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Abstract

This paper evaluates the performance of eight tests with null hypothesis of cointegration on

basis of probabilities of type I and II errors using Monte Carlo simulations. This study uses a

variety of 132 different data generations covering three cases of deterministic part and four

sample sizes. The three cases of deterministic part considered are: absence of both inter-

cept and linear time trend, presence of only the intercept and presence of both the intercept

and linear time trend. It is found that all of tests have either larger or smaller probabilities of

type I error and concluded that tests face either problems of over rejection or under rejection,

when asymptotic critical values are used. It is also concluded that use of simulated critical

values leads to controlled probability of type I error. So, the use of asymptotic critical values

may be avoided, and the use of simulated critical values is highly recommended. It is found

and concluded that the simple LM test based on KPSS statistic performs better than rest for

all specifications of deterministic part and sample sizes.

1. Introduction

The concept of cointegration was firstly proposed by [1]. If two or more than two integrated of

order one variables possess a long run relationship, then it is termed as existence of cointegra-

tion among them. For two variables X and Y: integrated of order one, if their linear combina-

tion: aX + bY is integrated of order zero, then X and Y are possessing a long run relationship

and they are said to be cointegrated. Note that cointegration analysis is based on the issue that

all variables must be I(1), but this may depend on selecting the structural breaks (see, e.g., [2]).

Soon after the development of concept of “cointegration”, a huge variety of tests were proposed

to test it like [3–5] and many more. Most of these tests proposed were testing the null of no coin-

tegration. These tests have been widely and frequently used in economics and finance to assess

the long run relationship between a set of time series. Some of these studies are but not limited

to; [6–10]. In their pioneered paper, [11] proposed first test assessing the null of cointegration.
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After, this pioneer paper, more cointegration tests evaluating the null of cointegration were

developed, assuming different underlying data generation ([12,13] and many others).

As all of these proposed tests were based on different underlying assumptions about the coin-

tegrated system and were assuming different data generations, so they were showing different

conclusions about the existence of cointegration for the same empirical problem ([14,15]).

Therefore, there was a need to assess their performance and to choose winner/winners among

the tests which best fits an empirical problem. To fill this vacuum in literature, numerous com-

parative studies have been published. Most of these studies used Monte Carlo Simulations

(MCS) to evaluate and assess the performance of tests. However, there are fewer real data based

comparative studies of cointegration tests ([16,17]). MCS have been frequently used for such

comparative studies ([18–23]). These studies ([14,15,24–26] and many more), using MCS were

assessing and evaluating the performance of tests based on two properties, the size: “the probabil-

ity of rejection of null hypothesis when actually it is true” and the power: “the probability of

rejection of null hypothesis when actually it is false”. A test is regarded and considered better

than other, if it has a controlled size around nominal size and has relatively higher power than

the others. Most of these comparative studies of cointegration tests were considering a limited

number of alternative hypotheses (2 to 4), although the alternative hypothesis can take on infinite

values in an alternative space. Two studies i.e. of [14] and [15] were the most extensive ones.

They considered different data generating processes and considered more than 8 point alterna-

tive hypotheses, trying to cover the whole alternative space. [14] and [15] concluded that there is

no significant evidence that one test is superior than others. According to them, if one test is per-

forming better for some subset of alternative hypothesis, then the same test is performing worst

in another subset of alternative hypothesis. So, a general conclusion is very difficult to draw.

Except the study of [27], all of comparative studies of cointegration tests were either

addressing a selected set of null of no cointegration tests or a selected set of mixture of both

kind of tests having opposite null hypothesis. [27] compared 6 tests (null of cointegration) on

basis of the same size and power properties. Although, [27] considered different data generat-

ing processes and estimated the power curves, however, the conclusions are same as [14] and

[15]. We are not able to find any other comparative study of null of cointegration tests.

As these tests are based on different underlying assumptions and for a particular real data

set, one does not know that whether the data satisfies the assumptions of the test or not, there-

fore the selection of the test is a very critical decision. Therefore this study compares the tests

on a very basic type of data generations and it is assumed that if a test is performing poor here,

it will be doing the same for other data generations. However, it cannot be confirmed that the

best performer will remain the best for other data generations. Moreover, majority of the com-

parative studies of cointegration tests, in the literature, didn’t use size adjusted powers. These

studies were comparing the tests on basis of size and power and if the tests have size distortions

then for power comparison, these size distortions were not controlled. Moreover, fewer num-

ber of alternative hypothesis and data generations were considered to assess the relative perfor-

mance. The aim of this paper is twofold: comparison of tests on basis of the probability of

Type I error, known as size of test using asymptotic critical values or distributions developed

by the respective authors, controlling the probability of Type I error around the assumed nom-

inal probability of Type I error (usage of simulated critical values) and comparison of tests

based on probability of Type II error when the probability of Type I error is controlled around

a nominal level. These probabilities are defined as:

a ¼ Prob Type I Errorð Þ ¼ Prob Rejecting H0jH0 is Trueð Þ

b ¼ Prob Type II Errorð Þ ¼ Prob Failing to Reject H0jH0 is Falseð Þ

PLOS ONE The probabilities of type I and II error

PLOS ONE | https://doi.org/10.1371/journal.pone.0259994 January 4, 2022 2 / 15

https://doi.org/10.1371/journal.pone.0259994


α is also known as Size of the test. Whereas, Power of the test is (1 − β). The conclusions and rec-

ommendations of this study will be beneficial to a large audience: practitioners, statisticians, data

scientists and applied researchers, as it will give the guidelines about a better performing test and

worst performing test. These classifications of better and worst performance will be based on α
and β. This study will also be helpful to the audience for the selection of type of critical values.

This study is structured as: next section of “Methodology” elaborated the details of tests and

the framework followed to assess the performance of these. “Methodology” is followed by

“Results and Discussion” section, discussing the results in greater detail and then the last sec-

tion is “Conclusions and Recommendations”. The “References” are listed at the end.

2. Methodology

In this study, eight tests belonging to the class of null of cointegration are compared, the details

of these tests are laid out in “Tests to be compared”. The next section “Artificial Data Genera-

tion” lists the set of equations used to generate a cointegrated system and the procedure of esti-

mation of α (for both asymptotic and simulated critical values is detailed in "Estimation of

Empirical α". Continuingly, the next section "Estimation of Simulated Critical Values" details

out the steps followed to obtain simulated critical values by fixing α and the next section "Esti-

mation of β" specifies the steps to be followed to estimate β, the probability of Type II Error in.

MATLAB has been used to carry out the analysis.

2.1. Tests to be compared

The eight tests have been compared in the current study and these tests were selected on basis

of their frequently use in the economics/econometrics literature. Moreover, these are the pio-

neer null of cointegration tests. Furthermore these tests have been chosen from the previous

studies like [14,15,27] on the basis of their relative performance. The eight tests compared in

this study are detailed as:

2.1.1. LM test based on KPSS statistic (LM). Considering two different kinds of variables

say Zt andWit, 8 i = 1, 2,– – – –, k where both of these kinds of variables are integrated of

order one i.e. I(1). [11] proposed the estimation of Ordinary Least Squares (OLS) regression

first, i.e.

Zt ¼ dct þ
Xk

i¼1

biWit þ ut t ¼ 1; 2; � � � � � ;T ð1Þ

Where Zt andWt are dependent and independent variables respectively. ψt represents the

deterministic part. [11] proposed that that the LM type test introduced by [28] for testing sta-

tionarity of time series, can be used for testing the null of cointegration. i.e. LM ¼ T � 2

PT

j¼1
R2
j

ƛ2 mð Þ

where Rj ¼
Pj

t¼1

ût and ƛ2 mð Þ ¼ û 0t û t
T . The ût are the residuals estimated from Eq (1). The LM test

does not follow any regular distribution, therefore the current study uses the critical values of

the LM as provided in [29].

2.1.2. Leybourne and McCabe’s test (LBI). [11] proposed that the same LM test with a

non-parametric modification can also be used for the said purpose as stated by [11]. Actually,

they proposed a long run variance as compared to the contemporaneous variance, i.e.

LBI ¼ T � 2

PT
j¼1
R2
j

ƛ2 mð Þ
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where Rj ¼
Pj

t¼1

ût and ƛ2 mð Þ ¼ T � 1
PT

t¼1

û2
t þ 2T � 1

Pm

s¼1

PT

t¼sþ1

ûtût� s. Again ût are the residuals esti-

mated from Eq (1). The lag truncation parameterm is very vital and plays a crucial role in

empirical studies. According to [15], the size and power of the test depends on it. The current

study is considering l = 4, as recommended by [15] i.e. at this value, size of test is controlled

around the nominal size and also the test has reasonable powers. Same as the LM test, the LBI

does not follow any standard statistical distribution, therefore this study is using the critical

values for LBI test as provided [29].

2.1.3. Shin’s C test (Sc). [12] proposed two modifications to the same LM type test. First

[12] proposed to use the Dynamic OLS (DOLS) regression and secondly [12] proposed to use

a weighting kernel in estimating the long run variance. The DOLS regression is

Zt ¼ dct þ gWt þ
Xr

i¼� r

piDWt� i þ ut t ¼ 1; 2; � � � � � ;T ð2Þ

Where Zt andWt are dependent and independent variables matrices of order T × 1 and T ×m
respectively. The same LM type test, in this case named as C is

C ¼ T � 2

PT
j¼1
R2
j

ƛ2 mð Þ

where Rj ¼
Pj

t¼1

ût and ƛ2 mð Þ ¼ T � 1
PT

t¼1

û2
t þ 2T � 1

Pm

s¼1

1 � ƛ mþ 1ð Þ
� 1

� � PT

t¼sþ1

ûtût� s

Again, same as LM and LBI, ût are the residuals estimated from Eq (2) using OLS. The

selection of lag truncation parameterm is again vital for the performance of test as it has been

already discussed in section 2.1.2. However, the current study is consideringm = 4 as proposed

by [15]. Similarly [12] recommended r = 5, so the current study is using r = 5. The critical val-

ues for the test are used from [12].

2.1.4. McCabe—Leybourne -Shin test (Ls). For the same LM type test, a different estima-

tion methodology and process was proposed by [29]. [29] proposed the use of Maximum Like-

lihood Estimation (MLE) in place of OLS. They proposed that first the residuals from DOLS

regression may be estimated i.e. ût and then the residuals Ẑt may be estimated using MLE from

the regression ût ¼
Pp

i¼1

tiDût � i þ Zt . According to them the selection of p is on the basis of the

minimum Akaike information Criterion (AIC). The modified LM test statistic now named

as Ls

Ls ¼
Ẑ 0tOẐt
T2S2 mð Þ

where O = PP0 for P being the lower triangular matrix of ones. Similarly, S2 mð Þ ¼ Ẑ 0t Ẑ t
T . The cur-

rent study is considering 4 as the maximum value of p and the critical values are used from

[29].

2.1.5. Hausman H1 and H2 tests (H1 and H2). A test statistic comparing two estimators

was proposed by [13]. According to [13], under the null of cointegration both of the estimators

are consistent. However, under the alternative of no cointegration one estimator is inconsis-

tent. One estimator is of γ say ŷL, when Eq (2) is estimated using DOLS estimation and for the
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second estimator, estimate the regression and obtain

ot ¼ Zt �
Xr

j¼� r

p̂ jDWt� j ð3Þ

p̂ j being the OLS estimates from Eq (2). The following regression is used to estimate the second

estimator say ŷD i.e.

Dot ¼ yDDWt þ εt ð4Þ

The two estimators ŷL and ŷD are used to estimate both of the Hausman type test statistics

i.e.H1 ¼ ŷL � ŷD

� �0
ĉD þ ĉL

� �� 1

ŷL � ŷD

� �
and H2 ¼ ŷL � ŷD

� �0
ĉ � 1
D ŷL � ŷD

� �
. Where ĉL

and ĉD are the estimated variance covariance matrices of ŷL and ŷD respectively. The critical

values of the two tests have been taken from [13] in the current study.

2.1.6. Hansen’s Lc test (Lc). Fully modified estimation method [30] was used by [31] to

propose a test of null of cointegration. The fully modified estimation method involves the esti-

mation of Eq (1) by OLS and the OLS residuals are obtained, i.e. ût. Define another vector of

difference as ΔWit = μit for i = 1,2,———————,k. Define the matrix zt as zt = (υt, μt0). Esti-

mates a VAR(1) model for zt as zt = Fzt−1 + υt. Use the estimated residuals n̂t to find the

L̂n ¼
PT

l¼0

w l=M̂
� �

1

T

PT

t¼lþ1

n̂t� sn̂t
0
and Ôn ¼

PT

l¼� T
w l=M̂
� �

1

T

PT

t¼lþ1

n̂t� sn̂t
0
. Where w l=M̂

� �
being an

appropriate weighting scheme. The current study is using the quadratic spectral kernel i.e.

w l=M̂
� �

¼
25

12p2 l=M
_� �2

sin 6p l=M
_� �� �

=5

6p l=M
_� �� �

=5
� cos 6p l=M

_
� �� �

=5
� �

( )

. The automatic band-

width estimator is given as

M̂ ¼ 1:3221 d̂ 2ð Þ
� �

T
n o1=5

and d̂ 2ð Þ ¼
Xp

a¼1

4r̂2
aŝ

4
a

1 � r̂að Þ
8

,
Xp

a¼1

ŝ4
a

1 � r̂að Þ
4

ð5Þ

r̂a and ŝ2
a are the “ath” endogenous variable’s estimated AR coefficient and variance of residu-

als. The estimates L̂n and Ôn are recolored to obtain Ô ¼ I � F̂
� �� 1

Ôn I � F̂ 0
� �� 1

and

L̂ ¼ I � F̂
� �� 1

L̂n I � F̂ 0
� �� 1

I � F̂
� �� 1

F̂Ŝ. Where Ŝ ¼ 1

T ztzt
0
. The variance covariance matri-

ces i.e. Ô and L̂ are partitioned as O ¼
Ouu Oum

Omu Omm

" #

and L ¼
Luu Lum

Lmu Lmm

" #

. To obtain the

Fully Modified OLS (FMOLS) estimator, following are estimated first

Ou:m ¼ Ouu � OumO
� 1

mm
Omu ð6Þ

and L
FM
mu
¼ Lmu � LmmO

� 1

mm
Omm. Then the FMOLS estimator is

b̂FM ¼
PT

t¼1

ZFMt Wt
0 � 0 L̂FM

mu

0
� �� �� �

PT

t¼1

WtWt
0

� �� 1

, where

ZFMt ¼ Zt � ÔumÔ
� 1

mm
DWt and û

FM
t ¼ Z

FM
t � b̂

FMWt ð7Þ

are the estimated FMOLS residuals. [31] proposed the Lc statistic as Lc ¼

trace
PT

t¼1

WtWt
0

� �� 1
PT

t¼1

R̂tÔ � 1
u�m
R̂t
0

" #

and R̂t is defined as R̂t ¼
Pt

i¼1

Wiû
FM
i �

0

L̂FM
mu

" # !

. The

critical values of the [31] proposed Lc test are taken from [26] for the current study.
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2.1.7. Xiao Fluctuation test of Cointegration (F). On the basis of fluctuations of

the estimated residuals ût, [32] proposed a test using FMOLS estimation. It is given as

FT ¼ max
i¼1;.........;T

i
ffiffiffiffiffiffiffiffiffiffiffi
Ou�mT

p

�
�
�
�
1

i

Xi

t¼1

ûFMt �
1

T

XT

t¼1

ûFMt

�
�
�
� where ûFMt are the estimated FMOLS residuals

and are obtained using Eq (7). Similarly, Oυ�μ is obtained using Eq (6). The critical values of FT
are taken from [32] in the current study.

The abbreviations used in the current study for all eight tests are listed in Table 1.

2.2. Artificial Data Generation (ADG)

The set of equations used to generate a cointegrated system under null of cointegration and

alternative of no cointegration are a modified version of the model used by [33]. The [33]

model has been modified to include deterministic component also. For time series zt and wt of

length T, the set of equations are:

Zt ¼ ctφ
0 þ wt þ ut;wt ¼ wt� 1 þ m

w
t ; ut ¼ ut� 1 � gm

z
t� 1
þ mzt

where mt ¼ mzt ; m
w
t

� �
provided that μt ~ N (0, I), I being an identity matrix of same order as μt.

Under null hypothesis of cointegration and alternative hypothesis of no cointegration H0: γ =

1 vsHA: 0� γ< 1. The current study takes into account ten different point alternate hypothe-

ses, i.e. γ = (0, 0.1, 0.2,––, 0.9). ψt is the included deterministic component in ADG and it con-

sists of two deterministic parts; one is the intercept and the other is linear time trend. i.e.

ct ¼
1 1 � � 1

1 2 � � T

" #0

. The φ is the respective coefficient vector of ψt. Three different

and plausible cases of deterministic component have been considered in the current study and

these are:

i. The absence of both Intercept and Linear Time Trend (denoted as D0LT0): φ = [0 0]

ii. The presence of only the Intercept (denoted as D1LT0): φ = [1 0]

iii. The presence of both the Intercept and Linear Time Trend (denoted as D1LT1): φ = [1 1]

The current study is considering ten point alternate hypothesis from the alternate space

and from the null space, one point null hypothesis. Moreover, the performances of tests at four

different time lengths (T = 30, 60, 120 and 240) covering the small time lengths to large time

lengths are assessed. In addition to these, three different and plausible cases of deterministic

parts are explored. This all sums up that 132 different ADG processes have been explored to

evaluate the performance of tests.

Table 1. Abbreviations used for cointegration tests.

S. No Name of Test Abbreviation

1 LM test LM

2 Leybourne and McCabe’s LBI test LBI

3 Shin’s C test Sc

4 McCabe—Leybourne -Shin test Ls

5 Hausman H1 test H1

6 Hausman H2 test H2

7 Hansen’s Lc test Lc

8 Xiao Fluctuation test F

https://doi.org/10.1371/journal.pone.0259994.t001
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2.3. Estimation of empirical α
The current study assesses the performance of test based on two α0s: one uses the asymptotic

critical values and the other uses the simulated critical values. Nonetheless, their estimation

procedure is same as:

i. Generation of the time series following the ADG for null hypothesis.

ii. Estimation of the test statistic of each test.

iii. Taking decision about the rejection of null or not: (based on asymptotic or simulated

critical value)

iv. The repetition of the steps i, ii and iii forM time and counting of number of rejections of

null.

v. Estimation of the α as the proportion of rejections of null out of totalM repeatitions.

2.4. Estimation of simulated critical value

The current study uses the frequently used significance level of 0.05 for whole of its empirical

analysis. Estimation of simulated critical values have been carried out by following the below

mentioned steps:

i. Generation of data under the point null hypothesis.

ii. Calculation of each test’s test statistic.

iii. Repetition of the steps i and ii for fixed number of times sayM.

iv. Recording of all ofM test statistics in an array say S.

v. Calculation of the simulated critical value as: 2.5th and 97.5th percentiles of S, for two

tailed tests, 95th percentile of S, for right tailed tests and 5th percentile of S, for left tailed

tests.

2.5. Estimation of β
Considering the frequently used significance level of 0.05, the below mentioned steps have

been followed to estimate the Probability of Type II Error β.

i. Generation of data following a point alternative hypothesis.

ii. Estimation of the test statistic.

iii. Deciding about the rejection of null or not (based on simulated critical value).

iv. Repetition of the steps i, ii and iii for a fixed number of times sayM and counting of

number of rejections.

v. Calculation of β i.e. β = 1 –π where π = Number of Rejections/M

3. Results and discussion

The empirical probability of Type I Error i.e. α is obtained usingM = 30,000 for each test

except the Ls test, as it uses the numerical optimization algorithms to find the maximum likeli-

hood estimates, which take huge amount of time. So, for Ls:M = 5,000 is considered suitable.

These α0s are given in Table 2. It is obvious from Table 2 that not a single test has empirical α
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around the considered significance level of 0.05 for all three specifications of deterministic

part and four sample sizes. For instance, LM has α around 0.05 for all four sample sizes only

when deterministic part is D1LT0. The values of empirical α around the specified significance

level 0.05 have been marked as BOLD in Table 2. It is observed that from out of total 96 differ-

ent cases, only for 15 cases the empirical α is around 0.05. This over rejection problem is due

to the use of asymptotic critical values. As we have finite sample sizes, therefore nearly all of

the tests exhibit the over rejection problem. The same was also stated by [34].

To control empirical α around 0.05, simulated critical values for all tests at all four time

lengths using all of the three cases of deterministic component have been found and then by

using these simulated critical values, again empirical α is calculated and these α0s are displayed

in Table 3. It is evident from Table 3 that all tests have empirical α around 0.05 now. It is very

important to control empirical α around 0.05 in a statistical hypothesis testing, because a large

α will reduce BETA, the probability of Type II Error. So, as compared to the considered nomi-

nal significance level, a decrease in empirical α leads to an increase in BETA and an increase in

empirical α leads to a decrease in BETA resulting in a meaningless conclusion.

As the use of simulated critical values led to controlled empirical α around 0.05, the signifi-

cance level considered in this paper. So, these simulated critical values are used to estimate the

probabilities of Type II Error i.e. β. These β0s for the three cases of deterministic component

(D0LT0, D1LT0 and D1LT1) are displayed in Tables 4–6 respectively. The test having the mini-

mum β is marked as "A” and declared as best performer in this study. Similarly, the tests hav-

ing 2nd minimum and 3rd minimum are marked as "B" and "C" and nominated as better

Table 2. Probabilities of type I error "α" using asymptotic critical values.

Tests D0LT0 D1LT0 D1LT1

Time Length T Time Length T Time Length T
30 60 120 240 30 60 120 240 30 60 120 240

LM 0.2271 0.2256 0.2194 0.2232 0.0589 0.0534 0.0575 0.0533 0.0002 0.0007 0.0004 0.0002

H1 0.0076 0.0080 0.0065 0.0049 0.0023 0.0046 0.0051 0.0061 0.0033 0.0114 0.0148 0.0170

H2 0.0111 0.0075 0.0064 0.0056 0.0055 0.0060 0.0063 0.0064 0.0193 0.0161 0.0166 0.0177

Sc 0.0048 0.0186 0.0238 0.0252 0.0638 0.0537 0.0498 0.0528 0.2034 0.0573 0.0521 0.0501

LBI 0.3407 0.2840 0.2464 0.2384 0.2134 0.1299 0.0797 0.0594 0.1068 0.0375 0.0055 0.0005

F 0.0030 0.0220 0.0180 0.0180 0.1870 0.1740 0.1800 0.1870 0.4130 0.4370 0.4430 0.4090

Lc 0.5324 0.4352 0.2984 0.1552 0.5580 0.4074 0.3342 0.1772 0.5898 0.4208 0.3414 0.2188

Ls 0.6580 0.6090 0.5860 0.5400 0.5890 0.4120 0.3350 0.2980 0.3640 0.1170 0.0650 0.0630

https://doi.org/10.1371/journal.pone.0259994.t002

Table 3. Probabilities of type I error "α" using simulated critical values.

Tests D0LT0 D1LT0 D1LT1

Time Length T Time Length T Time Length T
30 60 120 240 30 60 120 240 30 60 120 240

LM 0.0476 0.0499 0.0510 0.0478 0.0514 0.0538 0.0482 0.0479 0.0454 0.0467 0.0468 0.0487

H1 0.0523 0.0502 0.0491 0.0443 0.0506 0.0481 0.0502 0.0501 0.0480 0.0507 0.0511 0.0505

H2 0.0509 0.0558 0.0484 0.0485 0.0518 0.0513 0.0442 0.0490 0.0561 0.0512 0.0472 0.0480

Sc 0.0509 0.0529 0.0519 0.0473 0.0485 0.0548 0.0521 0.0501 0.0542 0.0498 0.0485 0.0481

LBI 0.0489 0.0505 0.0498 0.0511 0.0490 0.0513 0.0497 0.0513 0.0416 0.0517 0.0452 0.0473

F 0.0467 0.0441 0.0525 0.0472 0.0390 0.0517 0.0542 0.0482 0.0536 0.0542 0.0524 0.0459

Lc 0.0442 0.0478 0.0492 0.0500 0.0484 0.0492 0.0496 0.0490 0.0478 0.0500 0.0534 0.0540

Ls 0.0370 0.0430 0.0450 0.0640 0.0470 0.0460 0.0630 0.0380 0.0380 0.0530 0.0570 0.0570

https://doi.org/10.1371/journal.pone.0259994.t003
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Table 4. Probabilities of type II error "β" for D0LT0.

T = 30

γ LM H1 H2 Sc LBI F Lc Ls

0.9 0.760A 0.939 0.935 0.888 C 0.919 0.887 B 0.947 0.940

0.8 0.619 A 0.914 0.901 0.835 B 0.906 0.860 C 0.926 0.922

0.7 0.520 A 0.876 0.856 0.815 B 0.898 0.846 C 0.923 0.918

0.6 0.433 A 0.838 0.807 C 0.792 B 0.889 0.840 0.908 0.915

0.5 0.383 A 0.791 0.751 B 0.783 C 0.885 0.838 0.901 0.909

0.4 0.341 A 0.768 C 0.706 B 0.778 0.884 0.837 0.902 0.901

0.3 0.304 A 0.721 C 0.658 B 0.771 0.882 0.837 0.901 0.895

0.2 0.284 A 0.701 C 0.626 B 0.775 0.880 0.836 0.900 0.881

0.1 0.255 A 0.675 C 0.598 B 0.768 0.878 0.835 0.900 0.875

0.0 0.250 A 0.658 C 0.576 B 0.768 0.878 0.834 0.899 0.872

T = 60

0.9 0.613 A 0.915 0.916 0.716 B 0.774 C 0.814 0.856 0.887

0.8 0.412 A 0.843 0.832 0.627 B 0.724 C 0.757 0.785 0.876

0.7 0.271 A 0.747 0.741 0.589 B 0.696 C 0.749 0.740 0.870

0.6 0.210 A 0.666 0.641 C 0.561 B 0.686 0.737 0.719 0.850

0.5 0.167 A 0.581 0.560 B 0.564 C 0.683 0.726 0.697 0.842

0.4 0.141 A 0.531 C 0.494 B 0.571 0.682 0.724 0.695 0.834

0.3 0.116 A 0.490 C 0.438 B 0.554 0.681 0.719 0.693 0.820

0.2 0.105 A 0.449 C 0.396 B 0.559 0.676 0.718 0.691 0.819

0.1 0.098 A 0.423 C 0.360 B 0.561 0.676 0.715 0.690 0.811

0.0 0.093 A 0.398 C 0.338 B 0.560 0.672 0.711 0.687 0.807

T = 120

0.9 0.380 A 0.896 0.884 0.510 B 0.586 C 0.690 0.636 0.890

0.8 0.165 A 0.765 0.746 0.396 B 0.532 0.636 0.522 C 0.889

0.7 0.085 A 0.642 0.609 0.352 B 0.513 0.633 0.472 C 0.888

0.6 0.053 A 0.524 0.495 0.324 B 0.501 0.629 0.466 C 0.879

0.5 0.033 A 0.453 0.421 C 0.330 B 0.507 0.619 0.457 0.876

0.4 0.028 A 0.374 0.352 C 0.325 B 0.500 0.617 0.463 0.873

0.3 0.025 A 0.349 0.301 B 0.325 C 0.494 0.615 0.451 0.869

0.2 0.022 A 0.327 0.269 B 0.320 C 0.497 0.614 0.430 0.849

0.1 0.019 A 0.296 C 0.243 B 0.323 0.489 0.612 0.425 0.778

0.0 0.016 A 0.285 C 0.227 B 0.311 0.500 0.609 0.421 0.683

T = 240

0.9 0.162 A 0.838 0.832 0.284 B 0.376 0.591 0.358 C 0.870

0.8 0.042 A 0.644 0.636 0.170 B 0.302 0.553 0.285 C 0.864

0.7 0.014 A 0.498 0.471 0.142 B 0.292 0.538 0.252 C 0.862

0.6 0.010 A 0.392 0.367 0.140 B 0.287 0.536 0.248 C 0.853

0.5 0.005 A ‘0.329 0.303 0.139 B 0.277 0.535 0.234 C 0.839

0.4 0.003 A 0.275 0.248 0.132 B 0.272 0.535 0.234 C 0.834

0.3 0.003 A 0.241 0.210 C 0.132 B 0.279 0.531 0.232 0.829

0.2 0.003 A 0.223 0.188 C 0.134 B 0.278 0.529 0.231 0.762

0.1 0.002 A 0.210 0.161 C 0.132 B 0.280 0.524 0.231 0.697

0.0 0.002 A 0.199 0.146 C 0.131 B 0.270 0.521 0.224 0.514

A, B and C denote the Best, Better and good performer respectively.

https://doi.org/10.1371/journal.pone.0259994.t004
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Table 5. Probabilities of type II error "β" for D1LT0.

T = 30

γ LM H1 H2 Sc LBI F Lc Ls

0.9 0.880A 0.945 C 0.949 0.936 B 0.954 0.957 0.945 C 0.950

0.8 0.737 A 0.933 0.936 0.906 B 0.948 0.953 0.945 0.909 C

0.7 0.596 A 0.914 0.910 0.887 B 0.947 0.951 0.945 0.907 C

0.6 0.467 A 0.892 0.882 0.854 B 0.944 0.951 0.944 0.858 C

0.5 0.383 A 0.871 0.839 C 0.835 B 0.943 0.953 0.944 0.845

0.4 0.313 A 0.842 0.809 B 0.826 C 0.942 0.952 0.943 0.837

0.3 0.267 A 0.825 0.764 B 0.820 C 0.943 0.951 0.941 0.829

0.2 0.231 A 0.791 C 0.737 B 0.811 0.942 0.950 0.940 0.823

0.1 0.195 A 0.786 C 0.696 B 0.804 0.940 0.955 0.938 0.815

0.0 0.187 A 0.763 C 0.669 B 0.804 0.939 0.952 0.938 0.807

T = 60

0.9 0.739 A 0.943 0.929 0.822 B 0.887 0.949 0.935 0.861 C

0.8 0.461 A 0.900 0.890 0.692 B 0.831 0.945 0.915 0.745 C

0.7 0.282 A 0.831 0.818 0.609 B 0.804 0.940 0.904 0.681 C

0.6 0.174 A 0.753 0.734 0.576 B 0.788 0.937 0.890 0.667 C

0.5 0.117 A 0.699 0.652 0.542 B 0.784 0.938 0.885 0.650 C

0.4 0.086 A 0.633 0.568 C 0.534 B 0.787 0.941 0.880 0.647

0.3 0.069 A 0.589 0.511 B 0.526 C 0.778 0.940 0.880 0.641

0.2 0.055 A 0.542 0.456 B 0.530 C 0.777 0.937 0.876 0.621

0.1 0.047 A 0.514 C 0.405 B 0.523 0.776 0.942 0.873 0.619

0.0 0.040 A 0.488 C 0.389 B 0.513 0.775 0.943 0.870 0.610

T = 120

0.9 0.461 A 0.924 0.924 0.584 B 0.652 0.936 0.870 0.607 C

0.8 0.168 A 0.835 0.833 0.373 B 0.528 C 0.924 0.788 0.576

0.7 0.069 A 0.732 0.714 0.303 B 0.498 C 0.920 0.762 0.575

0.6 0.032 A 0.625 0.608 0.262 B 0.485 C 0.916 0.742 0.573

0.5 0.014 A 0.543 0.512 0.243 B 0.476 C 0.920 0.728 0.536

0.4 0.011 A 0.473 0.428 C 0.242 B 0.472 0.917 0.723 0.527

0.3 0.007 A 0.434 0.380 C 0.228 B 0.475 0.914 0.721 0.518

0.2 0.005 A 0.389 0.336 C 0.227 0.473 0.911 0.714 0.518

0.1 0.005 A 0.364 0.297 C 0.225 B 0.472 0.914 0.712 0.513

0.0 0.004 A 0.353 0.273 C 0.221 B 0.471 0.914 0.710 0.511

T = 240

0.9 0.156 A 0.883 0.886 0.254 B 0.337 C 0.905 0.674 0.553

0.8 0.024 A 0.738 0.716 0.114 B 0.228 C 0.880 0.552 0.544

0.7 0.005 A 0.591 0.579 0.083 B 0.196 C 0.865 0.515 0.540

0.6 0.002 A 0.477 0.451 0.069 B 0.194 C 0.862 0.497 0.533

0.5 0.001 A 0.402 0.359 0.066 B 0.192 C 0.860 0.484 0.517

0.4 0.000 A 0.345 0.301 0.061 B 0.189 C 0.849 0.481 0.516

0.3 0.000 A 0.292 0.263 0.062 B 0.190 C 0.859 0.474 0.509

0.2 0.000 A 0.278 0.228 0.061 B 0.192 C 0.855 0.471 0.453

0.1 0.000 A 0.260 0.204 0.061 B 0.189 C 0.859 0.470 0.428

0.0 0.000 A 0.241 0.184 0.059 B 0.186 C 0.853 0.469 0.416

A, B and C denote the Best, Better and good performer respectively.

https://doi.org/10.1371/journal.pone.0259994.t005
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Table 6. Probabilities of type II error "β" for D1LT1.

T = 30

γ LM H1 H2 Sc LBI F Lc Ls

0.9 0.926A 0.948 C 0.942 B 0.950 0.953 0.946 0.950 0.962

0.8 0.864 A 0.943 0.938 B 0.941 C 0.953 0.950 0.955 0.945

0.7 0.733 A 0.935 C 0.932 B 0.939 0.949 0.953 0.947 0.967

0.6 0.606 A 0.926 B 0.929 0.930 0.949 0.959 0.945 0.968

0.5 0.485 A 0.921 C 0.919 B 0.929 0.943 0.960 0.952 0.968

0.4 0.377 A 0.920 C 0.913 B 0.918 0.941 0.963 0.944 0.962

0.3 0.299 A 0.908 C 0.906 B 0.909 0.940 0.963 0.944 0.956

0.2 0.246 A 0.908 C 0.892 B 0.908 C 0.939 0.966 0.952 0.958

0.1 0.202 A 0.905 0.886 B 0.899 C 0.935 0.967 0.946 0.951

0.0 0.161 A 0.904 0.878 B 0.903 C 0.934 0.968 0.948 0.963

T = 60

0.9 0.855 A 0.949 0.949 0.908 B 0.951 0.952 0.951 0.923 C

0.8 0.612 A 0.933 0.932 0.803 B 0.954 0.955 0.956 0.852 C

0.7 0.381 A 0.918 0.913 0.707 B 0.943 0.954 0.957 0.829 C

0.6 0.229 A 0.894 0.892 0.640 B 0.947 0.958 0.954 0.800 C

0.5 0.140 A 0.863 0.852 0.602 B 0.949 0.959 0.956 0.769 C

0.4 0.083 A 0.833 0.813 0.575 B 0.949 0.962 0.953 0.765 C

0.3 0.052 A 0.814 0.775 0.570 B 0.950 0.961 0.956 0.722 C

0.2 0.041 A 0.783 0.732 0.556 B 0.950 0.962 0.955 0.713 C

0.1 0.029 A 0.759 0.696 C 0.553 B 0.950 0.959 0.956 0.696 C

0.0 0.022 A 0.735 0.657 C 0.554 B 0.950 0.965 0.957 0.692

T = 120

0.9 0.605 A 0.941 0.942 0.724 C 0.826 0.951 0.945 0.700 B

0.8 0.227 A 0.916 0.916 0.454 B 0.691 0.946 0.941 0.532 C

0.7 0.079 A 0.877 0.865 0.313 B 0.644 0.947 0.929 0.507 C

0.6 0.027 A 0.829 0.813 0.263 B 0.622 0.945 0.926 0.486 C

0.5 0.012 A 0.774 0.751 0.227 B 0.604 0.946 0.924 0.465 C

0.4 0.005 A 0.728 0.685 0.217 B 0.597 0.945 0.921 0.452 C

0.3 0.002 A 0.679 0.638 0.205 B 0.593 0.943 0.919 0.417 C

0.2 0.002 A 0.634 0.575 0.199 B 0.587 0.945 0.913 0.410 C

0.1 0.001 A 0.611 0.536 0.203 B 0.582 0.945 0.911 0.404 C

0.0 0.001 A 0.579 0.503 0.198 B 0.589 0.943 0.909 0.402 C

T = 240

0.9 0.231 A 0.934 0.938 0.340 B 0.425 C 0.940 0.898 0.435

0.8 0.024 A 0.880 0.883 0.115 B 0.248 C 0.930 0.840 0.416

0.7 0.004 A 0.806 0.812 0.062 B 0.197 C 0.927 0.824 0.412

0.6 0.001 A 0.732 0.714 0.050 B 0.183 C 0.923 0.804 0.408

0.5 0.000 A 0.650 0.631 0.039 B 0.170 C 0.924 0.803 0.401

0.4 0.000 A 0.585 0.555 0.034 B 0.170 C 0.927 0.805 0.385

0.3 0.000 A 0.532 0.493 0.036 B 0.166 C 0.920 0.806 0.381

0.2 0.000 A 0.500 0.443 0.030 B 0.162 C 0.924 0.800 0.377

0.1 0.000 A 0.463 0.400 0.030 B 0.160 C 0.930 0.793 0.369

0.0 0.000 A 0.442 0.369 0.030 B 0.160 C 0.923 0.803 0.343

A, B and C denote the Best, Better and good performer respectively.

https://doi.org/10.1371/journal.pone.0259994.t006
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performer and good performer respectively in this study. These nominations are done for each

alternative hypothesis i.e. γ.

It is evident from Table 4 that for the first case of deterministic part i.e. D0LT0, the LM test

is the best performer at all ten γ0s considered for all four sample sizes. At T = 30, for some γ0s,
Sc is better and for some γ0s, H2 is better performer. Similarly, at the same sample size three

tests i.e. H1, H2 and F are good performers at different γ0s. However, a deep insight of Table 4

reveals that excluding LM, the rest of seven tests have β0s way larger than 0.5. Moreover, the

LM test has also β0s larger than 0.5 for γ0s from 0.9 up to 0.7. At a moderate sample size of 60,

β0s tend to improve generally as now β0s are lesser as compared to the ones for T = 30. Now,

for majority of γ0s, H2 is better and H1 is good performer. Again, these two tests (H1 and H2)

have β0s larger than 0.5 for γ0s from 0.9 to 0.4. The LM test has β0s larger than 0.5 for only γ =

0.9, for rest of γ0s, β0s tends to decrease very sharply. When a moderately large sample size of

120 is considered, then β0s are generally lesser than those for T = 30 and T = 60. Now Sc is a

better performer for majority of γ0s and H2 is also better performer for some γ0s. Lc, Sc, H2

and H1 are good performers at various γ0s. However, LM improves its performance enor-

mously as now it has all β0s lesser than 0.1 except for two γ0s i.e. φ = 0.9, 0.8. For the large time

length of 240, all tests tend to improve their performance as compared to previous three time

lengths i.e. T = 30, 60, 120. At T = 240, LM is the best performer and it has β0s lesser than 0.05

for all γ0s except γ = 0.9. Sc is better and Lc and H2 are good performers.

For the second case of deterministic component i.e. D1LT0, again LM has the least β0s at all

γ0s for all T. Table 5 depicts that at T = 30, the smallest sample size considered in the study, LM

is the best, Sc and H2 are better and Sc, H1 and Ls are good performers. However, all these

tests have β0s way greater than 0.5 except LM at some γ0s. At T = 60, the same performance of

T = 30 is repeated, however, now all tests have β0s lesser than those for T = 30. Especially LM

has all β0s lesser than 0.5 except γ = 0.9. At a moderately large T = 120, all the tests have

improved their performance by having lesser β0s as compared to T = 30 and 60. For T = 120,

LM remains the best, however, Sc becomes better and LBI and H2 becomes good performers.

At this T = 120 LM has all β0s lesser than 0.05 for all γ0s except γ = 0.9, 0.8, 0.7. Similarly, Sc has

all β0s lesser than 0.5 for all γ0s except γ = 0.9. At the largest T = 240, almost same performance

of T = 120 is repeated with only one addition that now LBI is the sole good performer. At

T = 240 these three tests LM, Sc and LBI have β0s lesser than 0.4.

For the final case of deterministic part i.e. D1LT1 considered in this study, again LM is the

sole best performer at all γ0s for all T. However, a detailed inspection of Table 6 reveals that at

smallest T = 30, all eight tests have β0s way larger than 0.5 except LM at some γ0s. H2 is better

and H1 is good performer at T = 30. At T = 60, again same is the case that all tests have β0s
larger than 0.5 except LM at γ = 0.9 and 0.8. However, now Sc is better, and Ls is good per-

former. When a moderately large T = 120 is considered then in general all tests and especially

three tests i.e. LM, Sc and Ls improve their performance as these tests have β0s lesser than 0.5

for most of γ0s. Now LM has β0s lesser than 0.1 for all γ0s except γ = 0.9 and 0.8. The better and

good performers are Sc and Ls respectively at T = 120. At largest sample size of T = 240 consid-

ered in this study, LM, Sc and LBI are best, better and good performers respectively. However,

now LM has β0s lesser than 0.05 for all φ0s except γ = 0.9. Similarly, Sc has β0s lesser than 0.05

for all φ0s except γ = 0.9, 0.8 and 0.7.

4. Conclusions and recommendations

This study is aimed to evaluate the performance of null of cointegration tests on basis of proba-

bilities of Type I and II Errors using Monte Carlo Simulations. In light of discussion in Section

3 it is concluded that use of asymptotic critical values for these eight tests considered in this
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study, led to distortion in probabilities of Type I Error. At almost all of specifications of deter-

ministic part and sample sizes, these eight tests had probabilities of Type I Error way greater or

way smaller than the nominal significance level considered. This means that these eight tests

faced problems of over rejection as well as under rejection. In statistical and econometric anal-

ysis these two problems of over rejection and under rejection have worse implications, leading

to useless conclusions and recommendations. As stated by [34], the claims about the robust-

ness of type I error probabilities are false if the asymptotic critical values are used.

To solve these problems of over rejection and under rejection, simulated critical values

were estimated and then again probabilities of Type I Error were calculated. The use of simu-

lated critical values led to the control of probabilities of Type I Error around nominal signifi-

cance level. For further evaluation of performance on basis of probabilities of Type II Error,

these simulated critical values were used to ensure that the probabilities of Type I Error are

around nominal significance level of 0.05 for all eight tests.

The LM test was the sole best performer at all alternative hypotheses for all specifications of

deterministic part and sample sizes on basis of probability of Type II Error. It had probabilities

of Type II Error way lesser than its competitors. However, at small time lengths of 30 and 60,

even it was the best performer, it had probabilities of Type II Error larger than 0.5. The LM

test is a better performer as it uses the contemporaneous variance estimator and the rest used

different form of long run variances. Therefore the performances of the rest of the tests also

depend upon the selection of type of long run variance and their weighting function. However,

the LM test is free of these decisions. Moreover, its underlying assumptions and theory meets

with the data generating process used in the current study. From the rest of tests, two tests had

better and good performance over all and these tests are Sc and H2 developed. At large sample

sizes of 120 and 240, LM test had the extra ordinary least probabilities of Type II Error, even

lesser than 0.05. The rest of five tests excluding LM, Sc and H2, performed badly even worst

with one exception that LBI performed better for D1LT0 and D1LT1 at time length of 240.

In the light of conclusions, it is recommended that use of asymptotic critical values may be

avoided. Furthermore, the use of simulated critical values is highly recommended. In modern

age, the use of simulated critical values is easily possible due to the availability of fast comput-

ers. While testing for possible cointegration using null of cointegration tests, the LM test may

be given priority as compared to the others. For large time lengths of 240 or more, when the

presence of only intercept is assumed then LBI test may also be used.

After conducting the current study, few gaps in the literature have been observed which can

be pursued in the future starting with the development of a new test of null cointegration on

basis of vector autoregressive model as there is no such kind of test available in the literature.

Moreover, it can also be assessed that how these current tests are performing when the data are

generated using a multivariate system having more than one cointegrating vector.
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