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Abstract: The validation of a previously developed model of the interaction between the red pigment-
concentrating hormone of Daphnia pulex and its cognate receptor (Jackson et al., IJBM 106, 969-978,
2018) was undertaken. Single amino acid replacements, noticeably an Ala scan, of the ligand,
Dappu-RPCH, were docked to the receptor, and the binding energies calculated and compared to
the one with Dappu-RPCH. As a second step, the same molecules were docked using molecular
dynamics (MD) in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane. Changes
in binding energy were compared to previous results on in vitro receptor activation (Marco et al.,
Sci. Rep. 7, 6851, 2017). Residue scanning and MD simulations both gave comparable results for
binding energy. For most mutants, there was a good inverse correlation between in vitro activity
and binding. There were, however, exceptions; for example: [Ala4]Dappu-RPCH bound as tightly
as the cognate ligand but had little activity. This seeming discrepancy was explained when the MD
data were analyzed in detail, showing that, although [Ala4]Dappu-RPCH had multiple interactions
with the receptor accounting for the high binding energy, the interacting residues of the receptor
were quite different to those of Dappu-RPCH. The MD calculations show clearly that the strong
binding affinity of the ligand to the receptor is not sufficient for activation. Interaction of the binding
of the ligand to two residues of the receptor, Ser 155 and GIn 237, is also essential. A comparison
of our computational results with the experimental results of Marco et al. and comparison with the
extensive data on GnRH supports the validity of our Dappu-RPCH R model.

Keywords: crustacean red pigment-concentrating hormone receptor; Ala replacement scan; molecu-
lar docking of mutated ligands; G protein-coupled receptor

1. Introduction

The red pigment-concentrating hormone (RPCH) was the first invertebrate neu-
ropeptide that was fully structurally characterized as a blocked octapeptide
(pGlu-Leu-Asn-Phe-Ser-Pro-Gly-Trp amide) in 1972 [1]. It was isolated from the eyestalks
of a crustacean, the prawn Pandalus borealis, and is hence called Panbo-RPCH. The eyestalks
contain the neuroendocrine X-organ (synthesis of neuropeptides) and the neurohemal sinus
gland system (for storage and release of neuropeptides); this system is analogous to the
well-known vertebrate hypothalamo/hypophyseal system [2]. Functionally, RPCH effects
color change in the body integument by concentrating the red pigment granules in epithe-
lial chromatophores. RPCH is a member of the large adipokinetic hormone (AKH)/RPCH
family of peptides [3], which is one of three neuropeptide systems of which the mature
peptides as well as their cognate G protein-coupled receptors (GPCRs) are structurally
similar; the other two systems are called corazonin (CRZ) peptide family and adipokinetic
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hormone/corazonin-related (ACP) peptide family. All three systems are related to the
vertebrate gonadotropin-releasing hormone (GnRH) system and together form a large pep-
tide superfamily [4-6]. Panbo-RPCH is apparently restricted to the phylogenetically more
advanced crustaceans, i.e., a few orders of the class Malacostraca, but also occurs in some
orders of insects [7]. Water fleas of the genus Daphnia, which is a more basal crustacean, pro-
duce a modified RPCH (Dappu-RPCH: pGlu-Val-Asn-Phe-Ser-Thr-Ser-Trp amide) [8-11],
whereas another crustacean, the fish louse Argulus siamensis, is predicted to synthesize yet
another modified form (Argsi-RPCH: pGlu-Val-Asn-Phe-Ser-Thr-Lys-Trp amide) [12].

As most neuropeptides signal through GPCRs, this is true for the invertebrate sub-
phylum Crustacea as well. The first cloned crustacean GPCR is from the water flea,
Daphnia pulex [13], an important model organism for research that centers around ecotoxi-
cology, ecotoxigenomics and evolutionary ecology [14-17]. The red pigment-concentrating
hormone receptor of D. pulex (Dappu-RPCH R) belongs to the rhodopsin superfamily
of GPCRs and specifically binds the octapeptide crustacean red pigment-concentrating
hormone variant, which occurs in D. pulex (Dappu-RPCH), but whose function in the water
flea is unknown [13].

After the meteoric success of GPCRs as drug targets by pharmaceutical companies for
a wide variety of human illnesses and awarding of the Nobel Prize in Chemistry in 2012
for research on GPCRs (www.nobelprize.org), the potential to combat pest insect species
via its neuropeptide GPCR complement is being vigorously investigated at present [18,19].
Similar research in Crustacea is in its infancy, but receptor models and docking studies are
paramount to develop agonists or antagonists, the final product of which may be peptide
mimetics. It can be envisaged that studies on neuropeptide/cognate GPCR systems can be
beneficial to a number of practical areas, such as influencing reproduction and growth in
aquaculture, to name one example, in which neuropeptides are also involved.

For this reason, we have started experimental work on this first identified Dappu-
RPCH R system and treat it as a model for more applied work in future.

As a first step, we have previously used nuclear magnetic resonance and restraint
molecular dynamics studies to determine the secondary structure of the agonist, Dappu-
RPCH, in a membrane-mimicking environment [20,21]. Although the peptide is quite
flexible, two major conformers were established. Both contain 3-turns; one conformer has a
more open structure, whereas the other conformer’s structure is much tighter [20,21]. More-
over, a 3D model of the Dappu-RPCH R was constructed after the human 32-adrenergic
receptor was identified as the top template. Lastly, Dappu-RPCH was docked to its receptor
and details of the ligand /receptor interactions were calculated. Although the binding of
Dappu-RPCH to its receptor induced significant conformational changes in the ligand, the
B-turn was maintained. It is suggested that Dappu-RPCH binds to a pocket formed by
both loops and helices with the two termini pointing outwards [20,21].

In the present study, we intend to further validate this model by using specific ana-
logues to the cognate ligand and check their binding to the Dappu-RPCH R according to
the data from our previous model. At the same time, a comparison between the different
analogues should offer more insight into the mechanism of activation. The analogues have
been chosen to represent modifications of the cognate ligand that target the termini (N-
and C-terminus) and each amino acid side chain at positions 2 to 8. We also used some
other members of the AKH/RPCH family which are analogues of Dappu-RPCH, and we
checked a decapeptide to test whether the receptor can also accommodate the binding
of larger peptides. The choice of peptides was greatly influenced by a previous study,
where these peptides, including Dappu-RPCH, were tested for receptor activation in a
mammalian cell-based bioluminescence assay [13].

Docking results are not always reliable, because they only allow for limited move-
ment of the ligand and little movement of the receptor. For this reason, in the cur-
rent study, the molecular dynamics of the docked structure was also performed in a
membrane-mimicking environment.
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2. Materials and Methods
2.1. Residue Scanning

The previously determined structure of Dappu-RPCH docked to Dappu-RPCH R [20,21]
was used as the starting construct for residue scanning. This GPCR was built using the
2.4 A resolution crystal structure of the human B2-adrenergic receptor (PDB id: 2RH1) [22],
which was identified as the top template. Residue scanning was performed using the
Schrodinger software package [23] with a Prime side-chain prediction that included back-
bone adjustments. [Ace]Dappu-RPCH and [COOH]Dappu-RPCH were not included
in the residue scanning, as these are not mutation options of the Schrodinger software.
A non-bonded cut-off of 40 A was used for the Python Minimizer. As residue scanning
calculates relative binding energies, these were converted to absolute binding energies by
adding the binding energy of Dappu-RPCH. Table 1 depicts the structures of the peptides
that were docked: first, there was the Ala replacements series, in which each residue of
the endogenous ligand Dappu-RPCH was successively substituted with an Ala residue; a
few bio-analogs were used that occur in nature and have only one substitution compared
to Dappu-RPCH, as well as some single Gly replacements plus a decapeptide. In Table 1,
we also give the ECs( values, as published by Marco et al. [13] for receptor activation in a
mammalian-cell-based bioluminescence assay.

Table 1. Analogues of Dappu-RPCH together with their EC5 values tested on the Daphnia pulex
RPCH receptor according to [13]. Mutated residues are shown in red.

Peptide Name Peptide Sequence EC50 Value (M)
Dappu-RPCH pPQVNFSTSWamide 6.45E-11
[Ala2]Dappu-RPCH PQANFSTSWamide 1.77E-08
[Ala3]Dappu-RPCH PQVAFSTSWamide 1.56E-07
[Ala4]Dappu-RPCH PQVNASTSWamide 2.99E-07
[Ala5]Dappu-RPCH PQVNFATSWamide 3.61E-09
[Ala6]Dappu-RPCH PQVNFSASWamide 5.32E-10
[Ala7]Dappu-RPCH PQVNFSTAWamide 3.55E-10
[Ala8]Dappu-RPCH pQVNEFSTSAamide 1.31E-07
[Ace]Dappu-RPCH [NAc-Ala]-VNFSTSWamide 4.87E-08
[COOH]Dappu-RPCH PQVNFSTSW-OH 1.74E-08
Placa-HrTH pPQVNFSPSWGNamide 6.64E-10
[Pro6]Dappu-RPCH= Anaim-AKH pQVNEFSPSWamide 2.24E-10
[Gly7]Dappu-RPCH= Grybi-AKH PQVNFSTGWamide 6.67E-11
[Lys7]Dappu-RPCH=Argsi-RPCH pQVNEFSTKWamide 2.13E-8
[Gly8]Dappu-RPCH PQVNFSTSGamide -
[Gly5]Dappu-RPCH PQVNFGTSWamide -
[Gly6]Dappu-RPCH pPQVNFSGSWamide -

The results of docking the various modified peptides to the receptor gave a series of bind-
ing energy differences relative to the binding of the endogenous parent Dappu-RPCH ligand.

2.2. Molecular Dynamics

In order to mimic the plasma membrane [24], following residue scanning, the docked mu-
tation constructs were inserted into a POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)
membrane using the Schrédinger system builder. SPC water molecules were added, and
the construct neutralized by adding C1~ ions. The OPLS3e force field was used, and the
system relaxed using the default script. NPT molecular dynamics was performed for 50 ns
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at 300 K and a pressure of 1.103 bar, using DESMOND [23]. The final 30 ns were analyzed
using the ligands Simulation Interaction Diagram tool implemented in Maestro [25]. The
binding energy of each snapshot of the trajectory was calculated using the MMGBSA
approach, where the generalized Born model and solvent accessibility method are used to
elicit free energies for each structure [26]. The thermal mmgbsa.py python script, provided
by Schrédinger [23], was used to calculate the AGpinging for each snapshot. The same
process was repeated for other modifications of Dappu-RPCH; replacement of the blocked
N-terminal amino acid pyroglutamate with the blocked N-acetyl alanine and a replacement
of the amidated C-terminus with the free acid. Dynamics were also performed on the
naturally occurring decapeptide, Placa-HrTH, the core of which only differs from Dappu-
RPCH at amino acid residue six (Pro vs Thr) and is C-terminally extended by two amino
acids. Since the approach in this paper is more extensive than our previous study [21], the
calculations were also repeated for Dappu-RPCH.

3. Results and Discussion
3.1. Residue Scanning

Residue scanning is a quick method of comparing the relative binding energies of
two ligands to the same receptor. In this method, the parent ligand residues are sys-
tematically mutated to another amino acid—typically alanine or glycine. The change in
ligand /receptor free energy of binding, relative to the parent ligand, is then calculated.
Because such calculations allow for side chain optimization but for only limited movement
of the respective ligand within the binding pocket, they are quickly achieved.

The change in binding energy for each ligand is given in Figure 1, together with the
ECs5( values for those ligands that were previously tested on the Dappu-RPCH R-expressing
cells in an in vitro bioluminescent assay [13]. We hypothesized that we would see an inverse
relationship between the two parameters, because a high binding energy should result in a
low ECsg value. This is indeed the case, as depicted in Figure 1. For example, the authors
in [13] suggested that Trp8 is important for receptor activation. Thus, the ligand with an
Ala8 residue caused very weak receptor activation. Our calculations show exactly the same
trend: the AG binding energy is drastically lowered (Figure 1). In [13], it was also shown
that replacement with Ala at positions 5, 6 and 7 or with Pro at position 6 (=Anaim-AKH)
or Gly at position 7 (=Grybi-AKH) resulted in a strong receptor activation. The binding
results (Figure 1) support this conclusion in that all these mutations have binding energies
comparable to Dappu-RPCH. The only result that does not conform to our hypothesis is the
mutation of Ala4 (and, to a certain extent, for Ala3). Experimentally, these two mutations
had similar EC5( values to Ala8 [13].

3.2. Comparison of Residue Scanning and Molecular Dynamics (MD)

In practice, both the mutated ligand and the receptor could move to accommodate
binding of the ligand. Therefore, a more sophisticated set of calculations were performed:
the receptor with the ligand docked using residue scanning was placed in a hydrated POPC
membrane and its dynamics simulated for 50 ns. Regular snapshots of the trajectory were
then collected and used to calculate the mmgbsa binding energy. In Figure 2, the results of
the molecular dynamics calculation and the residue-scanning calculation are compared.
With the exception of [Ala5]Dappu-RPCH and [Ala6]Dappu-RPCH, there is agreement
between the two calculation methods. This reinforces the use of residue scanning for in
silico ligand screening, where rapid evaluation of a large number of ligands is needed.
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Figure 1. AGynging calculated for a series of mutated Dappu-RPCH ligands bound to Dappu-RPCH R, and the ECs) values
for the same ligands tested on Dappu-RPCH R-expressing cells in an in vitro bioluminescent assay [13]. Only those mutated
ligands are shown for which ECsy values did exist. Results for [Ace]Dappu-RPCH and [COOH]Dappu-RPCH are not
included as they were not residue-scanning, mutation options of the Schrédinger software.
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Figure 2. AGpjinding relative to Dappu-RPCH binding to Dappu-RPCHR (AGmutate — AGpappu)- Red bars are from residue
Scheme 50. ns simulation of the mutated ligand bound to the receptor in a POPC membrane. Results for [Ace]Dappu-
RPCH and [COOH]Dappu-RPCH are not included, as they did not have residue scanning, mutation options of the
Schrodinger software.

3.3. Molecular Dynamics

The full results on the free energy of binding determined from a molecular dynamic
simulation of this series of related peptides docked to Dappu-RPCH R are shown in
Figure 3. The mean and standard deviation were calculated from the different snapshots
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collected during the simulation. Many of the peptides have binding energies similar to
Dappu-RPCH but some are significantly different, as proven by using the Student’s t-test
(Table S1 Supplementary Data). [Ace]-, [Ala4]-, [Gly5]-, Grybi-AKH, Anaim-AKH and
[COOH]Dappu-RPCH have binding energies which are not significantly different to the
parent peptide, Dappu-RPCH. The other peptides have significantly different binding ener-
gies. Superimposed on the AG graph (Figure 3) is a graph of EC5; values [13]. Again, we
expect an inverse correlation between AG and ECsy. However, if we compare [Ala6]Dappu-
RPCH and [Ala7]Dappu-RPCH: [Ala6]Dappu-RPCH has a AGpinging 0f 108 kcal mol~!
and [Ala7]Dappu-RPCH only 77 kcal mol~!, yet their EC5q values are almost the same.
[Ala4]Dappu-RPCH has the lowest ECs5g value but has as high a AGpjinding as Dappu-RPCH.
In order to understand the effect of the mutation upon AGpjnding, One needs to look at the
details of the ligand /receptor interaction, given in the following paragraphs.
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Figure 3. Free energy of binding of mutated Dappu-RPCH to Dappu-RPCHR during the last 30 ns of
a 50 ns trajectory in a POPC membrane (blue bar). Error bars are the standard deviation of the mean.
ECsp values (red line) [13] are not available for some of the peptides.

3.3.1. [Ala5]Dappu-RPCH

Residue scanning predicts the same binding energy for Dappu-RPCH and [Ala5]-Dappu-
RPCH, while the MD calculations predict that Dappu-RPCH binds some 15 kcal mol~! more
strongly than [Ala5]Dappu-RPCH. The reason for this is that Ser5 does not contribute
to the binding energy and the van der Waals interactions of Ser5 and Alab are similar;
therefore, residue scanning predicts similar binding energies for the two ligands. With MD,
however, it becomes evident that [Ala5]Dappu-RPCH moves in the binding pocket in such
a way that Ser155 no longer H-bonds to Asn3. Moreover, the terminal pyroglutamic acid
no longer interacts with GIn257. These are two major interactions for Dappu-RPCH to
bind tightly and activate its receptor (see later). Since residue scanning does not allow the
ligand to move into the binding pocket, this change in interaction is not possible to detect
with this calculation method. We conclude from this example that the MD results are more
accurate and, hence, they will be used in the discussion from here onwards.

3.3.2. [Ala6]Dappu-RPCH

For [Ala6]Dappu-RPCH, the MD calculation predicts a substantial increase in the
binding energy compared to Dappu-RPCH, while residue scanning predicts a decrease
in binding energy. In order to explain this discrepancy, one has to look at the details
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of the ligand/receptor interaction and what factors contribute to the binding energy
(Table 2). A major contributor to the MD binding energy is the coulombic energy. AG.qy
is —35 kcal mol~! for [Ala6]Dappu-RPCH but only —11 kcal mol~! for Dappu-RPCH.
Since the substitution of threonine by alanine should decrease the coulombic interaction,
the increase indicates that the threonine is not interacting with the receptor, and that
the ligand has moved into the binding pocket to maximize the coulombic interaction
between the receptor and other ligand residues. Another contributing factor is the solvent
accessible surface AGggyation, Which is —80 kcal mol ! for [Ala6]Dappu-RPCH, as opposed
to —74 kcal mol~! for Dappu-RPCH. This is a major contributor to the total binding energy,
which is absent in residue scanning, as there are no explicit water molecules.

Table 2. Selected energy contributions to AGpjnding of a series of mutated Dappu-RPCH binding
to Dappu-RPCH R. Energy is in kcal mol~! with standard deviations in brackets. Results were
calculated using MMGBSA on a trajectory from a 50 ns MD simulation of different peptides bound to
Dappu-RPCH R in a hydrated POPC membrane.

Solvation  Solvation

Peptide Total Coulombic Hbond Lipophilic (GB) (SA) vdW
Dappu —88(7) —11(3) —1.1(0.9) —28(1) 26(3) —74(3) 29(2)
COOH —85(4) —52(6) —1.9(0.7) —25(2) 62(4) —68(4) 20(3)
ACE —94(5) —29(8) —2.7(0.3) —27(3) 35(2) —71(3) 10(3)
Ala2 —81(4) —46(4) —2.6(0.2) —24(2) 62(2) —73(4) 10(2)
Ala3 —71(5) —35(3) -1.1(0.1) —24(2) 44(3) —60(3) 14(4)
Ala4 —87(6) —44(4) —3.8(0.8) —20(3) 47(4) —60(2) 12(3)
Ala5 —70(5) —17(4) —0.9(0.6) —22(4) 40(1) —66(3) 31(2)
Ala6 —108(7) —35(2) —2.9(0.3) —24(3) 42(3) —80(4) 20(3)
Ala7 —77(4) —21(3) —1.4(0.5) —24(4) 35(2) —64(4) 26(2)
Ala8 —54(5) —23(2) —3.1(0.6) —15(3) 35(2) —46(2) 13(3)

3.3.3. Dappu-RPCH

In order to gain more insight into the reasons for the different binding energies of
the different ligands, the MD results were examined more closely. Figure 4 shows the
simulation results for Dappu-RPCH, bound to its receptor. Figure 4a depicts the root mean
square fluctuations (RMSF) in the receptor protein C carbon during the simulation. On
this plot, peaks indicate areas of the protein that fluctuate the most during the simulation.
Only modest fluctuations were seen and, as expected, the areas of greatest fluctuation
correspond to the loop regions. Protein residues that interact with the ligand are marked
with green-colored vertical bars. Extra-cellular loop 2, ECL2, which extends over the
binding pocket, is a major area of interaction.

The RMSF of the ligand, Dappu-RPCH, is shown in Figure 4b. For a free ligand, the
N- and C-termini usually show the largest fluctuation as they are bound only on one side.
However, for Dappu-RPCH, the termini are fairly rigid within the receptor-binding site.
Most of the movement is at the Phe4 side chain, which moves within a hydrophobic pocket
of the receptor.

On the receptor, Ser155 on ECL2 and GIn257 on ECL3 are important contacts (Figure 4c),
interacting during the entire simulation. Details of the Dappu-RPCH-receptor contact are
shown in Figure 4d. Asn3-NHg H-bonds to Ser155 for 98 % of the simulation, while
pGlul-CO and Ser7-CO, H-bond to GIn257. Additionally, the terminal Trp8 lies in a hy-
drophobic pocket of the receptor and has a -t stacking interaction with Phe264 (Phe”?).
Here, we see that the turn structure found for Dappu-RPCH [21] is important for recep-
tor binding, as the turn is necessary for GIn257 to simultaneously bind to Asn3-NHy
and Ser7-CO.
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3.3.4. [Ace]Dappu-RPCH, [COOH]Dappu-RPCH and [Ala8]Dappu-RPCH

Receptor activation data [13] showed that the N- and C-termini protecting groups are
important for activation. Molecular modelling, however, shows that the binding energies
are not affected.

AGpinding 0f [Ace]Dappu-RPCH is 5 kcal mol~! higher, while [COOH]Dappu-RPCH is
4 kcal mol ! lower than Dappu-RPCH itself. Marco et al. postulated [13] that the decreased
activity of the unprotected Dappu-RPCH is due to steric hindrance, conformational changes
or ionic interaction with the negatively charged acid group. Details of the energy contribu-
tion to AGpinding (Table 2) show that the negative charge of the COO™ group increases the
coulombic binding energy. AG oulomb for the COOH analogue is —52 kcal mol~!, while, for
Dappu-RPCH and the ACE analogue, it is —11 and —29 kcal mol !, respectively. All three
ligands have very similar lipophilic, covalent, H-bonding and solvation binding energies.
However, the van der Waals or steric clashes are different. This supports the suggestion [13]
that the negative charge of the carboxylated Dappu-RPCH does play a role. The present
results also show that there is not much change in the conformation of the three ligands.
This is very evident in Figure 5, where the three ligands were overlaid in the receptor. All
three ligands have similar conformations, and Dappu-RPCH and Dappu-COOH are simi-
larly oriented in the binding pocket. [Ace|Dappu, however, is oriented differently: Trp8 is
outside the binding pocket. Trp8 is important for receptor activation [13]. The mutation of
Trp8 to alanine results in a 35 kCal mol~! decrease in receptor binding. Figure 6a shows
the details of the [Ala8]Dappu-RPCH/receptor interaction. The central portion of the
ligand still interacts with the receptor, but the C-terminal amide now lies in a hydrophobic
pocket and the N-terminal pyroglutamic acid no longer H-bonds to GIn257. This is a clear
example to demonstrate that binding energy is not the only criterion important for receptor
activation, but also the orientation of the ligand within the binding pocket.

Figure 5. Overlay of Dappu-RPCH (red), Dappu-COOH (blue) and [Ace]Dappu (yellow) in the
Dappu-RPCH R receptor binding pocket.
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Figure 6. Ligand interaction diagram of (a) [Ala8]Dappu-RPCH and (b) [Ala4]Dappu-RPCH. (c) Interaction fraction of
[Ala4]Dappu-RPCH with the receptor averaged over a 50 ns trajectory in a POPC membrane.
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3.3.5. [Ala4]Dappu-RPCH

The aromatic group in position 4 is essential for the activation of Dappu-RPCH R (13).
This is not explained by the binding energy, as both Dappu-RPCH and [Ala4]Dappu-RPCH
have the same binding energy. Figure 6b,c shows that [Ala4]Dappu-RPCH has multiple
interactions with the receptor, but that these are different to the interactions of Dappu-
RPCH (compare with Figure 4c,d). These multiple interactions account for the high binding
energy of [Ala4]Dappu-RPCH. On the other hand, Dappu-RPCH, which has the same
overall binding energy, has a much stronger interaction, with only two receptor residues,
Ser155 and GIn257 (Figure 4c,d). These two interactions induce the conformational change
in the receptor, as can be clearly seen by a MD simulation of the two ligands in a POPC
membrane. In Figure 7, the receptor was activated by closing onto Dappu-RPCH, while for
[Ala4]Dappu-RPCH, the receptor did not change conformation. The data for [Ala4]Dappu-
RPCH suggest that this ligand could be an antagonist. Such an interpretation would have
to be experimentally proven and receptor assays performed to confirm it.

Dappu-RPCH [Ala4]Dappu-RPCH

Figure 7. Snapshots taken from a trajectory in a POPC membrane of Dappu-RPCH and [Ala4]Dappu-RPCH bound to
Dappu-RPCHR. (a) Dappu-RPCH bound to Dappu-RPCH R. (b) [Ala4]Dappu-RPCH bound to Dappu-RPCH R. The
surface of the ligands is displayed as a mesh. An arrow indicates where the helix closes onto Dappu-RPCH but does not

with [Ala4]Dappu-RPCH.

3.3.6. Placa-HrTH

Placa-HrTH is a decapeptide first identified in cicadas, where it is a true hypertre-
halosemic hormone [27]; thus, increasing the concentration of circulating carbohydrates in
the hemolymph of the insect in a fashion similar to the increase in glucose in the blood of
vertebrates by the action of glucagon. The binding energy of Placa-HrTH to Dappu-RPCH
R is significantly higher (Table 2) than Dappu-RPCH, yet, while it is active, it is less active
than Dappu-RPCH in receptor activation [13] Again, in order to explain this discrepancy,
the details of the ligand /receptor interactions need to be examined. Placa-HrTH penetrates
deeper into the receptor binding pocket than Dappu-RPCH (Figure 8). The terminal amide
of Placa-HrTH interacts strongly with Thr152 of ECL2 and Arg79 on TM3. At the same
time, Asn10 H-bonds strongly with Asp154 of ECL2 and Tyr238 of TM7 and less strongly
(60 %) with GIn260. Ser155 still has a strong interaction with the ligand, but now it is with
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Gly9-CO rather than Asn3 of Dappu-RPCH. Phe8 still sits in a hydrophobic pocket of the
receptor. Placa-HrTH extends out of the receptor binding pocket with residues 1-5, all
solvent, exposed. Note that the N-terminus still interacts with the receptor but now does
so via a water bridge. Water molecules in the binding pocket are thought to be important
for class 1 GPCRs [28].
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Figure 8. A 50 ns simulation of Placa-HrTH bound to Dappu-RPCH R in a POPC membrane. (a) RMSF of receptor. Protein
residues that interact with the ligand are marked with green-colored vertical bars. (b) Details of ligand atom interactions
with the protein residues. Interactions that occur for more than 30.0% of the simulation time in the selected trajectory are
shown. Residues are represented as colored spheres, labelled with the residue name and residue number, and colored
according to their properties. The ligand is displayed as a 2D structure. Interactions between the residues and the ligand are
drawn as lines, colored by interaction type. The binding pocket is indicated by a line drawn around the ligand, colored by
the color of the nearest residue. Solvent exposure is indicated on the ligand atoms, and by the break in the line drawn around
the pocket. (c) Receptor/ligand contacts during. The stacked bar charts are normalized over the course of the trajectory.
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[Ala4]Dappu-RPCH had the same binding energy as Dappu-RPCH, yet was inactive
in receptor activation studies [13]. By comparing the binding of [Ala4]Dappu-RPCH, which
is inactive, and Placa-HrTH, which is active, we can postulate that Ser155 and GIn257 of
the receptor are important for activation. Figure 9 shows an overlay of Placa-HrTH bound
to Dappu-RPCH R and the conformation of Dappu-RPCH R activated by Dappu-RPCH.
The helical bundles overlap remarkably well, indicating that Placa-HrTH has activated
the receptor.

Figure 9. Overlay of Dappu-AKH + Dappu-AKH R (red) and Placa-HrTH + Dappu-AKH R (green). Note the close
correspondence of the helical bundles.

3.3.7. Comparison with Gonadotropin Releasing Hormone GnRH

GnRH is the central regulator of mammalian reproduction and, because of its clinical
importance, has received extensive study [28]. In order to compare GnRH R and Dappu-
RPCH R, the Ballesteros and Weinstein numbering system [29] will be used. Dappu-
RPCH R has the same conserved residues as GnRH R in that it has Asn!-5016) Agn2-50035)
Arg3'50(97), Trp4'50(122), Pro®>0077) Pr®30237) and Pro”->0275) [28]. However, GnRH H has
a DRS (Asp>#7-Arg>0-Tyr?>!) motif rather than the DRF motif of Dappu-RPCH R. Both
receptors have the CWTPY motif on TM6, but GnRH R has a DPxxY motif on TM7 rather
than the more common NPxxY motif of Dappu-RPCH. Rhodopsin has an “ionic lock”
between Arg>> and Glu®3, which stabilizes the inactive state of the receptor. In GnRH
R and Dappu-RPCH R, Glu®3 is replaced by Arg®3’. For GnRH R, mutation studies
have shown that both Arg residues are important [27], and so we would predict that
the same is true for Dappu-RPCH R. Cvicek et al. [30] have shown that inactive GPCRs
have a conserved interaction between Arg>>® and residue 6.37. For both GnRH R and
Dappu-RPCH R, this is Thr®%.
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Since GnRH is a decapeptide, it is interesting to compare it to the decapeptide, Placa-
HrTH, and the octapeptide, Dappu-RPCH, which are both active in Dappu-RPCH R in
the receptor activation assay [13]. GnRH has a dominant 3-turn conformation similar to
Dappu-RPCH. This brings the two termini close together, allowing them to interact with
the receptor. Placa-HrTH also has a turn structure but, as it is two residues longer than the
endogenous peptide, residues 2-5 form a loop which projects outside the binding pocket.
The pB-turn of GnRH is stabilized by substitution of the achiral Gly6 by D-amino acids.
The turn of Placa-HrTH is stabilized by Pro6, while the turn of Dappu-RPCH is stabilized
by H-bonding of pGlul-CO and Ser7-CO to GIn257. The binding of different peptides to
GnRH R showed that the C-terminal of the agonist penetrates the TM cores, while the
N-terminus binds to the loop region of the receptor. This same binding pattern is seen
for Placa-HrTH and Dappu-RPCH. Dappu-RPCH has a terminal Trp8 which lies between
Tyr51238) Phe”39(264) and Arg®32(79), Neither Placa-HrTH nor GnRH have this terminal
tryptophan, but they do interact with the same receptor residues. For Placa-HrTH, it is
the terminal asparagine, while for GnRH, it is Gly10. For GnRH, it was postulated that
pGlul interacts with Lys>32, but it is uncertain that there is a direct interaction between
GnRH and Lys®32. Indeed, our results for Dappu-RPCH and Placa-HrTH show that it is
the C-terminus that interacts with residue 3.32 of the receptor. Note for Dappu-RPCH R,
Lys®>32 is mutated to Arg>32. For Placa-HrTH, pGlul has a water-mediated interaction with
Thr62, while Dappu-RPCH H-bonds strongly with GIn257. Thus, we can see that there is a
large similarity between the three-dimensional structure of GnRH R and Dappu-RPCH R,
with the same binding pocket and similar agonist/receptor interactions between the two
systems, supporting the view that these two hormonal systems belong to one superfamily,
as outlined in the Introduction.

4. Conclusions

This MD study of analogues of Dappu-RPCH binding to its receptor has high-
lighted that several factors are responsible for ligand activity. Firstly, the ligand has
to bind to the receptor sufficiently strongly in order to be active. This is shown by the
Alab, 6 and 7 analogues, which all have similar binding energies and activities to Dappu-
RPCH. The Ala8 analogue has very low activity and low binding affinity. However, a
high binding affinity is not sufficient to guarantee high activity. This is shown by the
Ala4 analogue, which has the same binding affinity as Dappu-RPCH but substantially
lower activity. Details of the ligand receptor interaction show that binding to Ser155
and GIn257 of the receptor are important for activity. In Dappu-RPCH, Asn3 H-bonds
to Ser155. Substitution of this residue by alanine eliminates this interaction, which, in
turn, affects activity. Finally, the simulations show that not only is protection of the ter-
minal amine and carboxyl important for prolonging the half-life of the peptides while
circulating in the hemolymph, but they also affect the interaction of the peptide with the
ligand. In Dappu-RPCH pGlul-CO H-bonds to GIn257. This interaction is not present
with [Ace]Dappu-RPCH. For [COOH]Dappu-RPCH, pGlul-CO does H-bonds to GIn257,
but H-bonding of the carboxylate to GIn149 moves the imidazole of Trp8 out of its hy-
drophobic pocket into a polar region. The comparison of our computational results with
the experimental results of Marco et al. [13] and comparison with the extensive data on
GnRH support the validity of our Dappu-RPCH R model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11050710/s1, Table S1: Student’s ¢-test of null hypothesis of mean AG of binding relative
to Dappu-RPCH binding to Dappu-RPCH R. The t-critical value is 2.01 for all the peptides except for
pEVNFSPSWGN for which it is 1.97.
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