine factors in the best model and only six 
factors were statistically significant, including family 
history of type 2 diabetes or hyperlipidemia, physical 
activity, gender, alcohol drinking, BMI, rs4240711, 
rs2920502 and serum adiponectin. 

BPANN multiple analysis of associations be-
tween risk factors and metabolic syndrome

We used 19 factors as input variables and metabolic 
syndrome diagnosis as output variables to establish 
model with all available samples. The transfer func-
tion was logsig function. Learning rate and training 
error were 0.1 and 0.01, respectively. Training steps 
were set to a maximum of 1000 steps. After the com-
pletion of training, the MIV was obtained. Table 5 

Table 2 Basic characteristics of the case and control groups
Variables Case (n =1, 012) Control (n =1, 069) P-value
Gender (male:female)   430:582      478:591 < 0.306
Age (years)   55.35±10.62     55.78±13.10 < 0.409
SBP (mmHg) 137.26±18.85 124.112±18.42 < 0.001
DBP (mmHg)   85.26±11.08     77.33±10.11 < 0.001
WC (cm) 88.58±9.28   78.73±8.57 < 0.001
BMI (kg/m2) 25.79±3.44   23.31±2.94 < 0.001
TC (mmol/L)   5.22±1.24     4.90±0.92 < 0.001
TG (mmol/L)   2.71±2.40     1.24±0.73 < 0.001
HDL-C (mmol/L)   1.16±0.40     1.45±0.37 < 0.001
LDL-C (mmol/L) 2.733±0.98     2.56±0.83 < 0.001
FPG (mmol/L)   8.86±3.95     5.88±2.79 < 0.001
Adiponectin (mg/L)   6.76±2.57     7.00±2.66 < 0.045
T2DM (n, %) 832(82.4)    287(26.9) < 0.001
Obesity (n, %) 720(72.7)    212(20.1) < 0.001

Data are mean ± SD values except as marked. SBP: systolic blood pressure; DBP: diastolic blood pressure; WC: waist circumstances; BMI: body 
mass index; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; FPG: fasting plasma glu-
cose; TC: total cholesterol; T2DM: type 2 diabetes mellitus.  



　118 Zhao X et al. J Biomed Res, 2014, 28

summarizes all related factors, consisting of BMI, se-
rum adiponectin, rs4240711, gender, rs4842194, fam-
ily history of diabetes, rs2920502, physical activity, 
alcohol drinking, rs3856806, family history hyperten-
sion, rs1045570, rs6537944, age, rs17817276, family 
history of hyperlipidemia, smoking, rs1801282 and 
rs3132291 in sequence of the absolute value of MIV. 

GMDR for the combined effect of the PPAR-γ 
and RXR-α gene

The SNPs rs4240711, rs4842194, rs2920502 and 
rs3856806, which were obtained in the top ten in 
BPANN multiple analysis, were named as A1, A2, B1 
and B2 in turn. GMDR that evaluated the combined 
effect of the four SNPs detected A1, A2, B1 and B2 

(rs4240711, rs4842194, rs2920502 and rs3856806) 
model as the best model (Cross-validation consist-
ency 10/10, P = 0.0447) (Table 6). After controlling 
for age, gender, smoking, alcohol drinking and physi-
cal activity, the results showed that A1, A2, B1 and B2 
model still were the best model from GMDR (Cross-
validation consistency 10/10, P = 0.0107) (Table 7). 
However, we failed to obtain a significant model 
when all the nineteen SNPs were added into the anal-
ysis (Cross-validation consistency 10/10, P = 0.1719) 
(data not shown).

DISCUSSION
Metabolic syndrome, like virtually all human dis-

eases, results from the interactions between genetic 

*rank was according to the absolute value of β. BMI: body mass index.

Table 3 Univariate logistic regression analysis results
Variables β OR (95%CI) P-value Rank
Hyperlipidemia family history -1.349 3.854 (1.653,8.989) ＜ 0.002  1
T2DM family history -1.098 2.999 (2.116,4.250)    < 0.001  2
Physical activity -0.651 0.522 (0.381,0.714)    < 0.001  3
Hypertension family history -0.324 1.383 (1.076,1.777) ＜ 0.011  4
BMI -0.273 1.314 (1.254,1.377)    < 0.001  5
Alcohol drinking -0.198 1.219 (0.895,1.660) ＜ 0.208  6
Gender -0.192 0.825 (0.648,1.050) ＜ 0.118  7
rs6537944 -0.171 0.843 (0.633,1.122) ＜ 0.242  8
rs1801282 -0.161 0.851 (0.591,1.227) ＜ 0.387  9
rs4842194 -0.116 0.891 (0.700,1.134) ＜ 0.348 10
rs3856806 -0.105 0.900 (0.707,1.147) ＜ 0.395 11
rs3132291 -0.093 0.911 (0.716,1.160)   0.45 12
Smoking -0.085 1.089 (0.809,1.467) ＜ 0.574 13
rs2920502 -0.082 1.085 (0.896,1.314) ＜ 0.404 14
Serum adiponectin -0.076 0.927 (0.887,0.970) ＜ 0.001 15
rs17817276 -0.065 1.067 (0.816,1.396) ＜ 0.634 16
rs1045570 -0.023 1.023 (0.797,1.312) ＜ 0.859 17
rs4240711 -0.012 0.988 (0.774,1.262) ＜ 0.924 18
Age               -0.01 0.990 (0.978,1.002)    0.106 19

Table 4 Multiple logistic regression analysis results

*rank was according to the absolute value of β. BMI: body mass index.

Variable β OR (95%CI) P-value Rank
T2DM family history -1.197 3.309 (2.253,4.861)    < 0.001 1
Hyperlipidemia family history -1.184 3.267 (1.297,8.228) ＜ 0.012 2
Physical activity -0.712 0.491 (0.342,0.705)    < 0.001 3
Gender -0.306 0.736 (0.560,0.968) ＜ 0.028 4
Alcohol drinking -0.355 1.426 (0.957,2.125) ＜ 0.081 5
BMI -0.302 1.353 (1.287,1.422)    < 0.001 6
rs4240711 -0.249 1.283 (0.968,1.700) ＜ 0.083 7
rs2920502 -0.241 0.786 (0.595,1.038) ＜ 0.089 8
Serum adiponectin -0.076 0.927 (0.881,0.976) ＜ 0.004 9
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and environmental factors. Environmental factors 
such as obesity, low levels of physical activity and 
inappropriate dietary habits are strong determinants of 
metabolic syndrome[16,17]. Traditional statistical meth-
ods due to their own limitation do not show the real 
relationship between gene and environmental elements 
with the risk of metabolic syndrome. Binary logistic 
regression analysis, for example, was used to analyze 
the association between the 19 variables and metabol-
ic syndrome. Table 3 showed that the locant, accord-
ing to standardized partial regression coefficient (β) 
of each variable, of top six environmental factors was 
hyperlipidemia family history, family history of type 
2 diabetes, physical activity, smoking, family history 
of hypertension and BMI. Relative to environmental 
factors, the contribution of gene polymorphisms to the 
susceptibility and causation of diseases was hidden 
and weaker. Binary logistic regression limited to ana-
lyzing the combined action of elements did not pro-
vide the evidence for gene-environment interaction.

By using the maximum likelihood method, only 
six variables were statistically significant, including 
family history of type 2 diabetes and hyperlipidemia, 
physical activity, gender, BMI and serum adiponectin. 
The result of multiple logistic regression analysis did 
not detect the role that PPAR-γ  gene and RXR-α  gene 
polymorphisms played in the development of meta-
bolic syndrome, but BPANN analysis had proved the 
association[12]. Adiponectin has an obvious protective 

A1: rs4240711; A2: rs4842194; B1: rs2920502; B2: rs3856806; CV: cross-validation.

Table 6 The GMDR models for PPAR-γ  and RXR-α  gene interaction on metabolic syndrome

Model Training Bal.Acc. Test Bal.Acc. CV consistency P-value
B2 0.5213 0.4955   8/10 0.3770
A2 B2 0.5359 0.5065   6/10 0.6230
A2 B1 B2 0.5612 0.4907   6/10 0.8281
A1 A2 B1 B2 0.5857 0.5333 10/10 0.0447

effect on metabolic syndrome and its cardiovascular 
complications[18], but the contribution of adiponectin 
was weakened in the model, because of the complex 
interaction between variables.

Artificial neural networks are a non-linear pat-
tern recognition algorithm consisting of a group of 
processing units that simulate the function of neurons 
in human brain and reveal relationships among the 
input data that cannot always be recognized by con-
ventional models[19]. In recent years, artificial neural 
networks have been increasingly used in complex 
medical decision-making, such as the diagnosis of 
various diseases, investigating the predictive values 
of disease risk factors and analyzing the complex re-
lationships between gene-environment[20,21]. BPANN 
has not only been the core of feedforward neural 
networks, but also embodied the essence of artificial 
neural networks[15]. The units in a BPANN are highly 
interconnected by weighted links, very similar to neu-
ral synapses. In the constant learning process in which 
the former feedback of error was used to modify cor-
responding weights and threshold value, BPANN ad-
justed the weights of links between neurons in order to 
associate input data with correct output (such as dis-
ease diagnosis). BPANN could fully show all the re-
lationship between factors in a simulation. Therefore, 
we further used BPANN to identify the real associa-
tion between PPAR-γ  and RXR-α  gene polymorphisms 
with susceptibility to metabolic syndrome in southern 

Table 5 Input variables and sorting of mean influence values (MIV)
Variable MIV Rank Variable MIV Rank 
BMI -0.034326 1 Hypertension family history -0.000995 11
Serum adiponectin -0.007267 2 rs1045570 -0.000824 12
rs4240711 -0.006018 3 rs6537944 -0.000704 13
Gender -0.004006 4 Age -0.000550 14
rs4842194 -0.003670 5 rs17817276 -0.000512 15
T2DM family history -0.003157 6 Hyperlipidemia family history -0.000448 16
rs2920502 -0.002862 7 Smoking -0.000437 17
Physical activity -0.002435 8 rs1801282 -0.000256 18
Alcohol drinking -0.001404 9 rs3132291 -0.000062 19
rs3856806 -0.001272 10

BMI: body mass index; T2DM: type 2 diabetes mellitus.
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families without metabolic syndrome. However, in 
another study of 792 Han Chinese in Beijing, Dongxia 
et al.[27] failed to show the association, but a significant 
association between rs3856806 and insulin resistance. 
In a population-based study of 1910 subjects by our 
group, divided according to the IDF (2005) criteria, 
we also did not find differences of rs3856806 among 
metabolic syndrome patients and non-metabolic syn-
drome controls by logistic regression analysis[12]. In 
Meirhaeghe's French population study[17], the C1431T 
variant was only connected with the other three poly-
morphisms, including P3-681C > G, P2-689C > T, 
Pro12Ala, and the GTGC haplotype was associated 
with metabolic syndrome. It may be that the indi-
vidual C1431T's role in the pathogenesis of metabolic 
syndrome is not obvious and the combined effect with 
other polymorphisms exists, but the traditional statis-
tical methods do not show. 

No polymorphisms in the two genes had been found 
to associate with metabolic syndrome in univariate and 
multiple logistic regression analyses, but the seating 
arrangements of the four gene polymorphisms were 
in front in BPANN analysis. The finding of BPANN 
analysis and logistic regression analysis suggested that 
the interactions between four SNPs may be associ-
ated with the risk of metabolic syndrome. We used 
the GMDR method to indentify the combined effect 
of the four SNPs (rs2920502, rs3856806, rs4240711 
and rs4842194). The GMDR is an extended version 
of the multifactor dimensionality reduction approach, 
which allows high-dimensional interactions of multi-
ple factors to be simultaneously retrieved. The GMDR 
method is a non-parametric and genetic model-free 
approach that efficiently identifies higher-order in-
teractions between genes and/or gene-environmental 
factors with both dichotomous and continuous pheno-
types in various population-based study designs. The 
main idea of GMDR is to reduce multi-dimensional 
genotypes into one-dimensional binary attributes by 
pooling genotypes of multiple SNPs using a well-
defined classifier[14]. Furthermore, GMDR can reduce 
the complexity substantially and permit adjustment 
for discrete and quantitative covariates[14]. GMDR has 
been performed to successfully identify the combi-

A1: rs4240711; A2: rs4842194; B1: rs2920502; B2: rs3856806; CV: cross-validation.

Table 7 The GMDR models for PPAR-γ  and RXR-α  gene-environment interaction on metabolic syndrome
Model Training Bal.Acc. Test Bal.Acc. CV consistency P-value
B2 0.5243 0.5062   9/10 0.1719
A2 B2 0.5392 0.4958   6/10 0.8281
A2 B1 B2 0.5653 0.4944   6/10 0.9453
A1 A2 B1 B2 0.5901 0.5352 10/10 0.0107

Han Chinese and the key risk factors for metabolic 
syndrome. Compared to logistic regression analy-
sis, BPANN showed a better understanding of using 
artificial neural network in epidemiology. Compared 
with the results of univariate and multiple logistic re-
gression analyses, the seating arrangements of BMI 
and serum adiponection concentration were obviously 
raised in BPANN analysis. The sequence of serum 
adiponection concentration was raised to the second 
factor only after BMI from the last sequence in multi-
ple logistic regression analysis. Central obesity is con-
sidered a pivotal component in metabolic syndrome. 
Even in subjects without obesity, a higher BMI tends 
to correlate with a higher number of positive metabolic 
syndrome components[22]. It has been reported that ad-
iponectin concentration was an important predictor for 
the risk of metabolic syndrome[23]. Our result further 
validated that adiponectin had a great influence on the 
pathogenesis of metabolic syndrome.

PPAR-γ  rs2920502,  rs3856806 and RXR-α  
rs4240711, rs4842194 had no association with meta-
bolic syndrome in univariate and multiple logistic 
regression analyses, but the seating arrangements 
of the four gene polymorphisms were in front in 
BPANN analysis, which implied an association be-
tween the four genetic variants in PPAR-γ  and RXR-α  
and metabolic syndrome. Currently, the studies in-
vestigating the associations between rs2920502, 
rs4240711 and rs4842194 polymorphisms and the risk 
of metabolic syndrome have been reported rarely. In 
a previous study[12], we also found that those carry-
ing rs2920502CG and CG/GG genotype had a sig-
nificantly increased risk of metabolic syndrome and 
rs4240711GG and AG/GG, rs4842194 CC and CT/
CC genotypes were all associated with prominent 
protective effects for metabolic syndrome. Up to now, 
numerous studies have focused on the association 
between C1431T variant (rs3856806) of PPAR-γ  and 
the risk of metabolic syndrome, type 2 diabetes and 
obesity in several populations[24-26], but the conclusions 
are conflicting. Li et al.[24] reported that polymor-
phism C1431T of exon 6 of PPAR-γ  was associated 
with metabolic syndrome risks in a Chinese popula-
tion study of 423 cases with metabolic syndrome and 
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nations of SNPs that significantly influenced com-
plex diseases[28]. The model of A1, A2, B1 and B2 
(rs4240711, rs4842194, rs2920502 and rs3856806) 
were the best model (Cross-validation consistency 
10/10, P = 0.0447). It showed that four SNPs loci 
interact with one another and suggested interactions 
between the two genes. After controlling age, gen-
der, smoking, alcohol drinking and physical activity, 
the results showed that A1, A2, B1 and B2 (rs4240711, 
rs4842194, rs2920502 and rs3856806) model were 
still the best model as the highest Test Balanced Ac-
curacy (0.5901) (Cross-validation consistency 10/10, 
P = 0.0107). After adjusting age, gender, smoking, 
alcohol drinking and physical activity, the combined 
effect of PPAR-γ  gene and RXR-α  gene still existed. 
PPAR-γ acts as a nuclear receptor-transcription factor 
by forming a heterodimer with RXR. PPAR-γ/RXR 
heterodimer directly binds to the functional PPAR-
responsive element (PPRE) and increases human 
adiponectin promoter activity in cells. The PPAR-γ  
gene and RXR-α  gene are related to the adiponectin-
signal transduction pathway. The two genes may play 
a significant role in insulin resistance, which is a key 
feature of metabolic syndrome and type 2 diabetes by 
affecting adiponectin secretion levels.

BPANN is designed to detect patterns in input data, 
which may match output data even if the nature of 
such patterns is not known a priori; thus, all richer re-
lations between factors can be simulated and provided 
at a time than the ordinary model[29]. Simultaneously, 
BPANN not requiring the distribution form and in-
dependence of variables, also can handle the problem 
of collinearity better. Compared with the traditional 
analysis methods, BPANN may be better suited to 
predict outcomes when the relationships between the 
variables are complex, multidimensional and nonlin-
ear in complex biological systems[30]. Neural network 
models have the ability to detect all possible inter-
actions between predictive variables and provide a 
model consistent with practical situations. Even so, 
BPANN analysis was a "black box" and had limited 
ability to explicitly identify possible causal relation-
ships[31]. The model builder of logistic regression was 
able to select variables which were most strongly pre-
dictive of an outcome based on the magnitude of the 
standardized partial regression coefficients (β) and the 
associated odds ratios. 

In this article, we put four SNPs, which was selected 
by BPANN analysis, into model analyses by GMDR 
software. We obtained an optimal model with statistical 
significance. The result suggested an interaction be-
tween the RXR-α  gene and RXR-α  gene. However, we 
failed to obtain an optimal model when all the 19 SNPs 

were included in the analysis without screening. There-
fore, we conclude that BPANN can be used to select in-
fluence factors commonly, especially for early screening 
of genetic factors. We can further analyze gene interac-
tions by using the results of screening, according to the 
ranking list of MIV as a relative stable reference.
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