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Abstract: Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent 

episome in infected cells. During latent infection, only a limited number of viral genes are 

expressed that help to maintain the viral episome and prevent lytic reactivation. The latent 

KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin 

marks at the promoter-regulatory region of the major immediate-early gene promoter. 

Various stimuli can induce chromatin modifications to an active euchromatic epigenetic 

mark, leading to the expression of genes required for the transition from the latent to the lytic 

phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene 

expression triggers a cascade of events, resulting in the modulation of various cellular 

pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA 

replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA 

replication of KSHV. In this review we will discuss some of the pivotal genetic and 

epigenetic factors that control KSHV reactivation from the transcriptionally restricted  

latent program.  
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1. Introduction 

Kaposi’s sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV 8) is one of the 

seven human oncogenic viruses, and is the etiologic agent of Kaposi’s sarcoma (KS, a multifocal, angiogenic 

and inflammatory malignancy of endothelial cell origin), as well as certain B-cell lymphomas, including 

primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD) [1–3]. KSHV has been 

consistently detected in all four clinical forms of KS, including: classical KS, endemic KS in Africa, epidemic 

AIDS-related KS, and iatrogenic/organ-transplant KS. Lately, a newly characterized KSHV-associated 

condition, abbreviated as KICS (KSHV Inflammatory Cytokine Syndrome) has been reported in patients 

with HIV and KSHV co-infection, displaying elevated levels of interleukin-6 (IL-6) production [4]. In 

healthy seropositive individuals, KSHV causes persistent infection by establishing latency in CD19+ 

peripheral B-lymphocytes [5]. 

Since its initial discovery, there has been intense research on understanding the molecular biology of 

KSHV-mediated tumorigenesis [6]. KSHV is a γ2-lymphotropic-oncogenic-herpesvirus and is 

genetically linked to the Epstein-Barr virus (EBV), murine γ-herpesvirus-68 (MHV-68), and herpesvirus 

saimiri (HVS) (reviewed in [7]). Similar to the other members of herpesvirus family, KSHV enters the 

host cell as a linear double-stranded DNA genome (160–175 kb), encapsidated in an icosahedral protein 

capsid that is surrounded by a tegument layer and an outer lipid bilayer envelope containing 

glycoproteins (reviewed in [8]). Upon infection, viral DNA is delivered to the nucleus, where it 

circularizes to a functional circular minichromosome and persists as a non-integrated episome for the 

lifetime of the host (reviewed in [9]). 

Inside the host cell, KSHV exhibits a biphasic life cycle consisting of a life-long reversible latent 

phase and a transient lytic reactivation phase, which are distinguished by their virtually distinct gene 

expression profiles [10]. During latent infection, KSHV genome persists as a circular episome in the 

infected cell with a restricted latent gene expression without the production of progeny virions. The 

limited region within the KSHV genome, which is transcriptionally active during latency, encodes for 

four major open reading frames (ORFs), consisting of ORF73/Latency-associated nuclear antigen 

(LANA), ORF72/viral-cyclin (v-Cyc), ORF71/viral FLICE-inhibitory protein (v-FLIP), and 

ORFK12/Kaposins, along with 18 mature miRNAs (at last count) and viral interferon regulatory  

factor-3 (vIRF3) (reviewed in [11]). KSHV has a propensity to cause latent infection that is tightly 

regulated by the host immune responses and has been reported to play a significant role in the 

development of KSHV-associated malignancies. Since the KSHV genome does not encode any viral 

components required for latent DNA replication, Latency Associated Nuclear Antigen (LANA), the 

multifarious latent protein, is considered necessary (and sufficient) for latent viral episomal DNA 

replication and segregation, ensuring equal distribution of replicated episomes to each daughter cell 

during mitosis. To achieve this, LANA binds to the LANA-binding sequences within the terminal repeat 

(TR) region of the KSHV genome and tethers it to the host mitotic chromosomes via interaction, with 

several cellular chromatin-binding proteins, followed by replication of the viral genome using a  

cis-acting sequence in the TR region as a replication origin [12]. 

Global analysis of the viral gene expression of KS tumor cells indicated that KSHV predominantly 

expresses viral latent transcripts with only a few percent of cells being lytically active at any specific 

given time [13]. The latent phase of the viral life cycle is reversible and can be reactivated to enter into 
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the second, well-ordered program of viral gene expression, i.e., lytic reactivation. This phase 

predominantly consists of: (1) KSHV Reactivation from latency, followed by (2) Lytic DNA Replication 

and virion production. Upon reactivation from latency, a full repertoire of lytic viral genes are activated 

in a temporally regulated manner, leading to the transcriptional activation of three classes of lytic genes, 

namely, immediate early (IE), early (E), and late (L) genes [14–16]. The cellular machinery is switched 

on for an extensive viral DNA replication and gene expression, resulting in the assembly and release of 

infectious mature virion particles that egress out of the cell on disruption of the host-cell membrane. 

KSHV reactivation and lytic replication are not only important for viral propagation but also critical for 

KSHV-induced tumorigenesis. 

Members of all three classes of lytic viral genes encode for proteins that assist in the formation  

of infectious virions [17]. The IE-lytic genes primarily govern the transition of KSHV genome from 

latent-to-lytic phase and consist of ORF50/RTA, ORF45, K8α, K8.2, K4.2, K4.1, K4, ORF48, ORF29b, 

K3, and ORF70. These genes are expressed within 10 h of induction and encode viral proteins that are 

directly involved in gene transcription and cellular modifications for viral replication. A series of studies 

have established that a single major IE-lytic protein-RTA acts as the quintessential latent-lytic switch 

that redirects KSHV to enter the productive transcriptional program required for viral spread and KS 

tumorigenesis. RTA protein (691 aa and 110 kDa) is the only viral lytic protein, both necessary and 

sufficient to disrupt latency and promote complete lytic cascade [18]. The RTA gene is reported to  

auto-activate its own promoter and transactivate the expression of multiple downstream lytic genes, 

including K8, K5, K2, K12, ORF6, ORF57, ORF74, K9, ORF59, K3, ORF37, K1, K8.1A, ORF21,  

vIL-6, PAN RNA, vIRF1, K1, and ORF65, either by itself (through RTA-responsive element, RRE) or 

in accord with other viral regulatory genes [19]. These E-lytic genes are expressed between 10–24 h 

post-induction and encode viral proteins primarily required for DNA replication and gene expression. 

The L-lytic genes that appear after 48 h post infection consist of viral structural proteins, including 

membrane glycoproteins (gB and K8.1), and a small viral capsid antigen required for assembly and 

maturation of the virions [20]. 

RTA plays an important role as both an initiator and a controller of KSHV lytic DNA replication [21]. 

Unlike latent DNA replication, lytic DNA replication: (1) depends on KSHV-encoded replication proteins; 

(2) initiates from a different origin (ori-Lyt); (3) replicates via a rolling-circle mechanism; and (4) leads 

to a multifold amplification of the viral DNA. The lytic origin of replication (ori-Lyt) consists of a specific 

origin binding protein (OBP) that plays a significant role in recruiting the core replication machinery to the 

site of replication. The two ori-Lyt domains, namely left ori-Lyt (ori-Lyt-L) and right ori-Lyt  

(ori-Lyt-R), are located between K4.2 and K5 and between ORF69 and ORF71, respectively, in the KSHV 

genome [22,23]. The ori-Lyts contain regions for various transcription factor-binding sites and RRE 

element that is essential for RTA-binding and ori-Lyt dependent DNA replication [22,23].  

Despite the induction of lytic cycle following KSHV infection, there is a rapid inhibition of RTA 

promoter that further decelerates the full-blown KSHV reactivation [24]. The mechanisms that regulate 

the temporally ordered activation and genome-wide repression of lytic genes during primary infection 

are beginning to be resolved [25]. As both phases of KSHV life cycle are important for the development 

of KS and associated disorders, further understanding of the underlying mechanisms that coordinate 

regulation of gene expression may advance our knowledge of KSHV virology and assist in designing 

preventive therapeutic agents against KSHV lytic replication and associated tumorigenesis. 
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KSHV reactivation is an extremely complex process that involves a combination of both viral and 

cellular factors including but not limited to, temporary or permanent immune suppression, oxidative 

stress, inflammatory cytokines, hypoxia, viral co-infection and treatment with chromatin modifying 

agents. Thus far, a number of factors have been reported to stimulate or inhibit major viral proteins, 

however, the physiological relevance of these stimuli or repressors is far from being fully elucidated. In 

the following sections of this review, we will summarize recent studies that highlight the activation of 

KSHV lytic cycle and replication and will primarily focus on the relevant physiological, environmental, 

cellular, and viral regulatory factors involved in the regulation of KSHV’s biphasic life cycle, gene 

expression, and viral infection. 

2. LANA and KSHV Reactivation 

The two major KSHV proteins-LANA and RTA are shown to interact with each other and control the 

switch between latency and lytic reactivation [26]. Studies from multiple research groups reported a 

tremendous increase in the expression of several IE-lytic genes including RTA, MTA, vIL-6, ORF59, 

and K8.1 in 293T cells following deletion of LANA, indicating LANA-associated repression of basal 

level of RTA promoter as well as other RTA-responsive promoters [27,28]. LANA is shown to interact 

with RTA promoter and inhibit RTA gene expression via functional interaction with a recombination 

signal binding protein for immunoglobulin κ J region (RBP-Jκ protein), which is a major transcriptional 

repressor of the Notch signaling pathway [29]. LANA-mediated repression of RTA promoter and RTA 

auto-activation depends on RBP-Jκ binding sites. LANA recruits RBP-Jκ protein to repress the expression 

of RTA gene and down-regulates RTA self-activation by competing with RTA in RBP-Jκ-binding. In 

addition, RTA protein itself contributes to the establishment of KSHV latency by activating LANA 

protein expression following de novo infection. Therefore, the molecular transition between latency and 

lytic reactivation is controlled by the interplay between LANA and RTA proteins in KSHV-infected cells. 

DNA methylation or CpG dinucleotide methylation, associated with the transcriptional silencing, also 

plays a key role in the induction of KSHV lytic cycle as the treatment of PEL-derived cell lines with 

DNA methyltransferase inhibitor, 12-O-tetradecanoylphorbol-13-acetate (TPA) or 5-Azacytidine (5-AzaC) 

caused demethylation of lytic promoters and induced KSHV lytic phase in vitro [30]. Bisulfite 

sequencing of latently infected BCBL-1 cell lines revealed hypermethylation of functionally conserved 

RTA gene of KSHV genome by de novo methyltransferases DNMT3a/DNMT3b and establishment of 

methylation marks exclusively on RTA promoter, leading to gene silencing during latency [30–32]. 

Recent studies by Grundhoff’s group reported a comprehensive tempo-spatial analysis of DNA methylation 

in several tumor-derived cell lines, as well as de novo infected endothelial cells using high resolution 

tiling microarrays together with immunoprecipitation of methylated DNA (MeDIP) [32]. These studies 

revealed that the KSHV genome is indeed subjected to hypermethylation at CpG dinucleotides, leading 

to the distinct, genome-wide DNA methylation patterns that include extensive methylation of lytic 

promoters followed by a poised state of repression during latency. 

Interestingly, post-translational modifications of LANA, such as arginine methylation, phosphorylation 

and SUMOylation, have been shown to down-regulate the expression of lytic genes during the establishment 

of latency [28,33–35]. Treatment of BCBL-1 cells with histone deacetylase inhibitors, including sodium 

butyrate (NaB) and trichostatin A (TSA), caused a rapid dissociation of LANA from the RTA promoter 
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and initiated transcription activation of RTA gene [28]. Furthermore, reports on phosphorylation of LANA 

by several kinases including glycogen synthase kinase (GSK-3β), DNA-PK/Ku and Pim-family kinase 

members, Pim-1 and Pim-3, have been reported to promote viral reactivation by negative modulation of 

LANA function [36–38]. LANA is also identified as a substrate for protein arginine methyltransferase 1 

(PRMT1) and methylation at R20 site is found to influence strong binding of LANA to the KSHV 

genome and repression of lytic genes [39]. LANA is proposed to enhance histones (H2A and H2B) 

SUMOylation on the local chromatin by recruiting SUMO-Ubc9 complexes through SUMO-binding, 

resulting in a condensed chromatin and silencing of the KSHV genome (reviewed in [40]). 

The early stage of KSHV infection is defined by the constitutive expression of latent genes, as well 

as temporally ordered expression of viral lytic genes. Recent genome-wide ChIP-seq studies described 

the epigenetic map of KSHV episomes during latency and indicated that chromatin of the KSHV genome 

is enriched with both active (H3ac or H3K4me3) and repressive histone marks (H3K9me3 and 

H3K27me3) [32,41]. Based on studies reported by several independent groups, KSHV-encoded latent 

genes are found to be associated with activating H3ac/H3K4me3-histone marks, whereas KSHV-encoded 

IE and E-lytic genes are found to possess either a H3ac/H3K4me3-rich euchromatin or a H3ac/H3K4me3 

and H3K27me3-rich bivalent chromatin, and L-lytic genes are found to have increased levels of 

heterochromatin-associated repressive H3K9me3 and H3K27me3-histone marks. In addition, H3K9 

histone demethylase JMJD2A, and H3K27 histone methyltransferase EZH2 of the Polycomb Repressive 

Complex 2 (PRC2), predominantly bind to the KSHV genome and their recruitment by LANA is shown 

to maintain H3K27me3-associated silencing marks on lytic genes and repress their expression during 

latency (reviewed in [9]). Decrease of H3K27me3 marks, by either transient expression of UTX/JMJD3, 

or by blocking with EZH2 of PRC2 complex, disrupts latency and induces lytic reactivation [32,41]. As 

LANA is continuously expressed following de novo infection/during latency and interacts with several 

transcriptional repressors (heterochromatin protein HP1α, methyl-CpG-binding protein MeCP2, histone 

deacetylase co-repressor mSin3 and DNA methyltransferases) and chromatin-remodeling proteins 

(H3K9me3 histone methyltransferase SUV39H1 and hSET1 complexes, H3K9 demethylase KDM3A, 

histone acetyltransferase CBP, histone deacetylase mSin3 and chromatin transcription complex FACT), 

it is evident that LANA helps to silence lytic gene expression and promotes KSHV latency through 

epigenetic control [42–47]. 

3. Stimulus Triggering KSHV Reactivation 

Thus far, several PEL-infected cells, endothelial cells, CV-1, human fibroblasts and HEK cells are 

known to maintain KSHV in the latent form that can be induced to enter the complete productive cycle 

of KSHV, following treatment of cells with the broad-spectrum protein kinase C-activator (TPA) or histone 

deacetylase inhibitor (NaB) (reviewed in [48]). As a result, these cell lines serve as an authentic tumor 

model to study KSHV life cycle, providing several insights into the numerous cellular pathways that 

control viral reactivation. As these chemicals target numerous cellular and viral pathways, it appears that 

more than one mechanism is necessary to reactivate KSHV. More recently, KSHV was found to 

efficiently infect, immortalize, and transform, rat embryonic metanephric mesenchymal precursor (MM) 

cells [49]. KSHV-transformed MM cells (KMM) support the growth of KSHV-induced tumors, hence, 
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providing a novel animal model to study the intrinsic oncogenic pathways underlying KSHV latency  

and reactivation. 

3.1. Viral Co-Infection 

While KSHV infection appears to be necessary for the development of KS, the immunodeficiency 

appears to be another significant factor, as the immunosuppressed patients are often susceptible to many 

other infectious agents [50]. Several viral proteins, including HIV-1 trans-activating protein (HIV-1 tat) [51], 

HIV-1 negative factor protein (HIV-1 Nef) [52], herpes simplex virus type 1 (HSV-1) [53], herpes 

simplex virus type 2 (HSV-2) [54], human cytomegalovirus (HCMV) [50], human herpesvirus-6 (HHV-6), 

herpes simplex virus type 2 (HSV-2) [54], human cytomegalovirus (HCMV) [50], human herpesvirus-6 

(HHV-6) [55], human herpesvirus-7 (HHV-7) [56], and papillomavirus [57] are proven to be potent 

cofactors that can activate KSHV lytic replication and influence KSHV pathogenesis. In addition, it has 

been demonstrated that inflammatory cytokines, such as oncostatin M (OSM), hepatocyte growth factor 

(HGF), interferon-γ (IFN-γ) [58], and toll-like receptors 7 and 8 (TLR7/8), when stimulated by viral 

infections, can trigger KSHV reactivation (reviewed in [59]). 

3.2. Hypoxia 

As an important co-factor, hypoxia (low tissue oxygen concentration) is physiologically linked with 

the initiation and progression of KSHV-associated cancers and known to induce the accumulation of 

hypoxia-inducible factors (HIF-1α/2α) (reviewed in [59]). Hypoxic stress in PEL cells is shown to 

stimulate KSHV lytic reactivation through accumulation of HIF-1α within the hypoxia-responsive 

elements (HRE, 5'-RCGTCG-3') region of RTA promoter, and accumulation of HIF-1α/2α within the 

HRE2 regions of ORF34-37 promoters. Hypoxia also triggers the activation of plasma cell-differentiation 

factor X-box binding protein 1 (XBP-1) that trans-activates the KSHV RTA promoter with HIF-1α, leading 

to the expression of RTA protein and reactivation from latency [60]. Splicing of XBP-1 mRNA, an event 

that occurs during B-cell differentiation, is also critical for disrupting latency and promoting KSHV 

reactivation, with the possibility of integration of latter into the host cell differentiation program. In 

addition, under hypoxic conditions, LANA is reported to interact with HIF-1α bound to HREs within 

the RTA promoter to upregulate its gene expression [61]. Recent studies by Cai et al. have demonstrated 

that LANA interacts with a new host nuclear protein and hypoxia-sensitive chromatin remodeler, KAP1 

(KRAB-associated protein 1), through its SUMO-2 interacting motif (LANASIM), and recruits it to the 

lytic promoter region of the KSHV genome for transcriptional repression [62]. Inhibition of KAP1 in 

KSHV-infected PEL cells enhanced the hypoxia-induced lytic reactivation through association of  

RBP-Jκ with HIF-1α within the RTA promoter region [63]. In KSHV-harboring cells, shRNA knockdown 

of KAP-1 resulted in the induction of lytic genes and a five-fold increase of RTA-mediated  

lytic reactivation. 

3.3. Oxidative Stress and Reactive Oxygen Species (ROS) 

As all forms of KS are characterized by increased levels of inflammation and oxidative stress, it is 

postulated that reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), mediate KSHV 
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reactivation from latency (reviewed in [59]). A recent report showed that hypoxia and pro-inflammatory 

cytokines-mediated spontaneous KSHV reactivation and lytic replication are supported by hydrogen 

peroxide (H2O2) through both autocrine and paracrine signaling [64]. H2O2 is sufficient for inducing and 

mediating KSHV lytic replication in KS tumors by activating ERK1/2, JNK, and p38 mitogen-activated 

protein kinase (p38 MAPK) pathways [65]. Significantly, treatment with antioxidant/H2O2 scavengers; 

N-acetyl-L-cysteine (NAC), catalase and glutathione peroxidase inhibits KSHV lytic replication and 

tumor progression in vivo and slows down the development of KSHV-induced lymphoma in a mouse 

xenograft model [64]. Another study reported that, in infected PEL cell lines BC-3 and BCBL-1, increased 

levels of reactive oxygen species (ROS) may induce oxidative stress that can trigger transcriptional 

activation of KSHV lytic cycle and promote cell death [66]. Additionally, ROS levels can be upregulated by 

NF-kB inhibition and treatment of infected cells with an increased amount of NF-kB inhibitor than used 

for inducing KSHV reactivation,,can further elevate ROS levels and induce apoptosis [66]. In addition, 

p38 signaling and anti-cancer drugs (cisplatin and arsenic trioxide) are found to induce KSHV lytic cycle 

and host cell death in an ROS-dependent manner [66]. These results directly relate KSHV reactivation 

to oxidative stress and inflammation, suggesting that the antioxidants and anti-inflammation drugs could 

be potential drugs for effectively targeting KSHV lytic replication and KSHV-associated tumorigenesis. 

3.4. Histone Deacetylases and Histone Deacetylase Inhibitors (HDACs and HDACi) 

Several research groups have reported that HDAC Class I, II, and III can regulate KSHV reactivation, 

and activation of lytic gene expression can be triggered by treatment of KSHV latent cells with HDAC 

inhibitors [9,67,68]. HDACs are a group of enzymes that remove acetyl groups from ε-N-acetyl lysine 

amino acids in histones/proteins and play an important role in the regulation of gene expression. As 

mentioned earlier, during latency, IE and E-lytic genes possess bivalent chromatin associated with both 

repressive (H3K9me3 and H3K27me3) and activating (H3K4me3, H3ac and H3K9/K14-ac)-histone 

marks. In addition, previous studies showed that demethylation of H3K27me3 using UTX or dissociation 

of the histone methyltransferase EZH2, counteracts PRC2 repression of the RTA promoter [32,41]. In 

order to determine which HDAC classes (Class I and II) regulate KSHV latency and reactivation, five 

latently infected Vero- and PEL-cell lines were treated with a series of HDACi, including Valproic acid 

(VPA), trichostatin A (TSA), nicotinamide, sirtinol, tubacin, and NaB (Figure 1) [67]. The results indicated 

that HDAC class I inhibitors of were sufficient enough to induce KSHV virus and lytic gene expression 

with varied reactivation potential. Out of all the HDACi tested, VPA was found to be the most effective 

inducer of lytic cycle gene expression, followed by TSA. The data suggested that inhibition of HDAC 

class I molecules, alone, is sufficient to reactivate KSHV but the inhibition of class I and IIa molecules, 

together, is optimal for reactivation [67]. 

Additionally, Gao’s research group recently determined the role of Class III HDACs inhibitors or 

sirtuins (SIRTs) on the KSHV life cycle and reactivation by treatment of KSHV-positive PEL cell lines 

(BCP-1, BC-3 and BCBL-1) with three distinct HDACi, namely-nicotinamide (NAM), sirtinol and  

NaB [68]. The studies revealed that both NAM and sirtinol could efficiently reactivate KSHV from 

latency. In addition, it was shown that SIRT1 is involved in the control of latency and can prevent the 

expression of several downstream genes due to its interaction with the RTA promoter [68]. 
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Figure 1. A model for the chromatin landscape of RTA promoter during KSHV latency and 

lytic reactivation. During latency, the chromatin of RTA promoter is enriched in both activating 

(H3ac/H3K4me3) and repressive (H3K27me3)-histone marks, as well as the transcription 

repressors (Polycomb Repressive Complex 2 and HDACs), hence, the RTA promoter is 

transcriptionally silent. Following reactivation, the bivalent chromatin of RTA promoter is 

remodeled into transcriptionally active euchromatin by histone modifying enzymes, such as 

histone acetylases (HAT/CBP), H3K27me3 demethylase (UTX/JMJD3), H3K4 

methyltransferase (MLL complex), and inhibitors of HDACs (Valproic acid, trichostatin A, 

NaB, nicotinamide, sirtinol, tubacin, and SIRTs, leading to the production of infectious KSHV 

virious and progression of KSHV-induced malignancies. 

3.5. Dietary Supplements 

A recent report determined that Resveratrol (Rev), an important dietary supplement, inhibits  

KSHV reactivation by altering the interactions between early growth response-1 (Egr-1) and the RTA  

promoter [69]. Electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) 

experiments revealed that Egr-1, a cellular transcription factor known to play a critical role in the 

replication of several viruses, may potentially bind to the KSHV RTA promoter via at least two different 

GC-rich binding regions and follow a similar expression profile during de novo KSHV infection. Elevated 

cellular Egr-1 expression is reported to enhance viral RTA expression in a Raf > MEK > ERK-dependent 

manner [69]. Further, Rev is found to lower ERK1/2 activity and expression of Egr-1 in KSHV-infected 

cells, resulting in the suppression of virus reactivation from latency, though the precise mechanism by 

which Rev regulates KSHV reactivation is still unclear [69]. 
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4. Role of Viral and Cellular Proteins Important for Lytic DNA Replication 

KSHV lifecycle undergoes a transition between a dormant, latent phase and an active lytic replication 

phase [15,59]. KSHV lytic DNA replication requires the expression of at least eight viral genes 

including: ORF9 (DNA polymerase), ORF6 (single-stranded DNA binding protein), ORF40/41 

(primase-associated factor), ORF44 (helicase), ORF56 (primase), ORF59 (processivity factor), ORF50 

(replication and transcription activator or RTA), and ORF K8 (K-bZIP) [70,71]. RTA, an immediate early 

protein, is the most important protein required for the activation of lytic replication, transcription 

initiation, as well as recruitment of additional factors (reviewed in [48,59,72]). This section will describe 

several viral, as well as cellular, proteins that are important for lytic reactivation.  

4.1. Viral Factors 

4.1.1. K-RTA (KSHV Replication and Transcription Activator) 

KSHV encoded ORF50/ RTA (replication and transcription activator), is a key regulator for the lytic 

reactivation from viral latency [15,73]. Expression of RTA is both essential and sufficient for KSHV 

reactivation [71,73,74]. Genetic mutation of RTA results in impaired reactivation and lytic DNA 

replication [75]. RTA has been reported to be phosphorylated [76,77], Poly (ADP-ribosyl)ated [77] and 

ubiquitinated [78]. RTA also autoactivates its own promoter [19] and transactivates other important lytic 

genes, including vIL-6 [79,80] polyadenylated nuclear RNA (PAN) [81] ORF57 (MTA) [82], ORF59 

(PF8) [83,84], K-bZIP [82], vIRF1 (ORF-K9) [85], ORF-K1 [86], small viral capsid protein (ORF65) [87], 

ORF56 [88], SOX (ORF37) [89], vOX [90], and ORF52 [79]. RTA binds and transactivate many promoters 

containing K-RTA response element (RRE) [91]. KSHV LANA is also known to repress lytic 

reactivation, as well as RTA-mediated autoactivation [92]. LANA-mediated suppression of RTA 

autoactivation is dependent on RBP-Jκ, which competes with RTA for binding to RBP-Jκ [29]. Lytic 

reactivation results in the acetylation of LANA, leading to the dissociation of LANA from the ORF50 

promoter bound to Sp1 [28]. Genome-wide screening revealed a consensus RTA interaction motif, 

TTCCAGGAT(N)(0–16)TTCCTGGGA [93,94]. In addition, specific amplification of bound sequences 

in vitro showed a number of RTA direct binding targets [93], such as ORF8, ORFK4.1, ORFK5, PAN, 

ORF16, ORF29, ORF45, RTA, K-bZIP, ORFK10.1, ORF59, ORFK12, ORF71/72, vOX/vGPCR 

(ORF74), ORF-K15, the two oriLyts, and the miR cluster [94]. These variations indicate that RTA 

cooperatively binds to its targets by associating with other regulatory proteins [79,93]. Additionally, 

RTA activates its own promoter by binding to the Oct-1 transcription factor and RBP-Jκ [19,95]. 

Furthermore, RTA mediated transactivation of viral lytic promoters, such as MTA and thymidine kinase 

(TK, ORF21), depends on Sp1, octamer-binding protein-1 (Oct-1), and XBP-1 [96–98]. However, direct 

binding of RTA to its promoter is not critical for its autoactivation [95,99]. Several other recent studies 

have also shown that RTA is recruited to RREs through interaction with RBP-Jκ [100,101]. Similarly, 

in a recent study using recombinant viruses with deleted RBP-Jκ sites within RTA promoter showed an 

increased viral latency and a reduced efficiency for lytic replication [102]. In addition, RTA stimulates the 

Notch signaling pathway, RTA mediated intracellular-activation of Notch1 is sufficient to reactivate 

KSHV from latency to the lytic replication cycle [103,104]. 
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RTA transactivation of viral promoters also depends on its interactions with other cellular proteins. 

RTA recruits CREB binding protein (CBP), the SWI/SNF chromatin-remodeling complex, and the 

TRAP/mediator coactivator into viral promoters [105]. RTA binding positively regulates Histone acetyl 

transferase (HAT) activity of CREB [106]. A recent report showed that RTA transactivates cellular Bcl-2 

through targeting of CCN9GG-like RTA responsive elements (RREs) for lytic reactivation and enhanced 

virion production [107]. Furthermore, it has been shown that K-RTA associates with a homologue of the 

Kruppel-associated box-zinc finger proteins (KRAB-ZFPs), for its transactivation function [108–110]. 

The co-repressor of K-RBP, Kruppel-associated box domain-associated protein-1 (KAP-1), is a cellular 

transcriptional repressor that regulates chromosomal remodeling, participates in the maintenance of 

latency by repressing lytic promoters [111]. During latency KAP-1 binds to viral lytic promoters to 

repress gene expression and depletion of KAP-1 is sufficient to induce KSHV reactivation [62]. Studies 

show that sumoylation and phosphorylation are required to regulate KAP-1 association with 

heterochromatin [62,111]. KAP-1 is phosphorylated at Ser 824, during lytic reactivation, resulting in 

decreased sumoylation and association to the condensed chromatin on viral promoters [111]. A recent 

study confirmed that KAP1 is targeted by KSHV-encoded latency-associated nuclear antigen (LANA) 

to repress the transactivation of K-RTA [112]. Additionally, knockdown of KAP1 in KSHV-infected primary 

effusion lymphoma (PEL) cells reduced viral episome stability and enhanced the efficiency of KSHV 

lytic reactivation by hypoxia, suggesting that both KAP1 and the cooperative interaction of RBS HRE 

within the RTA promoter are crucial for KSHV latency and hypoxia-induced lytic reactivation [63]. K-RTA 

interacts with K-bZIP, and increasing evidence indicates that repression of K-RTA transactivation by  

K-bZIP, a basic leucine zipper (bZIP) transcription factor encoded by KSHV, is essential for the 

modulation of lytic DNA replication by a feedback circuit [70,113,114]. RTA also interacts with C/EBPα, 

and the cooperative interaction of K-bZIP and RTA with C/EBPα is essential for the activation of  

K-bZIP promoter by binding to a proximal C/EBPα binding site [115]. The promoters of RTA, PAN, 

and MTA are activated through direct interaction of the C/EBPα and RTA complex [116]. K-RTA is 

also shown to be associated with viral ORF59, a processivity factor for viral DNA polymerase, and 

ORF45, a multifunctional tegument protein required for lytic replication [117,118]. 

Recent studies showed that K-RTA activity is regulated by its association with cellular peptidyl-prolyl 

cis/trans isomerases (PPIase), Pin1. Pin1 binds specifically to phosphorserine or phosphorthreonine-proline 

(pS/T-P) motifs in the K-RTA and enhances K-RTA transactivation [119]. Additionally, it has been 

shown that K-RTA is regulated by a 48aa small peptide, vSP-1, encoded by a polyadenylated RNA of  

3.0 kb (T3.0), transcribed from the opposite strand of the KSHV RTA (ORF50) DNA template. vSP-1 

associates with RTA at the protein abundance regulatory signal (PARS) motifs, and this interaction 

prevents RTA from degradation by ubiquitin-proteasome pathways, thus, facilitating KSHV lytic 

replication [120]. Apart from direct DNA interaction, RTA also cooperates with various host 

transcriptional factors to transactivate several downstream viral genes. Additionally, K-RTA exhibits an 

ubiquitin E3 ligase activity, RTA is auto-ubiquitinated and directs several cellular and viral proteins for 

proteasome-mediated degradation [121]. One of the cellular proteins targeted by RTA is Hey1, which 

interacts with repressor mSin3A. This, in turns, downregulates the expression of RTA by direct 

interaction with the RTA promoter [122]. RTA upregulates its own expression through  

ubiquitin-mediated targeting of Hey1 for degradation. Another cellular protein targeted by RTA 

mediated degradation is IRF-7, a critical modulator of type I IFN induction [78]. IFN signaling plays a 
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crucial role in repressing KSHV lytic replication, therefore, this finding indicates that RTA might 

circumvent these cellular innate immune defenses during lytic reactivation. Direct association of RTA 

to the origin of lytic DNA replication (oriLyt) has been demonstrated [21]; there are two distinct oriLyt 

regions in the KSHV genome [23]. The left oriLyt (oriLyt-L) lies between ORFK4.2 and K5 and is 

comprised of a region encoding numerous transcription factor binding sites, an A+T-rich region, and a 

G+C repeat. Similarly, the right oriLyt (oriLyt-R) is situated between ORF69 and vFLIP and is an 

inverted duplication of oriLyt-L. Importantly, both oriLyts contain RREs, and [123] a direct interaction 

of RTA to RREs is critical for oriLyt-dependent DNA replication [23,70,123]. The presence of RREs 

and a downstream TATA box indicate that this region may serve as an RTA-dependent promoter, and a 

transcription event may be required for oriLyt-dependent DNA replication [123]. Additionally, recent 

studies have identified that K-RTA is able to function as a STUbL, which is capable of ubiquitylation of 

SUMO and SUMO conjugates in vitro and in vivo. Thus, K-RTA is an ubiquitin ligase, preferentially 

targeting SUMO-containing proteins for ubiquitylation; including sumoylated K-bZIP and promyelocytic 

leukemia (PML) nuclear bodies [124]. Together, these results suggest that RTA is a master regulator of 

viral lytic DNA replication.  

4.1.2. ORF57-mRNA Transcript Accumulation (MTA) 

ORF57 is a viral early protein, which favors viral intron-less transcript accumulation, transports, and 

enhances splicing of intron-containing viral RNA transcripts [125]. MTA is essential for KSHV lytic 

replication, moreover, genetic knockout of MTA disrupts KSHV productive lytic replication [125,126]. 

MTA protein carries domains with putative transcriptional and post-transcriptional functions [127]. 

MTA directly associate with RTA and both proteins are detected in the RTA promoter during lytic 

replication. KSHV MTA associates with DNA, which was identified by gel shift and chromatin 

immunoprecipitation assays [127,128]. In addition, it has been shown that MTA directly associates with 

K-bZIP protein and binds to promoter as well as transcribed regions of PAN RNA, K4, and K-bZIP [129]. 

These reports suggest that MTA stimulates RNA export through its association with Aly/REF, a cellular 

RNA-binding protein acting as an adaptor for the nuclear RNA export receptor NXF1/TAP [130]. 

Additionally, recent studies suggest that Aly/REF-ORF57 association does not necessarily play any 

significant role in the ORF57-mediated enhancement of ORF59 expression, as Aly/RE knockdown in host 

cells did not affect the function of ORF57 [131,132]. MTA enhances the expression of RTA or other 

lytic genes, most probably by binding to transcription regulatory proteins. Further, MTA cooperates with 

RTA to modulate the viral gene expression in a cell-line-specific manner [127,128]. It is suggested that 

a putative A/T hook domain within MTA arbitrates DNA binding and transcriptional initiation [127]. 

MTA modulates a cascade of viral gene expression and accumulation of specific viral and cellular 

mRNAs during lytic replication [132]. Physical association of MTA and RTA is essential for the synergistic 

regulatory effect of MTA. When RTA’s transactivation function is removed, MTA no longer affects the 

expression of viral genes, indicating that their cooperative effect depends on RTA’s transactivation 

function [128]. It has been shown that MTA regulates mRNA accumulation. Further, a recent study 

employing a genome-wide CLIP (cross-linking and immunoprecipitation) approach detected KSHV 

PAN, a long non-coding polyadenylated nuclear RNA, as an important target of ORF57 [133]. Genetic 

disruption of ORF57 affects PAN RNA expression. In co-transfection experiments, expression of 
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exogenous ORF57 alone increased PAN RNA expression by 20–30-fold, which was due to the MRE 

(MTA responsive element) at the 5' PAN RNA, however, not as much on an ENE (expression and 

nuclear retention element) at the 3' end of PAN RNA. Further studies showed that the major function of 

the 5' PAN MRE is to increase the half-life of PAN in the presence of ORF57 [133]. Systematic 

mutational analyses identified a core motif, consisting of nine nucleotides, in MRE-II, which is essential 

for ORF57 interaction and function. The 9-nt core in MRE-II also interacts with cellular poly  

(A)-binding protein C1 (PABPC1) [134], but not E1B-AP5, which binds to another region of  

MRE-II [133]. In the presence of ORF57, PAN RNA is partially exportable, suggesting that ORF57 

functions to accumulate a non-coding viral RNA during the course of lytic infection [133,134]. 

Additionally, MTA is also shown to stabilize RNAs and activates translation of mRNAs that carry 

internal ribosome entry sites [135]. It has been also shown that KSHV ORF57 specifically binds to 

ORF59 RNA and associates with cellular RNA export cofactors RBM15 and OTT3 to enhance the 

expression of ORF59 [136]. 

4.1.3. KSHV K8-K-bZIP—Lytic Replication-Associated Protein (RAP) 

K-bZIP is a basic leucine zipper-containing protein encoded by KSHV K8 [137]. The K-bZIP gene 

locus consists of two promoters: one early promoter controlling K-bZIP and the second late promoter 

controlling K8.1 [91,138]. K-bZIP directly binds to K-RTA through K-bZIP’s basic domain and a 

specific RTA region [139,140]. Further, association of K-bZIP suppresses K-RTA transactivation of the 

MTA promoter in a dose-dependent manner [109,110]. Recent studies suggest that K-bZIP is not 

required for lytic reactivation in KSHV BACmid systems [114,141,142], however, it was reported to be 

crucial for virus production in infected PEL cells [143]. It has been shown that K-bZIP interacts with  

oriLyt [22,144–146] and is critical for oriLyt-dependent DNA replication in a plasmid-based transient 

expression system [70], but its absence can be complemented by an over-expression of RTA [145]. 

Similarly, association of cellular transcription factor CCAAT/enhancer-binding protein α (C/EBPα) to  

K-bZIP has also been shown to increase the expression and stabilization of C/EBPα and p21CIP1 proteins, 

followed by G0/G1 cell cycle arrest [18,115]. Similarly, KSHV bZIP can also bind to the positive 

regulatory domain I/III region of the IFNb promoter to block IRF3-mediated IFNb  

transcription [147,148]. In addition, K-bZIP represses the RTA autoactivation [139] and colocalizes with 

HDAC1/2 through the leucine zipper domain without the requirement of sumoylation of K-bZIP [149]. 

K-bZIP is phosphorylated on residues Thr111 and Ser167 by a serine/threonine protein kinase (vPK) 

encoded by ORF36 [146,150]. However, phosphorylation at T111 has a negative effect on both the extent 

of sumoylation and the repressive activity of K-bZIP [150]. K-bZIP is sumoylated at residue lysine 158, 

and this sumoylation is essential for K-bZIP mediated transcription repression [146]. As a SUMO 

adaptor, KbZIP represses transcription by recruiting Ubc9 to specific viral promoters [146]. In addition, 

it has been shown that K-bZIP functions as the viral SIM-containing poly-SUMO-specific E3 ligase, with 

specificity for SUMO-2/3 [35]. Further, K-bZIP catalyzes its auto-sumoylation and the sumoylation of 

other K-bZIP-interacting proteins, such as p53 and pRB [148].  

A genome-wide analysis of K-bZIP’s transcriptional regulation on KSHV gene promoters showed 

that RTA activated 34 viral promoters whereas K-bZIP alone activated 21 promoters [140]. Nonetheless, 

when RTA and K-bZIP were combined together, K-bZIP was found to repress three RTA-responsive 
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promoters, suggesting that K-bZIP might also transactivate some viral lytic genes during KSHV 

reactivation [140]. These data strongly suggest that K-bZIP plays a crucial during lytic gene expression 

and DNA replication in PEL cells [140,151]. Further, K-bZIP also directly binds to oriLyt, indicating 

that K-bZIP might be playing a crucial in lytic DNA replication [70]. Further, the interaction of K-bZIP 

with oriLyt is also modulated by LANA expression [145]. Taken together, these studies show that K-bZIP 

has dual independent functions in modulating the KSHV life cycle by facilitating lytic DNA replication 

or repressing the lytic gene expression as a feedback modulator [145]. Together with these results, 

knockdown of K-bZIP in latently infected BCBL-1 and BC-3 cells showed a significant reduction in the 

expression of RTA, MTA, and ORF26 transcripts, as well as decreased RTA and ORF-K8.1 protein 

levels, as well as defective viral DNA replication and virion production [143]. Collectively, these results 

suggest that K-bZIP regulates its own expression and possibly other RTA-transactivated lytic genes by 

a feedback loop. 

4.1.4. ORF59- Viral Processivity Factor 

Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF59 plays a critical role in viral lytic DNA 

replication as a DNA processivity factor to the viral DNA polymerase (ORF9) [70,83]. ORF59 is highly 

upregulated during lytic reactivation and de novo primary infection. ORF59 forms a homodimer in the 

cytoplasm and associates with ORF9 to translocate it to the nucleus during lytic DNA replication [152]. 

ORF59 associates with C/EBPα binding motifs within oriLyt and this binding is K-RTA dependent, 

where K-RTA acts as an initiator of lytic replication. Additionally, disruption of the K-RTA–ORF59 

interaction by a dominant negative approach impairs oriLyt-dependent DNA replication [84]. This 

strongly suggests that the K-Rta-ORF59 interaction is crucial for lytic DNA replication. ORF59 is a 

phosphoprotein and is phosphorylated by KSHV viral Ser/Thr kinase, ORF36 primarily at Ser378, which 

is essential for ORF59's ability to bind to RTA and the oriLyt [83,84]. In a recent study, it has been 

shown that lytic infection of KSHV induces severe DNA double-strand breaks (DSBs) and impede  

non-homologous end joining (NHEJ) in host cells. Further, ORF59 was found to be associated with 

Ku70 and Ku86 and this association was dependent on DSBs, suggesting that KSHV lytic replication 

may induce tumorigenesis by causing DNA DSBs and interrupting the DSB repair of mechanism [153]. 

4.1.5. ORF6-Single Strand Binding Protein 

KSHV ORF6, a delayed-early gene encodes for a 126 kDa ssDNA binding protein that has been 

shown to participate in origin-dependent DNA replication [74,154,155]. The expression of ORF6 is 

regulated by RTA, which could bind to RBP-Jκ recognition site on the ORF6 promoter via interaction 

with the RBP-Jκ protein [95,155]. Genetic disruption analysis of the ORF6 gene, using the bacterial artificial 

chromosome (BAC) system, identified the functional role of ORF6 in lytic DNA replication. The mutant 

virus showed impaired DNA synthesis and failed to make progeny virions. Additionally, transient 

expression of ORF6 has rescued both defects, suggesting that ORF6 is critical for KSHV lytic  

replication [155].  
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4.2. Cellular Factors 

Several cellular signaling pathways are identified to be involved in the reactivation of KSHV from 

latency, such as PKCd [156], b-Raf/MEK/ERK [157], PKA [104], Notch and RBP-Jκ [95,158], p38 and 

JNK [159], Pim-1 and Pim-3 [160], PI3K and Akt [161], and TLR7/8 signaling [162]. Apart from these 

signaling pathways, a number of additional cellular factors also mediate KSHV reactivation [163–167] 

(Figure 2). It has been shown that intracellular calcium transport activates Ca++ dependent viral 

reactivation, and inhibition of calcineurin signaling, in turn, blocks KSHV reactivation [168]. Similarly, 

Protein kinase C delta (PKCdelta) plays a role in KSHV lytic replication [156]. Activation of the 

MEK/ERK, JNK, and p38 mitogen-activated protein kinase (MAPK) pathways play a central role during 

KSHV infection. Activation of the MAPK pathway, immediately after infection, enables the 

establishment of a successful KSHV infection [169,170]. Furthermore, MAPK pathways are induced 

during lytic reactivation [157,159,163]. Similarly, cellular MAP4K4 is also known to play a crucial role 

in inflammation, insulin resistance, and the invasiveness of several human malignancies [171,172]. 

Recently, it has been suggested that MAP4K4 act as a novel mediator of KSHV lytic reactivation from 

latency [172]. Similarly, yet another essential pathway mediating KSHV reactivation is the 

Raf/MEK/ERK/Ets-1 pathway [163]. Likewise, promoters of K-RTA, MTA, K-bZIP, and origins of 

lytic replication (oriLyt) have been shown to carry a functional DNA-binding site for AP-1 and are 

responsive to AP-1 activation [70,159,173]. During de novo infection, KSHV has been shown to induce 

MEK/ERK, JNK, and p38 MAPK pathways in human umbilical vascular endothelial cells (HUVEC). This, 

in turn, regulates AP-1 to facilitate its entry into the target cells and initiate a productive lytic replication at 

the early acute stage of infection [169,174]. Additionally, in latent KSHV-infected, cells these MAPK 

pathways modulate both spontaneous and TPA-induced KSHV reactivations and activate the expression 

of several transcription factors, such as AP-1 and Ets-1 [157,159,175]. 

KSHV lifecycle is also controlled by the viral protein, K-RTA by altering the Notch signaling 

pathway through binding with RBP-Jκ [95,101]. Additionally, Notch signaling and the expression of 

two Notch ligands (JAG1 and DLL4) are upregulated through KSHV genes, expressed during KSHV latent 

and lytic infection [176,177]. Similarly, Hypoxia-inducible factor (HIF) has been shown to induce 

numerous genes associated with angiogenesis and tumor growth, and the KSHV infected cells express 

elevated levels of HIF1α and HIF2α [177–179]. Furthermore, both LANA and vIRF3 have been shown 

to play roles in the stabilization of HIF1α via protein–protein interactions [61,178,180]. Secondary 

infections by other pathogens, such as HIV and bacteria, have been shown to trigger KSHV  

reactivation [162,181]. Similarly, short-chain fatty acids (SCFA) from periodontal pathogens suppress 

histone deacetylases HDAC1, EZH2, and SUV39H1 and downregulates the expression of silent 

information regulator-1 (SIRT1) to promote KSHV replication [182]. Cytokine-mediated JAK–STAT 

signaling also regulate various important biological processes, such as immune response, cell growth, and 

differentiation. KSHV infection has been shown to upregulate gp130 receptor expression, which leads 

to a constitutive phosphorylation of JAK2/STAT3 activation [183,184]. Further studies have revealed 

that both LANA and vGPCR play roles in the modulation of JAK2/STAT3 signaling to create angiogenic 

factors [185,186]. This is further confirmed by the LANA-mediated STAT6 phosphorylation through 

the inhibition of IL-4 for the maintenance of latency [187]. 
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Figure 2. Schematic representation of cellular signaling pathways involved in KSHV latency 

and reactivation. During latency, KSHV latent genes, including LANA, vFLIP, miRNA, and 

vCyclin activate and maintain various cytokine-mediated cell proliferation and angiogenesis 

pathways, such as JAK/STAT, PI3K/AKT/mTOR, cMyc, and NF-κB, to suppress KSHV 

lytic reactivation. The red line represents the inhibitory pathways involved in the 

maintenance of KSHV latency. Disruption of these signaling pathways by various stimuli, 

such as secondary infection by bacteria, viruses, hypoxia, inflammatory cytokines, and 

oxidative stress upregulate RTA expression resulting in KSHV reactivation. The solid black 

arrows represent signaling pathways that are activated during KSHV lytic reactivation. 

Moreover, RTA, as well as RTA-induced KSHV genes MTA and K-bZIP, have been shown 

to interact with XBP-1 and C/EBPα to modulate various cellular signaling pathways. 

Deregulation of these cellular signaling pathways, such as MAPK, PKCd, b-Raf/MEK/ERK, 

PKA, Notch, RBP-Jκ, JNK, Pim-1/Pim-3, and TLR7/8 signaling by RTA lead to the 

reactivation of latently infected KSHV cells to lytic replication. This figure is adopted and 

modified from a previous review [59]. 

KSHV has evolved multiple mechanisms to manipulate cellular anti-apoptotic and survival pathways 

and disruption of these pathways reactivates KSHV [188–190]. Apart from AP-1, NF-κB also antagonizes 

RBP-Jκ to impair the expression and transactivation function of RTA [190]. Furthermore, inhibition of 

NF-κB pathway in latently infected cells disrupts viral latency and activates viral lytic replication [191]. 
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However, the available data suggest that the role of the NF-κB pathway in the KSHV life cycle is context 

dependent [192]. It is very likely that the balance of AP-1 and NF-κB pathways decide the fate of virus 

replication status in a particular cell type [174,193,194]. Consistent with these findings, a recent study 

showed that inhibition of the pro-survival PI3K-Akt pathway favors KSHV reactivation from  

latency [195]. Furthermore, inhibition of the Akt pathway reactivates KSHV from latency by increasing 

the RTA expression [195]. KSHV encoded proteins are also known to modulate the cellular phosphatidyl  

inositol-3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway to control 

cell proliferation. Cellular PI3K/AKT/mTOR signaling is a common to many growth factors and 

cytokine receptors [196]. However, thus far, only a few KSHV proteins have been shown to regulate 

PI3K/AKT/mTOR signaling, which include K1 [197,198], (vGPCR) [199,200], vIL-6 [183,201], and 

ORF45 [170,202].  

5. Lytic Proteins in Controlling Immune Regulation and Pathogenesis 

Lytic reactivation results in an expression of several KSHV lytic proteins (Table 1). Many of the 

proteins encoded by KSHV lytic genes also have pro-growth or transforming abilities. Major functions 

of KSHV lytic proteins include cellular proliferation and evading the host’s immune response. The immune 

functions targeted by viral proteins include IFN production, interferon regulatory factor (IRF) activation, 

complement activation, inflammasome, and chemokine activation (Figure 3). 

Table 1. KSHV lytic proteins involved in immune modulation and pathogenesis. 

KSHV genes KSHV proteins Function References 

K1 
Variable ITAM-Containing 

Protein (VIP) 

Type I transmembrane signaling protein containing a 

functional immunoreceptor tyrosine-based activation 

motif. Regulate membrane transport in B cells. 

[203] 

K2 Viral Interleukin-6 (vIL-6) 

Homologues of cellular IL-6. Activate JAK/STAT, 

MAPK, and PI3K/Akt signaling pathways to 

regulate B-cell proliferation. 

[51,204] 

K3/K5 
Modulator of immune 

recognition (MIR1/MIR2) 

Viral E3 ligases capable of ubiquitinating MHC-I, 

ICAM-1, B7-2, Tetherin (CD317/BST2), DC-SIGN, 

and DC-SIGNR. 

[205,206] 

K4/K4.1/K6 
Viral CC-Chemokine 

Ligands (vCCLs) 

Homologues of cellular chemokines: viral  

CC-chemokine ligand 1 vCCL1 (vMIP1),  

vCCL2 (vMIP2), and vCCL3 (vMIP3), respectively.  

Blocks signaling through chemokine receptors. 

[207,208] 

K7 
Viral Inhibitor of 

Apoptosis (vIAP) 

Interact with cellular proteins PLIC1, caspase  

3/Bcl-2, CAML, Vps34, and promote cell  

survival during lytic replication. 

[209,210] 

K9/K10/K11 

KSHV interferon 

regulatory factors (vIRF-1, 

vIRF-2, vIRF-3 and vIRF-4) 

Homologues of cellular interferon: Inhibitor of 

IFN1, p53, NFκB RelA, and p300. 
[211,212] 

K14 vOX2 or vCD200 
Homologues of cellular OX2. A negative regulator 

of inflammatory signaling and surface glycoproteins. 
[213,214] 

  



Viruses 2015, 7 132 

 

 

Table 1. Cont. 

KSHV genes KSHV proteins Function References 

K15 Viral membrane protein 

Regulation of cellular signaling to induce various 

pro-survival and paracrine-mediated pro- angiogenic 

cellular cytokines and chemokines, including IL6, 

IL8, IL-1a/b, CXCL3, and Cox2. 

[215,216] 

ORF4 
KSHV complement 

Control protein (KCP) 

Homologue to cellular RCA. Regulate complement 

activation by increasing the decay of the classical  

C3 convertase. 

[217–219] 

ORF45 ORF45 
Inhibit type1 IFN induction by sequestering the 

cellular interferon regulatory factor-7 to cytoplasm. 
[220,221] 

ORF63 ORF63 
Homologue to cellular inflammasome  

complex NLRP1. 
[222] 

ORF64 Viral deubiquitinase 

A non specific deubiquitinase, shown to 

deubiquitinate RIG-I to suppress RIG-I-mediated 

activation of the IFNb. 

[223] 

ORF74 
Viral G-protein-coupled 

receptor (vGPCR) 

Homologue of cellular IL-8 receptor. vGPCR induce 

secretion of proinflammatory cytokines and 

angiogenic growth factors. 

[200,224] 

ORF75 ORF75 A viral effector for the degradation of ND10 proteins. [225,226] 

PAN RNA 
Polyadenylated Nuclear 

RNA 
Modulator of viral gene expression. [227–230] 

KSHV employs diverse mechanisms for controlling both IFN production and signaling as IFN is a 

potent antiviral defense that is critical for KSHV persistence [231]. The genomic region encompassing 

ORFs K9 to K11 encodes KSHV vIRFs 1-4 [232]. vIRF1 can bind to and disrupt the transcriptional 

activities of IRF1, IRF3, and IRF7 [211,212]. Additionally, vIRFs 1, 3, and 4 have been shown to inhibit p53 

activity via, either direct binding to the tumor suppressor (vIRF-1 and vIRF-3), or through association 

with ATM kinase or via stabilization of MDM2, which induces ubiquitination and proteasomal degradation 

of p53 [233,234]. Similarly, KSHV viral interleukin-6 (vIL6), encoded by ORF K2, shares many functional 

characteristics with human IL6 and, as a result, the viral cytokine can activate gp130 and downstream 

signaling pathways, including the JAK/STAT, MAPK, and PI3K/Akt pathways [204,235]. These 

pathways regulate a variety of transcription factors and response elements (RE), such as the STAT1/3 

and STAT5 IL6 RE, C/EBP, and c-jun promoter IL6 RE (JRE-IL-6) [236]. A viral homologue of the 

cellular angiogenic IL-8 receptor [224], vGPCR has been shown to activate a number of crucial signaling 

pathways, including PLC, PKC, MAPK, PI3K/Akt/mTOR, and NFκB [237]. Downstream signaling 

from these pathways activates the AP1, NFAT, NF-kB, HIF-1a, and CREB transcription factors, which, 

in turn, contribute to vGPCR-mediated production of pro-inflammatory cytokines and  

chemokines [237]. 



Viruses 2015, 7 133 

 

 

 

Figure 3. Schematic representation of lytic proteins in immune regulation and pathogenesis: 

The major immune functions targeted by viral lytic proteins include IFN production, interferon 

regulatory factor (IRF) activation, complement activation, inflammasome and chemokine 

activation. Regulating both IFN production and signaling is a potent antiviral defense, vIRF 

can bind and disrupt the transcriptional activities of IRF1, IRF3, and IRF7. Additionally, vGPCR 

is a constitutively active homologue of the IL8 receptor. vGPCR activates various cell signaling 

pathways and transcription factors to enhance the production of pro-inflammatory chemokines 

and cytokines, such as vIL-6. Furthermore, KSHV-encoded KCP regulates complement by 

increasing the decay of the classical C3 convertase. 
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Many of the KSHV K-gene encoded lytic proteins have also been shown to modulate KSHV infection 

and pathogenesis. Multifunctional transmembrane glycoprotein K1 encoded by the first ORF of KSHV 

can constitutively activate multiple pro-growth signaling pathways in KSHV-infected cells. [238]. 

Oligomerization of K1 trigger auto-phosphorylation of ITAM and activate various Src homology 2 

(SH2) containing signaling proteins, including PI3K (p85)/Akt, PLCg, Vav, Syk, Lyn, RasGAP, and 

Grb2 [239,240]. Similarly, it has been shown that K15-activated cellular signaling pathways induce the 

transcription of a number of cellular cytokines and chemokines, including IL6, IL8, CCL20, CCL2, 

CXCL3, IL-1a/b, and Cox2 [215,216]. Additionally, KSHV K7 or viral inhibitor of apoptosis (vIAP), is 

a homologue of cellular Bcl-2 proteins and contains a putative mitochondrial-targeting signal and 

localizes to mitochondria and ER [210,241]. It has been reported that K7/vIAP inhibits caspase 3 activity 

by interacting with cellular Bcl-2 via its BIR (baculovirus IAP repeat) [210]. Furthermore, KSHV K3 

and K5 (also called modulator of the immune recognition (MIR) 1 and 2, respectively) are viral E3 

ligases capable of ubiquitinating the MHC-I cytoplasmic tail to trigger internalization and proteasomal 

degradation of the MHC-I complex [205,242,243]. K3 and K5 proteins also have been shown to 

downregulate both C-type lectins, DC-SIGN, and DC-SIGNR by ubiquitin mediated degradation [206]. 

Similarly, KSHV K6, K4, and K4.1 encode three homologues of cellular chemokines:  

viral CC-chemokine ligand 1 vCCL1(vMIP1), vCCL2 (vMIP2), and vCCL3 (vMIP3),  

respectively [154,244,245]. Apart from immune evasion properties, v-chemokines also have been shown 

to promote angiogenesis through the induction of VEGF [246,247]. KSHV-encoded early lytic protein 

K14 is another negative regulator of inflammatory signaling and surface glycoprotein (vOX2). K14 

shows significant homology with OX2 or CD200, a member of the immunoglobulin superfamily that is 

broadly distributed on the cell surface [90]. vCD200 promotes the secretion of proinflammatory cytokines 

on stimulation of monocytes, macrophages, and DCs through a direct interaction with cellular CD200R, 

inhibiting myeloid cell activation and reducing Th1-cell-associated cytokine production [214,248]. 

Furthermore, KSHV-ORF4-encoded inhibitor of the complement system, designated as KSHV 

complement Control Protein (KCP) [217,249,250], regulates complement by increasing the decay of the 

classical C3 convertase and acting as cofactors for the inactivation of C3b and C4b, components of the 

C3 and C5 convertases [251,252]. Similarly, KSHV encoded ORF45, an immediate early gene product, 

plays a crucial role in lytic replication [253]. ORF45 has been shown to inhibit type1 IFN induction upon 

infection by sequestering the cellular interferon regulatory factor-7 (IRF-7) to the cytoplasm [220,221]. 

It has been shown that ORF45 can also regulate eIF4B phosphorylation in an mTOR and MAPK independent 

manner. Additionally, the ORF45 protein is also involved in the transport of the viral capsid-tegument 

complexes along the microtubule filaments [254]. 

It has been also been shown that KSHV encoded tegument protein, ORF75 is an essential protein as 

a new viral effector [255] for the degradation of ND10 proteins, thereby regulating lytic replication and 

KSHV infection [225]. In addition, the ORF75 also has been shown to induce the degradation of ATRX 

and relocalization of Daxx, as well as be involved in NF-kB coactivation with KSHV  

K13/vFLIP [225,256]. Similarly, KSHV encoded ORF64 is a deubiquitinase that non-specifically targets 

K48 or K63 ubiquitination. It has been shown that KSHV ORF64 is capable of deubiquitinating RIG-I 

to suppress RIG-I-mediated activation of the IFNb promoter [223]. Studies showed that KSHV ORF63 has 

homology to parts of cellular inflammasome complex NLRP1 [222,257]. This ORF63 function seems to 

be critical for supporting viral gene expression and genome replication, as well as suppressing IL-1b 
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production [222,258]. Additionally, KSHV encoded structural PAN RNA has been also shown as a 

multifunctional transcript that can globally control viral and cellular gene expression during lytic 

reactivation [259] through direct interaction with chromatin modifying complexes, such as components of 

PRC2 [228,229]. PAN RNA interacts with demethylases, UTX, and JMJD3 to modify the suppressive 

H3K27me3 mark within the KSHV genome [260]. Moreover, PAN RNA expression decreased the 

expression of interferon γ, interleukin 18, interferon α16, and RNase L [229]. 

6. Conclusions 

Kaposi’s sarcoma associated herpesvirus (KSHV) modulates various cellular pathways by which it is 

able to establish and maintain persistent infection in the host to initiate tumorigenesis. Several of these 

latent viral and lytic proteins are known to transform host cells, linking KSHV with the development of 

severe human malignancies. These virus-induced cancers pose a large threat to global public health, 

specifically in areas that are still struggling with malignancies associated with HIV-AIDS with limited 

treatment options. Over the years, tremendous progress has been made in elucidating the molecular 

mechanisms of KSHV latency and lytic replication. Nonetheless, there are still vast aspects of viral 

infection and transformation that are not well explored. With the help of rapid advancements in modern 

technology, it is presumed that a thorough knowledge of the KSHV life cycle will be achieved over the 

next few years. Further understanding of the unique mechanisms that KSHV adopts for the establishment 

of successful lifetime persistence in the infected host will eventually pave the way for novel therapeutic 

approaches for the treatment of KSHV diseases. 
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