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a b s t r a c t

Super-resolution imaging techniques have provided unprecedentedly detailed information by surpassing 
the diffraction-limited resolution of light microscopy. However, in order to derive high quality spatial re-
solution, many of these techniques require high laser power, extended imaging time, dedicated sample 
preparation, or some combination of the three. These constraints are particularly evident when considering 
three-dimensional (3D) super-resolution imaging. As a result, high-speed capture of 3D super-resolution 
information of structures and dynamic processes within live cells remains both desirable and challenging. 
Recently, a highly effective approach to obtain 3D super-resolution information was developed that can be 
employed in commonly available laboratory microscopes. This development makes it both scientifically 
possible and financially feasible to obtain super-resolution 3D information under certain conditions. This is 
accomplished by converting 2D single-molecule localization data captured at high speed within subcellular 
structures and rotationally symmetric organelles. Here, a high-speed 2D single-molecule tracking and post- 
localization technique, known as single-point edge-excitation sub-diffraction (SPEED) microcopy, along 
with its 2D-to-3D transformation algorithm is detailed with special emphasis on the mathematical prin-
ciples and Monte Carlo simulation validation of the technique.

© 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ 

licenses/by-nc-nd/4.0/).

1. Introduction

Limited by the two-dimensional constraints of the detector, 
imaging three-dimensional structures and molecules in their native 
state has been a long-standing goal of light microscopists. Although 
several microscopy advancements have overcome this limitation 
through a mixture of optical and computational methodologies, such 
methods are both challenging and costly to implement. However, 
alternative techniques may be utilized to resolve these issues. 
Methods such as optical sectioning, which enable the derivation of 
axial (z-dimension) information by combining several lateral (XY) 
images at different axial positions, and post-imaging mathematical 
approaches of transforming two-dimensional data into virtual three- 
dimensional images by taking advantage of the physical properties 
of symmetrical structures. Here, we briefly review techniques 
available for deriving 3D data from 2D information, describe the key 
concepts for localizing single-molecules, and review the 2D-to-3D 
transformation algorithm application in different biological samples.

2. Approaches for 2D-to-3D image reconstruction

2.1. Optical sectioning

Optical sectioning is the process of serial imaging a sample at 
different axial positions then combining the images to create a 3D 
image. This methodology has provided significant insight into both 
clinical and foundational research problems. For example, 3D re-
construction via optical sectioning has been employed in clinical 
pathology to reconstruct 3D images of breast tissue. This enabled a 
detailed and comprehensive understanding of the nuclear structures 
for both benign and malignant regions of human breast tissue[1]. 
These techniques have also been widely employed in foundational 
research in a variety of models, such as studying the inner ear[2] and 
lens[3] of mice as well as muscle degradation in Drosophila mela-
nogaster[4].

While many techniques utilize some form of optical sectioning, 
the most prominent techniques enabling the reconstruction of 3D 
information from 2D images are maximum intensity projection, 
orthographic projection, volume rendering, and surface reconstruc-
tions[5]. Maximum intensity projection is the most commonly em-
ployed of these techniques and utilizes raw 2D data to produce a 
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single 3D image stack that consists of the maximum pixel value 
found at each discrete pixel location within the dataset. The max-
imum value pixels are then combined in a pointillistic manner to 
generate a 3D volumetric impression[6]. While these images provide 
valuable information, a common criticism is that images generated 
using this methodology lack a sense of depth; however, this can be 
corrected through the use of animations. The illusion of depth is 
achieved via animations where the sample can be rotated in space a 
small number of degrees, at which point the computer then re-
calculates the maximum pixel values at the new orientation. The 
perception of depth is thus achieved through a clever application of 
orientation based animation and recalculation[6]. Notably, axial re-
solution is reduced when the lateral plane rotates beyond 30–45° in 
the Z-dimension [6]. However, by orthographic projection, the Z-axis 
resolution may be conserved. Differing from maximum intensity 
projection, orthographic projection exploits the curvature of a 
spheroidal or semi- spheroidal sample to gain equatorial data by 
comparing it to the anterior region of the sample. As demonstrated 
in 2010 by S. Bassnett and Y. Shi in 2010, the authors implement 
orthographic projection microscopy to accurately quantify the cell 
density of a mouse’s lens epithelium[3]. A process that typically 
miscalculates the equatorial cell density when applying maximum 
intensity projection.

Another technique relying upon optical sectioning is volume 
rendering. This technique consists of assembling multiple 2D slices 
that undergo 3D reconstruction to form what is termed as a ‘volume 
model.’ In this system the X, Y, and Z points are labeled with the 
fluorescent intensity and are rendered as an image that visualizes 
the internal structure[7]. Volume renders are a relatively accurate 
representation of the underlying data and lead to fewer incorrect 
conclusions regarding localization[8]. Lastly, surface reconstruction 
is an optical sectioning method in which virtual 3D models are 
rendered from 2D sets of images[7]. The voxels of interest are as-
signed a range of intensity values where a marching cube algorithm 
is utilized to provide the 3D structure[6]. This methodology has been 
utilized to make several novel and impactful observations. As was 
previously mentioned, dorsal oblique deterioration in Drosophila 
melanogaster was observed in real time. This was accomplished via a 
3D timelapse reconstruction of 2D images of the nucleus that en-
abled the visualization of the real time breaking down of the 
muscle[4].

The generation of a 3D reconstruction enables excellent analysis 
of samples, enabling a more granular understanding of cellular 
structures. Information derived from a 2D analysis alone is often 
insufficient to enable an in-depth analysis of either a cellular 
structure nor its dynamic processes. Despite the obvious advantages, 
this methodology is not without its challenges. Chiefly, the quality of 
a 3D reconstruction via optical sectioning is largely dependent on 
the axial sampling. Undersampling excludes or dampens pertinent 
information and produces aliasing artifacts[9], where oversampling 
unnecessarily extends the image acquisition time, increasing the 
probability of photobleaching. However, following the Nyquist- 
Shannon sampling theorem [10,11] with regards to the correct 
number of images needed in the axial dimension considering the 
objective’s depth-of-field (DOF), the illumination and emission wa-
velengths, and the lens immersion and specimen medium refractive 
indices [12], will greatly improve the reconstruction’s likeness to the 
original sample. Additionally, image segmentation, or selecting a 
structure or region of interest (ROI) within a sample, whose lateral 
position varies in the axial dimension, results in poor image quality 
[2]. However, automatization has greatly reduced the time spent on 
this process and has improved the 3D reconstruction of these 
images[13,14].

2.2. 2D-to-3D transformation algorithm

Although several techniques implement some sort of post-ima-
ging analysis of the data, the 2D-to-3D transformation algorithm 
quantifies the 3D information from 2D data without the need for 
complex optical setups[15]. This is accomplished by taking ad-
vantage of the physical properties of radially symmetric structures 
and assumes that the location of molecule will remain the same if 
the properties of the structure do not change. For example, the nu-
clear pore complex (NPC) exhibits 8-fold rotational symmetry with 
its scaffold proteins and thus the distance from the radial center of 
one scaffold protein would be the same for a scaffold protein of the 
same type[16]. To resolve the radial distance, an area matrix is used 
to accurately determine the radial position of a molecule. This pro-
cess is described further in Section 4.2.

3. Single particle tracking and localization microscopy

3.1. General principles of single-molecule microscopy

The 2D-to-3D transformation algorithm relies inherently upon 
high quality 2D single-molecule localizations. Capturing the re-
quisite 2D data may be achieved through a variety of different 
techniques, but ultimately relies upon several key concepts. First, 
single molecules must be sufficiently spatially or temporally sepa-
rated to permit the mathematical localization of the emitter[17]. 
Second, the sensitivity of the optical system, which is most influ-
enced by the numerical aperture (NA) of the objective and the de-
tector quality[18]. Lastly, the quality of the emission source, meaning 
the object being imaged via fluorescent microscopy. With optimized 
laser power, target selection, and labeling efficiency, most fluor-
escent proteins and dyes can provide a stable number of photons 
prior to quenching and are therefore capable of being localized at the 
single-molecule level.

3.1.1. Optical system sensitivity
Numerical aperture was originally defined by Ernst Abbe as 
=NA n*sin( ), with representing one-half angular aperture of the 

objective and n denoting the refractive index of the medium be-
tween the objective and the sample. NA may independently improve 
the overall spatial resolution of an image as the NA effects both the 
photon collection efficiency of the emission source and the area of 
illumination. This concept is illustrated by the point spread function 
(PSF) shape and size. Two PSFs exist within an image plane, an il-
lumination PSF (iPSF) and an emission PSF (ePSF). With respect to 
the objective NA the iPSF may be adjusted to reduce background 
noise from emitters in the lateral and axial planes. However, for 
moving particles, reducing the width of the ePSF, will be partially 
dependent upon the sensitivity and speed of the detector. A good 
detector will reduce the width of the ePSF by increasing the amount 
of localizations between the start and finish of the molecule’s tra-
jectory.

Regarding the sensitivity of the detector, this will have a role in 
not only the spatial resolution but the temporal resolution as well. 
For single-molecule detection, two major types of detectors are ty-
pically used, electron multiplying charge-coupled device (EMCCD) 
and scientific complementary metal oxide semiconductor (sCMOS) 
cameras[19,20]. Both camera types effectively convert photons into 
electrons with a typical quantum efficiency (QE) above 90% and 
demonstrate very low camera noise[19,20]. This differs from back-
ground noise as camera noise results from both the current that is 
thermally generated by the detector and the detector’s conversion of 
pixel photocurrent into signal voltage; referred to as dark noise and 
read noise, respectively. Interestingly, sCMOS cameras with parallel 
charge-voltage conversion for each pixel induces pixel-based 
readout and pattern noise compared to EMCCD sensors. However, by 
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noise correction algorithm (NCS)[21] and automatic correction of 
sCMOS-related noise (ACsN)[20], sCMOS cameras preserve the 
characteristics of the fluorescence signal. Improving QE and reducing 
camera noise play significant roles when accurately localizing single 
molecules.

3.1.2. Quality of the emission source
In addition to the optical setup, the quality of the emission source 

must meet some minimum requirements to effectively localize 
single molecules. For fluorescent molecules, this is generally mea-
sured by the brightness of a molecule. Brightness is quantified by 
multiplying how strongly a fluorescent molecule absorbs light at a 
particular wavelength, defined as extinction coefficient (ε), by how 
efficiently the absorbed light is converted into emitted light, defined 
as quantum yield (Φ)[22,23]. Although, having a fluorescent mole-
cule that is very good at absorbing light but inefficient at converting 
that absorbed energy into emitted light, may limit its usefulness in 
single-molecule microcopy studies. This is best illustrated by the 
organic dye Cyanine-3 (Cy3), which has an extinction coefficient of 
150,000 and quantum yield of 0.15[23]. The inverse is exemplified by 
mBanana, a fluorescent protein with an extinction coefficient of 
6000 and a quantum yield of 0.70[23].

Furthermore, photobleaching, or the time associated with irre-
versibly modifying a fluorescent molecule so that the molecule 
cannot be excited again, is both a positive and negative quality that 
may be exploited in single-molecule microscopy environments[24]. 
As a positive, photobleaching may reduce the quantity of fluorescent 
molecules within the imaging area prior to image capture, allowing 
new fluorescently active molecules to enter. By reducing the con-
centration of active fluorescent molecules results in a direct decrease 
of overall background noise and a providing a more precise locali-
zation of a single molecule. Negatively speaking, when an emission 
source has a short photobleaching time, signal photons captured 
within a given time may be insufficient for distinguishing the single 
molecule from the background. In the case for moving particles, a 
trajectory may end prematurely and, as a result, providing in-
sufficient information regarding the molecular functions or proper-
ties of the moving particle. For example, if an eGFP were passively 
diffusing through the nuclear pore complex (NPC) and underwent 
photobleaching halfway through the complex, then the trajectory 
would be incomplete and thus unusable for determining the trans-
port efficiency of eGFP through the NPC.

In addition, fluorescence intermittency (or blinking), a phenom-
enon of random switching between bright and dark states of the 
emitter under a continuous excitation, also has negative and positive 
aspects. This phenomenon was typically found in some molecular 
fluorophores and colloidal quantum dots, which is believed to be 
caused by the competition between the radiative and non-radiative 
relaxation pathways [25]. Negatively speaking, for example, a re-
peated cycle of fluorescence blinking behavior, observed for single 
nanoparticles, green fluorescent protein (GFP) molecules, or Alexa 
Fluor 647 dyes, can significantly challenge the determination of 
Fluorescence Resonance Energy Transfer (FRET) efficiency in single 
molecule FRET measurements using these fluorophores. While, on 
the other hand, fluorescence blinking of these fluorophores or re-
versibly photoswitchable fluorescent proteins can form the funda-
mental underpinning for super-resolution microscopy imaging such 
as stochastic optical reconstruction microscopy (STORM)[26] and 
photoactivated localization microscopy (PALM)[27].

Alternatives to overcome issues regarding fluorophore stability 
could be increasing a sample’s labeling efficiency and the number of 
fluorophores on a sample, or substituting the fluorophore with a 
more robust inorganic equivalent, such as a quantum dot[28] or 
plasmonic nanoparticle[29]. However, both approaches have major 
experimental design limitations, including loss-of-function or 

aberrant behavior of the labeled molecule and limited labeling sites 
due to structural properties of the conjugate or target molecule.

Similar to the detector, the emission source and environment will 
produce noise that will distort the true location of a single molecule. 
This noise arises from off-target illumination of neighboring emis-
sion sources, which may come from fluorescently labeled molecules 
or from endogenous molecules with fluorescent properties typically 
denoted as autofluorescence[30]. However, off-target illumination 
can be reduced by applying different angles of excitation light. For 
example, total internal reflection fluorescence (TIRF) microscopy 
excites only the bottom 100–200 nm layer of a cell sample, which 
drastically limits the background noise that would come from above 
that bottom layer. The major drawback of this approach is that it 
severely limits the axial range of imaging beyond the excited layer. 
When selecting 2D localizations to utilize for the 2D-to-3D trans-
formation, it is recommended to compare the signal to noise as a 
signal-to-noise ratio (SNR). This is a useful estimator for determining 
the quality of your 2D-localizaitions.

3.1.3. Localizing the single-molecule
After the above parameters are optimized, and single molecule 

images are taken with sufficient SNR, it is then necessary to de-
termine from where in Euclidean space the target molecule is 
emitting. The raw image will not provide sufficiently precise location 
data regarding the target molecule’s location. In order to localize the 
molecule at the nm scale, overcoming the diffraction limit is re-
quired. Defined by Ernst Abbe in the late 1800 s, the resolution limit 
as =d NA/2 in the lateral plane (x, y) and =d NA2 / 2 in the axial 
plane (z), where d is the diffraction limit, is the wavelength, and NA
is the numerical aperture. Meaning, for conventional light micro-
scopy, spatial resolution is limited to approximately 200 nm laterally 
and 500 nm axially[31,32]. As a result of these physical limitations, it 
is impossible to obtain a high enough resolution for single particle 
localization, so algorithms are used to predict where exactly the 
molecule is in 2D space. These fitting algorithms use statistical 
analysis to delineate the signal of the target molecule from noisy, 
pixelated images of ROIs. Typically, these algorithms assume that 
within the ROI, there is only a single target molecule emitting light, 
which means that it is necessary during image collection to have 
either spatially or temporally separated fluorescent signals.

There are many different types of fitting algorithms that could be 
applied to the images, and while some of them are more precise and 
sophisticated than others, that sophistication generally comes with 
more difficult implementation, and may be unnecessary depending 
on the desired level of precision and accuracy. One relatively im-
precise and inaccurate method is to use a max value estimator, 
which assumes that the target molecule is located in the center of 
the pixel with the greatest intensity value, which makes this method 
highly constrained by pixel size. This concept can be further im-
proved by instead using a weighted average of all of the pixels in the 
ROI, creating a centroid estimator. While the centroid estimator is 
slightly more precise than the max value estimator, it will always 
bias results towards the center of the ROI as a result of the inclusion 
of background pixels. If the target molecule is emitting light iso-
tropically, and the PSF is assumed to have radial symmetry, fitting 
the signal to a Gaussian function for localization has been shown to 
be quite accurate, and is widely used for single molecule localiza-
tion[33].

3.2. SPEED microscopy

SPEED microscopy is designed to localize and track either mobile 
or immobile fluorescent single molecules as they occupy space 
within or peripheral to biological channels and cavities at a spatio-
temporal resolution of up to ≤ 10 – 20 nm and 0.4 ms[34,35]. One of 
the features of SPEED that allows for such high temporal and spatial 
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resolutions is the utilization of an inclined single-point illumination 
in the focal plane. To achieve the inclined single-point illumination 
volume, we first require a vertical single-point illumination. The 
laser beam is aligned to pass through the central axis of the objective 
by adjusting the reflection mirror, so that we get center excitation 
beam or vertical single-point illumination. Next, the center excita-
tion beam is shifted a specific distance off the central axis of ob-
jective by a micrometer stage, so as to generate an inclined 
illumination volume at 45° in the vertical direction (Fig. 1A). The 

shift distance is determined by several parameters: the focal length 
of objective, the refractive indexes of the different mediums on the 
optical path, and the inclined angle required. The inclined single- 
point illumination volume of SPEED microscopy has better axial 
resolution and acceptable lateral resolution (∼320–230 nm in the x, 
y, and z directions with the tilted angle between 350 and 550 for a 
488-nm excitation laser). This incline provides a couple of major 
benefits that improve 2D localization. For example, it reduces out-of- 
focus background fluorescence, and generates a smaller effective 

Fig. 1. 2D-to-3D Transformation of different fluorophore localizations within various structures. (A) Illustration of a glass nanocapillary tube with a length of 500 nm and a hollow 
interior radius of 35  ±  0.25 nm with freely diffusing Alexa Fluor 647 (AF647) dyes. (B) X and y 2D localizations from previously published AF647 single-particle tracking events 
inside the glass nanocapillary tube[42]. (C) Density plot of 2D localizations from B with a 37  ±  2 nm at two standard deviations from the mean, 0  ±  1 nm. (D) Radial density map 
from C with the R peak noted in white. (E) Illustration of the nuclear pore complex (NPC) with a model trajectory for GFP-labeled intrinsically disordered protein, calcium- 
responsive transactivator (CREST). (F) X and y 2D localizations from previously published GFP-CREST single-particle tracking events inside the NPC[43]. (G) Density plot of 2D 
localizations between x-dimension − 20–20 nm from F with peak fittings at − 25  ±  1 nm and 25  ±  1 nm, showing CREST’s NPC transport route as ∼25 nm. (H) Radial density map 
from G. (I) Illustration of GFP-labeled intraflagellar transport (IFT)20 protein in the shaft of a primary cilium. (J) X and y 2D localizations from previously published GFP-IFT20 
single-particle tracking events inside a primary cilium[42]. (K) Density plot of 2D localizations from J with peak fittings at − 95  ±  1 nm and 95  ±  1 nm, showing IFT20 active 
transport route as ∼95 nm. (L) Radial density map from K. (M) 2D STORM data showing the reconstructed super-resolution image of AF647-labeled anti-tubulin-α antibody 
localized to tubulin. Scale bar = 50 nm. (N) X and y 2D localizations of AF647-anti-tubulin-α antibody within COS-7 cells. (O) Density plot of 2D localizations from N with peak 
fittings at − 12  ±  1 nm and 12  ±  1 nm, showing the radius of the microtubule structure, ∼12 nm. (P) Radial density map from part O. 
Figure has been reproduced with permission [15].
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illumination volume in the axial direction. When studying nuclear 
pore complexes (NPCs), for example, it is possible to only excite a 
single NPC in all three dimensions. In addition, because it is possible 
to directly focus the inclined beam onto the focal plane, a higher 
laser power density can be applied onto the target without having to 
increase laser power, resulting in a higher number of excited pho-
tons in the targeted region. This also reduces the impact of photo-
bleaching and phototoxic effects on the cell, permitting more 
accurate imaging of live cells. An optical chopper has been set up to 
further reduce the probability of the negative effects of applying a 
laser to a living cell, allowing the beam to only be interacting with 
the cell for 1/10 of the frames captured during imaging. Finally, the 
detector utilized in SPEED microscopy is an on-chip multiplication 
gain CCD camera rather than a photomultiplier tube (PMT), which 
allows for direct recording of spatial information and a larger area of 
photon collection. The CCD camera paired with such a small illu-
mination volume results in a detection speed of around 5000 frames 
per second, which minimizes localization error. All of these aspects 
of SPEED microscopy allow for a greater SNR. To be clarified, the 
design and application of SPEED microscopy is different from highly 
inclined and laminated optical sheet (HILO) microscopy that has 
been well used for single-molecule imaging inside cells. As afore-
mentioned, SPEED uses a focused laser beam while HiLo has a par-
allel laser beam through the focal plane.

As described previously, Gaussian distribution fitting functions 
are excellent tools with which to accurately and precisely determine 
single molecule location beyond the diffraction limit. SPEED utilizes 
the ImageJ plugin GDSC-SMLM to perform a series of tasks: fitting 
the single molecules and determining spatial location, determining 
fluorescence intensity of the molecules, determining intensity of the 
background, and solving for the Gaussian width of the single mo-
lecule spots[36]. By determining the Gaussian width of a single 
molecule, it is possible to filter out frames that display wider or 
narrower signals, suggesting that there are either multiple fluor-
escent molecules in a single ROI, or the signal is merely background 
noise. After calculating the SNR, it is possible to also filter out frames 
that have an SNR ≤ 10, maintaining only the images that will yield 
the best localization precisions. The localization precisions of sta-
tionary molecules are determined by the standard deviation of 
multiple measurements of the central point, while for mobile mo-
lecules the localization precision can be solved with the following 

equation, = ++ +F s a
N

b s a

a N

16( / 12)
9

8 ( / 12)2 2 2 2 2 2

2 2 , where F is equal to 

2, N is the number of collected photons, a is the effective pixel size of 
the detector, b is the standard deviation of the background in pho-

tons per pixel, and = +s s D ts0
2 1

3
, where s0 is the standard de-

viation of the PSF in the focal plane, D is the diffusion coefficient of 
the substrate, and Δt is the image acquisition time[18].

There are two major types of information that can be collected 
using SPEED after analysis of the 2D single-molecule localizations. 
The first of which is dynamics information, which includes diffusion 
coefficients, transport efficiencies, and interaction or dwell time, and 
is resolved with a temporal resolution of 0.4 – 2 ms. The second type 
is structural information, which requires the superposition of hun-
dreds of single-molecule trajectories, which is achieved with a 
temporal resolution of 1 – 3 s[18]. With longer acquisitions, the 
sample may shift from its original position within the illumination 
area producing incoherent information. Even with a short time ac-
quisition, sample drift may occur as well. To identify sample drift, a 
marker image is taken before and after data collection and then 
compared. For example, when collecting single-molecule mCherry- 
labeled messenger ribonucleoproteins (mRNPs) interacting with a 
the GFP-labeled NPC by SPEED microscopy, a widefield marker 
image of the entire GFP-labeled nuclear envelope (NE) was taken 
before and after imaging the mRNPs. Then, when comparing the two 

images, if the NE shifted, the shift can be recorded and corrected in 
localizing single-molecule trajectories and in the determination of 
overall localization precision of the experiments. The acquisition 
could be even excluded from the final dataset if the shift is sig-
nificant and hard to be corrected [37,38]. There are several ap-
proaches to reduce and correct sample drift, including imaging 
software, optical hardware, and environmental hardware, however, a 
combination of the three is required for high-speed single-molecule 
microscopy.

3.3. 3D SMLM techniques

There are several single-molecule approaches to gain Z-dimen-
sional data by capturing and contorting the emission PSF [17,39–41]. 
One such technique captures the emission PSFs at multiple focal 
planes by multiple detectors, known multifocal or bi-plane imaging. 
Typically, out-of-focus signal weakens the ability to obtain high- 
resolution images and is considered only as a parameter to avoid. 
However, 3D SMLM techniques implementing multifocal/bi-plane 
imaging can simultaneously capture multiple focal planes, rendering 
different Z-dimensional profiles of an emitter’s PSF. Comparing the 
off-focal plane image to the focal plane image resolves the distance 
of an emitter in the z-dimension. Another technique to gain axial 
dimensional data is through PSF engineering, in which the emission 
PSF is contorted by back focal plane modulation to create a contorted 
PSF indicative of the emitter’s axial position. Techniques using PSF 
engineering include astigmatism, phase-ramp, double-helix, accel-
erating beam, corkscrew, and tetrapod. For a more robust explana-
tion of these different 3D SMLM approaches, we recommend L. von 
Diezmann et al. [17].

4. Application of 2D-to-3D transformation algorithm

4.1. 2D-to-3D transformation applied to different structures

Several structures, both non-biological and biological, possess 
radially symmetric qualities that may utilize the 2D-to-3D trans-
formation algorithm. As demonstrated in Fig. 1, we transformed 2D 
localizations collected within a glass nanocapillary (GNC) tube[42], 
nuclear pore complex (NPC)[43], primary cilia[42], and from the 
exterior of a microtubule into 3D density maps.

Within the GNC, the 2D-to-3D transformation algorithm offered 
an alternative to helium scanning transmission ion microscopy 
(HeSTIM) for determining the internal diameter of the GNC (Fig. 1A). 
To accomplish this high quality 2D localizations of Alexa Fluor 647 
dyes as they freely diffuse through the GNC hollow interior (Fig. 1B). 
Then transforming the 2D localizations into a 3D radial density plot 
(Fig. 1C) and map (Fig. 1D) using the 2D-to-3D transformation al-
gorithm. With an estimated diameter of 37  ±  2 nm, the 2D-to-3D 
transformation calculation coincides with the HeSTIM observation of 
35  ±  0.25 nm[42]. Although HeSTIM provides better accuracy, the 
reduced in experimental time and complexity the 2D-to-3D trans-
formation algorithm offers may be a worthy substitution.

In addition to GNC tube experiments, the 2D-to-3D transforma-
tion algorithm has been applied to several sub-cellular molecules 
and structures, including intrinsically disordered proteins (IDPs) 
transport through the NPC[43] (Fig. 1E – H), diffusion of intraflagellar 
transport (IFT) protein complexes through the primary cilia[42]
(Fig. 1I – 1 L), and resolving the diameter of tubulin by antibody la-
beling (Fig. 1M – P). The sensitivity of the 2D-to-3D transformation 
algorithm was further demonstrated in three different environ-
ments. For the NPC and primary cilia environments, the 3D transport 
routes of GFP-labeled transiting particles within live cells was re-
solved using the 2D-to-3D transformation algorithm. 2D-to-3D 
transformation algorithm also enabled us to reveal the nucleocyto-
plasmic transport routes for calcium-responsive transactivator 
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(CREST) and other IDPs, which challenged an established rule for 
passive diffusion through the NPC, known as the size exclusion 
barrier [44–46]. The virtual 3D method further suggested that the 
active and passive diffusion of molecules in primary cilium use the 
peripheral and central luminal regions respectively[42]. In both in-
stances, the 3D virtual images of these transport routes were ne-
cessary in revealing novel information regarding the sub-cellular 
structure and protein’s function. Moreover, to demonstrate the 2D- 
to-3D transformation algorithm adaptability to 2D localizations 
collected by other microscopy techniques, the diameter of tubulin 
was resolved using stochastic optical reconstruction microscopy 
(STORM) with fluorescently-labeled anti-tubulin antibody in fixed 
wt COS7 cells (Fig. 1M – P). The diameter of 24  ±  1 nm as determined 
by the 2D-to-3D transformation algorithm coincides with previously 
published results[47].

4.2. Mathematical concept of the 2D-to-3D transformation algorithm

Assuming high quality single-molecule localizations within a 
rotationally symmetric structure are obtained, then the 2D-to-3D 
transformation algorithm may be applied[15]. The Fig. 2 flowchart 
demonstrates the transformation of 2D localizations into a radial 
density plot. After capturing 2D single-molecule localizations, the 
localizations are oriented such that the radial (r) angle of 0° equals 
the y-dimension. Then the 2D localizations are binned in the y-axis 
by the optimal bin size (Δr). The optimal bin size is determined by 
testing the smallest possible bin size that yields no statistical dif-
ference by a Chi square analysis of the y-axis histogram and a back- 
calculated histogram of the density plot. The 2D localizations within 
the x-dimension may all undergo y-axis binning, as shown in GNC 
tube from Fig. 1C & D, or a x-dimension segment may be isolated 
based on the biological properties exhibited by the target molecule, 
as shown in the NPC for Fig. 1G & H for the hydrophobic properties 
exhibited by the proteins found within the NPC central scaffold re-
gion (−20 to 20 nm). Once the 2D localizations are binned by the y- 
axis, the area matrix may be calculated by setting r angle of 90° 
equaled to the z-dimension. This calculated area matrix consists of 
both axial bins (i) and radial bins (j), which allows each sub-region 
area (A(i,j)) to be calculated. To begin transforming the binned y-axis 
data into radial density information, the spatial probability density 
( ) of the outermost bin, where i equals j, is calculated by measuring 
the area (S(i,j)) as shown in equation 1. Then stepping inward 1 axial 
and 1 radial bin, such that i and j are still equal, the area is calculated 
using the same equation (Eq. 1). Fig. 2.
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From the same axial bin, the outer radial bin (i ≠ j, i  >  j) areas 
(A(i,j)) are calculated using equation 2.

= ++ +A S S S Si j i j i j i j i j( , ) ( , ) ( 1, ) ( , 1) ( 1, 1)

However, if i ≠ j and i  <  j than the area (A(i,j)) is 0 since the radial 
bin can only be equal or greater than the axial bin. Once the inner-
most bin is reached and the areas of all the subregions are calculated 
than the number of events in each axial bin (Nj) can be accurately 
determined using equation 3.
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Now the radial density results may be combined with other ra-
dial density results from different x-axis segments to create a full 
virtual 3D image.

4.3. Experimental validation by simulation

To evaluate the robustness and reliability of this technique, a 
variety of simulations were devised. These simulations operate on 
the principles of Monte Carlo Simulation, which is also referred to as 
a multiple probability simulation. In essence, such a simulation takes 
into account the possibility of multiple outcomes from an event, 
thereby predicting the most probable outcome for the inputted 
variables[48,49]. The first simulation was devised specifically to in-
terrogate the reproducibility of the 2D-to-3D transformation algo-
rithm. This simulation found that there are two critical parameters 
required for an accurate 3D density map reconstruction; single- 
molecule localization error and the number of single-molecule lo-
cations[27,50]. The degree of single-molecule localization error tol-
erable within the algorithm is directly correlated to the radius of the 
symmetrical structure being evaluated. For instance, a structure with 
a radius of 25 nm, the approximate radius of the central channel of 
the nuclear pore complex[51–54], is only reproducible if the locali-
zation error remains below 21 nm. It is notable that the number of 
21 nm is slightly smaller than the theoretical single-molecule loca-
lization error predicted by the Rayleigh criterion[55]. This slight 
discrepancy is most probably due to the sensitivity of the inner bins 
of the area matrix that are more sensitive to noise due to the slightly 
smaller area of the inner bins when compared to the outer bins. 
Further, researchers found the relationship between localization 
error and radius could best be demonstrated as the ratio of radius 
over precision (R/P), where it was found that the minimal R/P ratio 
was equal to 1.19, while the optimal ratio was ≥ 2.0. This is note-
worthy as SPEED microscopy is capable of an average of 10 nm lo-
calization precision, or 2.5 R/P.

Regarding the number of points required to accurately re-
construct a 3D density distribution, it was found that 100 or 350 
single-molecule localizations would provide a reproducibility of 90% 
and 99%, respectively. It is important to note that while this number 
is seemingly small, it is higher than the minimum Nyquist sampling 
theorem estimation of 38 single-molecule localizations[56]. Inter-
estingly, it was found that 1000 single-molecule localizations with 
an appropriately small localization error resulted in a 3D mean lo-
cation accuracy of 1 nm, indicating that the accuracy of the 3D re-
construction could extend to a boundlessly small measure provided 
sufficient single-molecule data with a sufficiently small localization 
error[18,57].

The 2D-to-3D transformation algorithm was next interrogated 
for the accurate reproduction of multiple transport routes through 
the symmetrical structure. It is possible that multiple transport 
routes through a structure are available to a macromolecule of in-
terest, therefore it was critical to determine the viability of the 2D- 
to-3D transformation algorithm in differentiating between these 
multiple possible routes. The simulation demonstrated an ability to 
differentiate between multiple routes. However, it was shown that at 
the minimal R/P of 1.19 that ∼200 single-molecule localizations were 
required to achieve 90% reproducibility when compared to the ∼100 
localizations required for a single transport route. Interestingly, the 
ability of the algorithm to distinguish between multiple transport 
routes increased as the R/P increased, with only ∼100 localizations 
required to differentiate between multiple transport routes with an 
R/P of 2.5[57].

Lastly, the robustness of this algorithm was interrogated in light 
of the physical properties of the symmetrical structure. While Monte 
Carlo simulations and the 2D-to-3D transformation algorithm as-
sume a perfect system, the realities of biology are rarely so precise. 
Further simulations were devised to evaluate the efficacy of this 
algorithm under conditions where the structure is compressed, not 
perfectly symmetrical, exhibits varying labeling efficiency, as well as 
the impacts of fold symmetry and rotation. These simulations found 
that compression of the structure, labeling efficiency, and the 
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rotation of the structure do not overly impact the accuracy and re-
producibility of the 2D-to-3D transformation algorithm so long as 
multiple datasets are averaged together and appropriately binned. 
Notably, the labeling efficiency did not change significantly so long 

as a minimum of half the objects are labeled[57]. Taken together, 
these simulations demonstrate that the 2D-to-3D localization algo-
rithm is both accurate and robust with a relatively low number of 

Fig. 2. Flowchart illustrating the 2D-to-3D density transformation algorithm and subsequent normalization of multiple axial subregions. The 2D-to-3D transformation algorithm 
converts the y-dimensional histogram into r-dimensional density information. This process is based on the area matrix that was developed for the given structure from which the 
y-dimensional information was obtained. 
Figure has been reproduced with permission [15].
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single-molecule localizations required to accurately and re-
producibly generate a 3D probability density map.

4.4. Limitations of the 2D-to-3D transformation algorithm

The single largest limitation associated with the 2D-to-3D 
transformation algorithm is the inability of this algorithm to utilized 
to determine the symmetry of an object. The algorithm inherently 
functions based upon the principle that there is a constant number 
of single molecules along the single radial bin within the structure. 
As a result, this algorithm is capable of deriving virtual 3D in-
formation from 2D localizations, but not capable of determining the 
relative symmetry of a biological structure. Further, as the algorithm 
currently exists, it is only possible to derive 3D information from 
rotationally symmetrical structures. As many biological structures 
are symmetrical, but not radially symmetrical, or irregularly shaped; 
this method is limited to only a few biological structures.

5. Summary and outlook

Obtaining three-dimensional data for super-resolution single- 
molecule microscopy remains both challenging and desirable. The 
development of the 2D-to-3D transformation algorithm for SPEED 
microscopy has somewhat addressed this need by providing a 
method of deriving 3D information from 2D images without the 
addition of costly microscope modifications or software. As a result, 
this virtual 3D technique for single molecules remains one of the 
most accessible methods currently available to researchers. This 
methodology, as it currently exists, provides the spatial probability 
density maps for single molecules as they transfer through rota-
tionally symmetric structures. At the time of writing, relatively few 
structures have been studied with this technique. Specifically, the 
nuclear pore complex, glass nanopores, primary cilium, and micro-
tubules have been interrogated. The results of these studies have 
provided significant and novel insight into the dynamics of tran-
siting macromolecules in a variety of cellular processes. However, 
this technique can be applied to any rotationally symmetric struc-
ture providing several more potential targets yet to be interrogated. 
Further, as this methodology is further refined, it is the intention of 
the authors to further develop this algorithm to derive spatial in-
formation from cellular structures that are symmetric, but not ro-
tationally symmetric, such as endosomes and mitochondria.
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