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Enhancing mathematical learning
outcomes through a low-cost single-
channel BCI system
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This study investigates the effectiveness of a Low-Cost Single-Channel BCI system in improving
mathematical learning outcomes, self-efficacy, and alpha power in university students. Eighty
participants were randomly assigned to either a BCI group receiving real-time neurofeedback based
on alpha rhythms or a sham feedback group. Results showed that the BCI group had significantly
higher mathematical performance, self-efficacy, and alpha power compared to the sham feedback
group. Mathematics performance, alpha wave intensity, and self-efficacy showed significant positive
correlations after training, indicating that neurofeedback trainingmay have promoted their interaction
and integration. These findings demonstrate the potential of BCI technology in enhancing
mathematical learning outcomes and highlight the importance of considering pre-test performance
and self-efficacy in predicting learning outcomes, with implications for personalized learning
interventions and the integration of BCI technology in educational settings.

Mathematical learning is a complex cognitive process that involves the
coordinationofmultiple brain regions and is influencedbyvarious cognitive
and affective factors, such as working memory, attention, problem-solving,
executive control, and emotional motivation1–3. Previous research has
shown that mathematical learning not only requires basic numerical abil-
ities, such as “number sense”4,5 and symbolic skills4, but also involves lan-
guage skills, spatial skills, working memory, and executive functions6,7.

Math anxiety, which refers to a debilitating negative emotional
response to mathematical tasks, can impact mathematical performance
through its effects on working memory, symbolic-numerical processing,
and directly8. Studies have also shown that in numerical tasks, personal
salience and reward stimuli better engage the affective-motivational systems
anchored in the amygdala and ventral striatum, and the learning and
memory systems anchored in the medial temporal lobes, with increased
hippocampal responsesmediating the relationship betweenpositive attitude
and effective problem-solving9.

Many researchers have made efforts to improve mathematical per-
formance. Some have used digital educational games to train children’s
math performance, but they only showed better results in number line
estimation and did not significantly impact other aspects, post-test perfor-
mance, or math anxiety10. Other studies have evaluated the effects of math
anxiety reduction training on math performance, finding that while such
training helps reduce anxiety levels, it does not significantly impact math
scores. Furthermore, strategy training for overcoming math anxiety shows

complex effects on math achievementy11. Researchers have also observed
immediate improvements in math performance after working memory
training, with the enhancement persisting over time. The same study found
that the group receiving concurrent metacognitive strategy training
improved more than the group receiving only working memory training12.
Spatial training has also been found to be an effective means of improving
mathunderstanding andachievement13.However, all thesemethods require
management by trained professionals. In contrast, we sought to find a low-
cost approach to enhancing mathematical performance.

Brain-computer interface (BCI) technology has emerged as a
promising approach to enhance learning and cognitive abilities by
providing real-time feedback or stimulation based on brain activity14.
Previous studies have applied BCI technology to various domains of
learning, such as language15, memory16, and executive functions17.
However, few studies have explored the potential of BCI technology,
particularly alpha rhythm neurofeedback training, in improving
mathematical learning outcomes. While our study focuses on alpha
oscillations due to their strong associations with cognitive functions
critical for learning, such as attention and working memory, it is
important to acknowledge that other brain oscillations, such as theta
and gamma rhythms, have also been implicated in learning and
memory processes18,19.

Gamma band oscillations (around 40Hz) in the visual cortex were
detected and modulated using a source-based BCI, demonstrating the
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potential for manipulating fast oscillatory activity with high specificity20.
Delta phase-amplitude coupling with alpha oscillations was observed in
individuals who showed better performance on a knowledge generation
task, suggesting that these oscillatory dynamicswork together to encode and
representnewknowledgewith respect to reactivatedprior knowledge21. This
study aims tofill this researchgapby investigatingwhether a low-cost single-
channel BCI system providing alpha rhythm neurofeedback can enhance
algebra learning performance, self-efficacy, and alpha power in university
students.

One of the main challenges of applying BCI technology in edu-
cational settings is the cost and complexity of the equipment. Most BCI
systems require expensive hardware, invasive surgery, or multiple
electrodes. Invasive electrodes have significant disadvantages due to the
risk of surgery and gradual degradation of signal recording22, making
them difficult to use in large-scale or long-term educational settings.
Furthermore, most BCI systems are designed for specific tasks or
paradigms, and the complexity and structure of BCI technology
applications in different fields vary. Most BCI applications follow a
standard structure and system14, which limits their generalizability and
portability in real-world learning scenarios.

In this study,wepropose anovel Low-Cost Single-ChannelBCI system
that can enhance mathematical learning outcomes by providing neuro-
feedback based on alpha rhythms. Recent studies have demonstrated the
causal role of alpha oscillations in top-down (endogenous) attention23, and
significant results in improving cognitive function in healthy subjects
through auditory-induced alpha waves have been achieved24. Other studies
have supported the causal link between alpha oscillations and working
memorymaintenance25, with researchers evoking or enhancing alphawaves
to improve working memory levels26,27.

We hypothesize that by promoting attentional focus, reducing anxiety,
and enhancing working memory, an increase in alpha power can also
improve mathematical learning outcomes. To test this hypothesis, we
conducted a randomized controlled experiment on 80 university students
learning algebra concepts on an online platform. Half of the participants
received real-time neurofeedback from the BCI system, while the other half
received sham feedback. We measured their mathematical performance,
self-efficacy, and alpha power before and after the intervention. We
expected the BCI group to have significantly higher mathematical perfor-
mance and self-efficacy compared to the sham feedback group. Addition-
ally, we anticipated the BCI group to exhibit higher alpha power in the
prefrontal regions involved in mathematical cognition.

Results
The results showed a significant interaction effect between Measure Time
(Pre-test & Post-test) and Group (BCI & Sham) on mathematical perfor-
mance (F (1,78) = 8.941, p = 0.004, η²p = 0.103). The BCI group had sig-
nificantly higher mathematical performance than the sham feedback group
on the post-test (pbonf < 0.001), but there was no significant difference
between the two groups on the pre-test (Fig. 1).

The results also showed a significant interaction effect between Mea-
sure (Pre-test & Post-test) and Group (BCI & Sham) on self-efficacy
(F(1,78) = 10.076, p = 0.002, η²p = 0.114). The BCI group had significantly
higher self-efficacy than the sham feedback group on the post-test
(pbonf < 0.001), but there was no significant difference between the two
groups on the pre-test (Fig. 2).

The results showed a significant interaction effect between Measure
(Pre-test & Post-test) and Group (BCI & Sham) on alpha power
(F(1,78) = 13.735, p < 0.001, η²p = 0.150). The BCI group had significantly
higher alpha power than the sham feedback group on the post-test (pbonf <
0.001), but therewasno significantdifference between the twogroups on the
pre-test (Fig. 3).

A Pearson correlation analysis was conducted to examine the rela-
tionship between participants’ mathematical performance, alpha power,
and self-efficacy at both pre-test and post-test stages (Fig. 4). The results
revealed no significant correlations between math scores, alpha power, and

self-efficacy at pre-test (math scores & alpha power: r = 0.173, p = 0.125;
math scores& self-efficacy: r = 0.012, p = 0.913; alpha power & self-efficacy:
r =−0.004,p = 0.972).However, significant positive correlations emerged at
post-test betweenmath scores and alpha power (r = 0.295, p = 0.008), math

Fig. 1 | Comparison of pre-test and post-test mathematical performance scores
between BCI and control groups. The bar graph illustrates the average mathe-
matical performance scores for both the BCI neurofeedback group and the sham
feedback control group, comparing pre-test, and post-test results. Blue bars repre-
sent pre-test scores, while orange bars show post-test scores for each group. Error
bars indicate the standard error of the mean. The BCI group demonstrated a notable
increase in performance from pre-test to post-test, whereas the control group
showed minimal change. This visual representation suggests that the BCI neuro-
feedback intervention may have had a positive impact on mathematical perfor-
mance, though statistical significance (p < 0.05) should be noted when interpreting
these results.

Fig. 2 | Pre-test and post-test self-efficacy scores comparison between BCI and
control groups. The bar graph presents the average self-efficacy scores for both the
BCI neurofeedback group and the sham feedback control group before and after the
intervention. Blue bars indicate pre-test scores, while orange bars represent post-test
scores for each group. Error bars show the standard error of the mean. The BCI
group exhibited a notable increase in self-efficacy from pre-test to post-test, whereas
the control group’s scores remained relatively stable. This visual comparison sug-
gests that the BCI neurofeedback intervention may have positively influenced par-
ticipants’ self-efficacy in mathematics, with the statistical significance (p < 0.05)
supporting this observation. The graph allows for a clear comparison of the inter-
vention’s effects on self-efficacy between the two groups.
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scores and self-efficacy (r = 0.386, p < 0.001), aswell as alphapower and self-
efficacy (r = 0.229, p = 0.041).

The random forest regression model was trained using 51 samples,
validated using 13 samples, and tested on 16 samples (Fig. 5). The model
achieved a validationMSE of 0.584 and a testMSE of 0.671. Themodel used
14 trees and considered one feature per split. The out-of-bag (OOB) error
was 0.940.

The model achieved an MSE of 0.671, a root mean squared error
(RMSE) of 0.819, a mean absolute error (MAE) of 0.654, a mean absolute
percentage error (MAPE) of 118.25%, and a correlation coefficient (R)
of 0.187.

The feature importance analysis revealed that pre-test mathematical
performance had the highest mean decrease in accuracy (0.226) and total
increase in nodepurity (11.591), followedbypre-test self-efficacy (0.112 and
6.601, respectively).

Discussion
The present study investigated the effectiveness of a low-cost single-channel
BCI system in enhancing mathematical learning outcomes by providing
neurofeedback based on alpha oscillations recorded from the prefrontal
cortex. Our results showed significant interaction effects between Measure
(Pre-test & Post-test) and Group (BCI & Sham) on mathematical perfor-
mance, self-efficacy, and alpha power. While there were no differences
between the BCI and sham feedback groups at pre-test, the BCI group
demonstrated significant improvements in all three outcomes at post-test
compared to the sham feedback group. These findings support our
hypotheses that alpha neurofeedback can improve attentional control,
enhance working memory capacity, and reduce math anxiety, leading to
better learning outcomes.

The higher alpha power observed in the prefrontal cortex of the BCI
group suggests that our neurofeedback training specifically targeted the
brain regions involved in cognitive control and emotional regulation. By
enhancing alpha oscillations in the prefrontal cortex, our BCI system may
have facilitated the recruitment of cognitive control mechanisms and the
downregulation of negative emotions, leading to improved mathematical

performance and reduced math anxiety. These findings are consistent with
previous studies demonstrating themodulationofneural oscillations during
learning interventions. For instance, Pi found that higher theta and alpha
power were associated with more effective learning strategies, such as self-
explanation and teaching others28. The consistency between our results and
prior research supports the role of alpha oscillations in enhancing cognitive
functions and learning outcomes, providing further evidence for the
potential of BCI neurofeedback as an educational intervention. When
researchers tested the effectiveness of three learning strategies (self-inter-
pretation, learning by teaching, and passive viewing), higher EEG θ and
αpower was used as one of the criteria for more effective strategies.

The finding that the BCI group had significantly higher self-efficacy
than the sham feedback group highlights the importance of considering
affective factors in mathematical learning. By providing real-time feedback
on their brain activity and teaching them to modulate it through mental
strategies, our BCI systemmay have increased participants’ sense of agency
and control over their learning process, leading to higher self-efficacy and
motivation.

The significant interaction effects between Measure and Group on
mathematical performance, self-efficacy, and alpha power, along with the
predictive power of the random forest regression model, highlight the
importance of considering individual differences in cognitive and affective
factors when designing personalized learning interventions. These findings
have important implications for the development of accessible and scalable
BCI technologies that can be integrated with online learning platforms to
support students’ academic success and well-being in STEM fields.

The additional behavior-brain correlation analyses provide valuable
insights into the interplay between cognitive, affective, and neural factors in
mathematical learning and the potential mechanisms underlying the
effectiveness of neurofeedback training. The significant positive correlations
observed at post-test suggest that the neurofeedback training may have
facilitated the interaction and integration of mathematical ability, alpha
wave levels, and self-efficacy. The positive correlation between math scores
andalphapower supports the role of alphawaves in cognitive functions such
as attention and working memory, while the correlation between math
scores and self-efficacy highlights the importance of self-efficacy in learning
outcomes. The correlation between alpha power and self-efficacy suggests
that the effects of neurofeedback training may extend beyond the cognitive
domain and positively influence emotional regulation and self-perception.

Oneof themain strengths of our study is the use of a low-cost and easy-
to-use BCI system that can be readily integrated with online learning plat-
forms. By employing a single-channel EEGheadsetwith a dry electrode, our
system offers a highly accessible and scalable solution for large-scale
implementation in educational settings. This is particularly relevant given
the growing demand for personalized learning interventions and the
increasing adoption of online and remote learning formats29,30. Our findings
demonstrate the potential of BCI technology in enhancing mathematical
learningoutcomes in an ecologically valid and cost-effectivemanner, paving
the way for its widespread application in real-world educational contexts.

Comparing our findings with other neurofeedback studies employing
various imaging modalities, such as fMRI31 and MEG32, reveals the unique
advantages of our low-cost, portable EEG-based neurofeedback system.
While fMRI and MEG-based neurofeedback provides high spatial resolu-
tionandcan target specificbrain regions, thesemethods are expensive, time-
consuming, and require specialized facilities, limiting their accessibility and
scalability. In contrast, our single-channel, wireless EEG system offers high
ecological validity, as it can be easily implemented in classrooms and other
real-world settings. The portable and cost-effective nature of our approach
makes it particularly promising for widespread applications in education
and future large-scale studies investigating the effectiveness of neurofeed-
back interventions in authentic learning environments.

However, our study also has some limitations that should be
addressed in future research. First, while we tested our BCI system on
university students learning algebra concepts using an online platform,
future studies should investigate its effectiveness in othermathematical

Fig. 3 | Comparison of frontal lobe alpha power between BCI and control groups
pre- and post-intervention. The bar graph displays the relative mean alpha power
(in dB)measured from the frontal lobe region for both the BCI neurofeedback group
and the sham feedback control group before and after the intervention. Blue and red
bars represent pre-test measurements for the BCI and sham groups respectively,
while green and yellow bars show post-test measurements. Error bars indicate the
standard error of the mean. The BCI group exhibited a notable increase in alpha
power frompre-test to post-test, whereas the control group showedminimal change.
This visual representation suggests that the BCI neurofeedback intervention may
have effectively increased alpha power in the frontal lobe, a finding supported by
statistical significance (p < 0.05). The graph provides a clear comparison of the
intervention’s effects on brain activity between the two groups, highlighting the
potential neurophysiological impact of BCI-assisted learning.
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domains, age groups, and learning environments. Second, long-term
follow-up studies with larger sample sizes are needed to determine the
sustainability and generalizability of the neurofeedback training
effects. Third, future research should explore the use of more com-
prehensive cognitive, affective, and demographic variables to develop
predictive models of mathematical learning outcomes. We acknowl-
edge that individual differences in cognitive abilities, prior knowledge,
and learning styles may have influenced the effectiveness of the neu-
rofeedback training. Future research could employ mixed linear effect
models to better account for these individuals confounds and provide a
more nuanced understanding of the factors contributing to the success
of BCI-based interventions in mathematical learning.

Despite these limitations, our studymakes a significant contribution to
thefieldofmathematical learning andBCIneurofeedbackbydemonstrating
the potential of a low-cost and accessible BCI system in enhancing cognitive
and affective aspects of learning. Our findings have important implications
for the development of personalized learning interventions that adapt to
students’ individual needs and preferences, particularly in the context of
online and remote learning. By integrating BCI technology with online
learning platforms and using machine learning techniques to predict
learning outcomes, our approach can facilitate the delivery of targeted and
effective neurofeedback training to large numbers of students, promoting
their academic success and well-being in STEM fields.

In conclusion, our study demonstrates the effectiveness of a low-cost
single-channel BCI system in enhancing mathematical learning outcomes

by modulating alpha oscillations in the prefrontal cortex. The significant
interaction effects between Measure and Group on mathematical perfor-
mance, self-efficacy, and alphapower, alongwith the predictive power of the
random forest regression model, highlight the importance of considering
individual differences in cognitive and affective factors when designing
personalized learning interventions. These findings have important impli-
cations for the development of accessible and scalable BCI technologies that
can be integrated with online learning platforms to support students’ aca-
demic success and well-being in STEM fields. Future research should
investigate the long-term effects and underlying mechanisms of alpha
neurofeedback training in diverse educational contexts, as well as explore
the use of advanced machine learning techniques for optimizing learning
outcomes based on individual characteristics. Future investigations could
also consider the potential of modulating other oscillations through BCI
neurofeedback and their interactions with alpha rhythms in the context of
varying learning.

Methods
Participants
Eighty university students (40 males, 40 females) with a mean age of 20.5
years (SD = 1.2) participated in the study. The participants were first-year
undergraduate students majoring in science-related disciplines. They were
randomly assigned to either the BCI group (n = 40) or the control group
(n = 40). The participants were recruited from Shanxi Normal University.
All participants were right-handed and had normal or corrected-to-normal

Fig. 4 | Relationship dynamics betweenmathematical performance, alpha power,
and self-efficacy before and after BCI intervention. This multi-panel figure pre-
sents scatter plots illustrating the correlations between mathematical performance,
alpha power, and self-efficacy measures at pre-test (top row) and post-test (bottom
row). Each plot includes individual data points, a linear regression line, and con-
fidence intervals. The correlations and their statistical significance are reported for
each relationship: (a) Pre-test math scores vs. pre-test self-efficacy: no significant
correlation (r = 0.012, p = 0.913); (b) Post-test math scores vs. post-test self-efficacy:
Significant positive correlation (r = 0.386, p < 0.001); (c) Pre-testmath scores vs. pre-

test alpha power: no significant correlation (r = 0.173, p = 0.125); (d) Post-test math
scores vs. post-test alpha power: Significant positive correlation (r = 0.295,
p = 0.008); (e) Pre-test self-efficacy vs. pre-test alpha power: No significant corre-
lation (r =−0.004, p = 0.972); (f) Post-test self-efficacy vs. post-test alpha power:
Significant positive correlation (r = 0.229, p = 0.041); The contrast between pre-test
and post-test results suggests that the BCI intervention may have facilitated the
integration of cognitive (math performance), affective (self-efficacy), and neural
(alpha power) factors, as evidenced by the emergence of significant positive corre-
lations in all three relationships after the intervention.
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vision. The study was approved by the Ethics Committee of Shanxi Normal
University, and all participants provided written informed consent prior to
the experiment.

Materials
Mathematics Performance Questionnaire used in this study was designed
to assess participants’ mathematical problem-solving abilities in the
domain of algebra. The tasks consisted of 20 algebra problems that
required participants to apply various algebraic concepts and techniques,
such as simplifying expressions, solving equations, and graphing func-
tions. The problemswere presented in amultiple-choice format, with four
possible answers for each question. Participants were instructed to select
the correct answer within a time limit of 2 minutes per problem. The
difficulty level of the problems was adjusted based on participants’ per-
formance in the pre-test, ensuring an appropriate level of challenge
throughout the learning phase.

The 20 algebra problems were selected from a pool of problems
developed by two experiencedmathematics teachers and validated through
a pilot study with 30 university students. The problems covered a range of
difficulty levels and were designed to assess participants’ understanding of
key algebra concepts, such as linear equations, quadratic functions, and

systems of equations. A sample problem (Eq. (1)) is provided below:

00
Solve for x : 3ðx þ 2Þ � 2ðx � 1Þ ¼ 5x � 3

00 ð1Þ

The complete list of algebra problems can be found in the supple-
mentary materials (Supplementary Note 1).

The Self-EfficacyQuestionnaire was adapted from previous research33.
The Self-Efficacy Questionnaire used in this study was adapted from the
General Self-Efficacy Scale (GSE) developed by Schwarzer and Jerusalem.
The GSE is a 10-item scale designed to assess a general sense of perceived
self-efficacy, with the aim of predicting coping with daily hassles and
adaptation after experiencing stressful life events.

Procedure
The study consisted of three phases: pre-test, learning intervention
(Learning phase), and post-test. Figure 6 illustrates the schematic of the
experimental procedure.

Prior to the experimental tests, participants’ learning ability was
assessed using theMathematics Performance Questionnaire, while the Self-
Efficacy Questionnaire measured participants’ confidence in their ability to
learn and solve mathematical problems. The pre-test scores on these
questionnaires were used to evaluate participants’ baseline mathematical
abilities and self-beliefs.

In the pre-test phase, all participants completed a demographic ques-
tionnaire, the Mathematics Performance Questionnaire, and the Self-
Efficacy Questionnaire. The FP1 electrode was positioned according to the
international 10-20 system.To locate the FP1position,wefirst identified the
nasion and inion points and measured 10% of the distance between these
two points. From the nasion, we measured this 10% distance upwards and
marked the position.

The neurofeedback training consisted of a 5-minute baseline record-
ing, followed by 6 training blocks of 5minutes each, with 1-minute breaks
between blocks. During the training blocks, participants were instructed to
focus on the visual feedback provided by the BCI system, which reflected
their real-time alpha power. The feedbackwas presented in the formof a bar
on the screen, with the bar’s size and color changing based on the partici-
pant’s alpha power. Participants were taught mental strategies to increase
their alpha power, such as deep breathing, positive imagery, and focused
attention.

In the intervention phase, the BCI group received real-time neuro-
feedback while learning algebra concepts on the online learning platform
(Khan Academy) for 50min in a quiet room. The neurofeedback software
provided visual and auditory feedback to the participants, indicating the
level of their alpha power. The control group received sham feedback that
was not based on their brain activity.

In the post-test phase, all participants completed the samemeasures as
in the pre-test phase, except the neurofeedback training.

Fig. 5 | Comparison of predicted and observedmathematical performance scores
using Random Forest Regression. The scatter plot displays the relationship
between predicted and observed mathematical performance scores derived from a
Random Forest Regression model. The x-axis represents the observed test values,
while the y-axis shows the predicted test values. Each gray dot represents an indi-
vidual data point, corresponding to a participant’s actual score and the model’s
prediction for that score. The red diagonal line indicates perfect prediction, where
predicted values would exactly match observed values. The proximity of the data
points to this line provides a visual indication of the model’s predictive accuracy.
Points falling close to the line suggest accurate predictions, while those farther away
represent larger discrepancies between predicted and actual scores. This visualiza-
tion allows for an assessment of the Random Forest model’s performance in pre-
dicting mathematical achievement based on the study’s variables, offering insights
into the potential effectiveness of using machine learning techniques to forecast
educational outcomes in the context of BCI-assisted learning.

Fig. 6 | Experimental design for assessing the
impact of BCI-assisted learning on mathematics
performance and self-efficacy. The experiment
followed a three-phase structure: pre-test, learning
intervention (Learning phase), and post-test. In the
pre-test phase, all participants completed initial
assessments of their mathematics performance and
self-efficacy. The learning phase involved random
assignment to either a BCI group receiving real-time
neurofeedback or a control group receiving sham
feedback during a 50-minute online algebra session.
The post-test phase repeated the initial assessments
to measure changes resulting from the intervention.
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Ethical approval
All procedures performed in studies involving human participants were in
accordance with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. The study was approved by
the Ethics Committee of Shanxi Normal University (Approval Number:
2024-0304).

EEG data acquisition and preprocessing
The BCI system consisted of a single-channel Mind Wave headset (Neu-
roSky, Inc.) with a dry electrode placed on the Fp1 position. The headset
sampled brain activity at a rate of 128Hz. The neurofeedback software was
developed using the MATLAB software platform.

The EEG data was analyzed using a sliding window approach to
provide real-time neurofeedback during the mathematical learning task.
The continuous EEG data was segmented into 5-second windows with a
50% overlap. For each window, the following steps were performed: (1)
Preprocessing: The EEG data was filtered using a 4th order Butterworth
bandpass filter (0.5–30Hz) to remove low-frequency drift and high-
frequency noise. Extreme values (outliers with amplitudes exceeding ±100
μV) were identified and replaced with the median value within each win-
dow. (2) Power Spectral Density (PSD) Estimation: The PSD of each win-
dow was computed usingWelch’s method with a Hamming window and a
50% overlap. The PSD provided a measure of the power distribution across
different frequency bands. (3) Alpha Power Calculation: The alpha power
was obtained by averaging the PSD values within the alpha frequency
range (8–12Hz).

The calculated alpha power for each 5-second window was used to
provide real-time neurofeedback to the participants. The neurofeedback
was presented visually using a bar graph, where the height of the bar
represented the relative change in alpha power compared to a baseline
value. The color of the bar was modulated based on the percent change in
alpha power, with red indicating an increase and green indicating a
decrease. The baseline value was updated every minute to account for
temporal changes in alpha power throughout the learning session (Sup-
plementary Fig. 1).

By continuously updating the alpha power bar graph every 5 s, parti-
cipants received real-time feedback on their brain activity during the
mathematical learning task. This neurofeedback aimed to enhance parti-
cipants’ awareness of their cognitive states and potentially facilitate the
learning process. Figure 7 shows a schematic diagram of the BCI system
used in the study.

Relative alpha power in resting state for pre- and post-test was calcu-
lated by dividing the absolute power in the alpha frequency range (8-12 Hz)
by the baseline. This approach helps to minimize inter-individual differ-
ences in EEG signal amplitude, better reflects the contribution of alpha
oscillations to the overall EEG activity, and controls for baseline differences
among participants34.

Data analysis
The Repeated Measures ANOVAs were used to examine the effects of
Measure (Pre-test & Post-test) and Group (BCI & Sham) on their mathe-
matical performance, self-efficacy, and alpha power.

Additionally, a random forest regression model was used to pre-
dict post-test mathematical performance based on pre-test scores and
self-efficacy. The dataset was split into a training set (n = 51), a vali-
dation set (n = 13), and a test set (n = 16). The model was trained using
the training set, and hyperparameters were tuned using the validation
set. The final model performance was evaluated on the test set. The
random forest regression model was implemented using the scikit-
learn library in Python. The model was trained using 100 trees and a
maximum depth of 5. The mean squared error (MSE) was used as the
performance metric for model evaluation.

A Pearson correlation analysis was conducted to examine the rela-
tionship between participants’mathematical performance and alpha power
changes from pre-test to post-test.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Code availability
TheMATLAB scripts for real-time EEG analysis, focusing onAlpha power,
and a sham stimuli generator for control experiments are available on the
Open Science Framework (OSF) platform at https://osf.io/pt75k.
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