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A frequency-amplitude coordinator and its optimal
energy consumption for biological oscillators
Bo-Wei Qin 1,2✉, Lei Zhao 1,3 & Wei Lin 1,2,4,5✉

Biorhythm including neuron firing and protein-mRNA interaction are fundamental activities

with diffusive effect. Their well-balanced spatiotemporal dynamics are beneficial for healthy

sustainability. Therefore, calibrating both anomalous frequency and amplitude of biorhythm

prevents physiological dysfunctions or diseases. However, many works were devoted to

modulate frequency exclusively whereas amplitude is usually ignored, although both quan-

tities are equally significant for coordinating biological functions and outputs. Especially, a

feasible method coordinating the two quantities concurrently and precisely is still lacking.

Here, for the first time, we propose a universal approach to design a frequency-amplitude

coordinator rigorously via dynamical systems tools. We consider both spatial and temporal

information. With a single well-designed coordinator, they can be calibrated to desired levels

simultaneously and precisely. The practical usefulness and efficacy of our method are

demonstrated in representative neuronal and gene regulatory models. We further reveal its

fundamental mechanism and optimal energy consumption providing inspiration for biorhythm

regulation in future.
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P lenty of living organisms as well as synthetic biological
networks have their capacity to generate rhythmic processes
involving molecules, cells, and tissues1–5. For instance,

neuron spiking, cell reproduction, hormone secretion, protein
synthesis, and heartbeat are common periodic activities in the
human body. These processes are usually regulated by single or
multiple biological oscillators exhibiting various frequencies and
amplitudes (Fig. 1). The former ones would result in distinct
functional consequences6, while the latter ones abstract expres-
sion levels meeting body demands for protein, hormone, energy,
to name a few7. More importantly, they control the identity and
intensity of a signal being critical to internal information
transduction8. Therefore, their coordinations are essential to
physiological behaviors, such as sleeping, feeding, and mood9–13.

Oscillators with anomalous frequency or amplitude may dis-
rupt biorhythm and lead to sleep and metabolism disorders or
even diseases14–16. Fairly recent perspectives also addressed that
circadian rhythmicity in our body can be leveraged to develop
chronotherapy and to account for the mechanism behind it17,18.
Harmonizing administration of agent with associated biological
target can improve its efficacy and reduce toxicity. Thus, flexible
biological oscillators have a wide range of benefits for healthy
sustainability. As a consequence, designing practical coordinators

to acquire desirable frequency or/and amplitude becomes a
growing and significant issue.

The theoretical study on biorhythm dates back to 1960s when
Winfree studied frequency exclusively in his pioneering work19.
Since then, the adjustment of frequency via synchronization were
thoroughly studied using reformulated Kuramoto model20. In
contrast, there are few studies focusing particularly on amplitude.
Over the past decades, frequency and amplitude modulations of
biological oscillators has attracted more and more attentions,
among which coordinating amplitude or frequency independently
(Fig. 1a, b) is particularly significant.

For biological models, the dynamics depend highly on their
network motifs (pattern of positive/negative interactions) and sig-
nificantly attract plenty of attentions21–23. Therefore, investigating
the mechanisms between the motif and frequency–amplitude
coordination becomes a natural direction. Auto-regulations via
endogenous interactions were ubiquitously studied24–28. Prior works
also suggested that the tunability of frequency and amplitude can be
enhanced by positive feedback loops, while the independent coor-
dinations may not be achieved if only negative feedback loops
appear29–31. Besides, a very recent work32 studied the dual-feedback
oscillator and the repressilator as well as the modifications of their
network architectures. The frequency and amplitude of a gene

Fig. 1 Independent and hybrid coordinations in representative biological models. a Amplitude coordination. The rhythmic biological processes exist in
genome-scale transcriptional and translational processes such as protein–microRNA (miRNA) circuitry. The protein concentration in a specific gene-
regulatory network changes throughout the day. The variations under distinct circumstances are sketched by the heterogeneous wave-like pattern (i)–(iii)
on the right. The projections of the waves on the rightmost represent their amplitudes. The amplitude is varied under (independent) amplitude
coordinations. Meanwhile, the frequencies of these processes are not changed. b Frequency coordination. Periodic biological event is generated due to
neuronal excitability exhibiting diverse frequencies under distinct circumstances (right). Under (independent) frequency coordinations, the rates of
occurrence can be modulated in both ways (acceleration or deceleration) while the amplitude (intensity of the event) remains invariant. c Hybrid
coordination. A biorhythm disorder may include both frequency and amplitude disruption, which further influences internal signal transduction. With hybrid
coordination, the two quantities are modulated simultaneously, and they are interchangeable with one another. Compared with pattern (vii), (viii) has a
higher frequency and a lower amplitude. An opposite situation is illustrated as pattern (ix). Biological events in the space may occur under different
boundary conditions. The amplitude projections shown in the rightmost of (a–c) are typical diagrams for the Robin, Dirichlet, and Neumann boundary
condition, respectively.
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outside the main oscillator are “physically” decoupled by re-
designing the oscillator, thus they can be modulated independently
in extended ranges.

Actually, the regulations of frequency and amplitude of the
components inside an oscillator are also significant. Moreover,
besides the network topology, the intensities of endogenous
interactions affect frequency and amplitude decisively, but there
are few related works focusing on this direction33. Frequency and
amplitude can be coordinated by making a slight intervention on
these interactions. This can be realized either internally by
varying the system parameters (e.g., degradation rate, synthesis
rate, strength of a stimulus, etc.) or externally by a feedback
controller (e.g., computer-based microfluidic devices34,35). More
importantly, the underlying mechanisms for coordinations as well
as their energy consumptions also depend highly on these
interactions, which have not yet been uncovered. In this article,
we present a universal computational framework for precisely
designing such an intervention coordinator. We will try to answer
the following questions: What specific form of an intervention
should be made (i.e., enhancing or mitigating the original inter-
actions)? How is its intensity and energy consumption? Addi-
tionally, with our well-designed coordinator, both frequency and
amplitude can be regulated precisely and concurrently (Fig. 1c).

To get a deeper insight into the biological oscillators, dyna-
mical systems techniques based on computational and mathe-
matical modeling are usually applied21,36–41. For systems in small
scales, spatial movements including molecular and ion diffusion
cannot be neglected when modeling because they would cause
heterogeneity patterns (Fig. 1a, b). By dividing space into several
discrete parts, we can use agent- or compartment-based models
(i.e., ordinary differential equations) to simulate such a system42.
However, these models still have their limitations. We may
oversimplify a system if the spatial division is coarse, and the
large number of components would increase computational
consumption hugely. Contrarily, partial differential equation
(PDE) is a more appropriate model to describe systems with
variations in both continuous space and time. Especially,
reaction–diffusion (R–D) systems are commonly used to inves-
tigate dynamics at the molecular, cellular, and tissue levels43–47. It
is also well known that Alan Turing used both discrete and
continuous models in his seminal work on morphogenesis48.
Moreover, R–D systems can describe simple but significant ran-
dom walk processes49. The Hopf bifurcation plays a pivotal role
in appearance of a rhythmic oscillation. It refers to a transition
from a quiescent state to an oscillatory state50–53. In R–D systems,
it yields spatial, periodic oscillations54,55. Owing to diffusive
effects and diverse boundary conditions, such rhythmic oscilla-
tions may be spatially non-homogeneous (Fig. 1a, b), for which
frequency and amplitude coordinations still remain to be
explored. It is then reasonable and significant to start our study
with the Hopf bifurcation in R–D systems.

In this work, we computationally design a universal coordi-
nator intervening linear interactions for modulating both fre-
quency and amplitude. It is feasible for oscillations arising from
the Hopf bifurcation in generic two-component R–D systems
with the conventional boundary conditions [e.g., the Neumann
boundary condition (NBC), the Dirichlet boundary condi-
tion (DBC), and the Robin boundary condition (RBC), see Sup-
plementary Note 1 for details]. The basic idea is to extract and
normalize the frequency and amplitude by utilizing the center
manifold and normal form theories54,56,57 and to link them with
the intensities of linear interactions. In such a way, we are able to
design a useful coordinator leveraging its linear regime [e.g., the
Michaelis–Menten (MM) function]. In two representative biolo-
gical models (Fig. 1a, b), a gene-regulatory network and a neu-
ronal model, we demonstrate the efficacy and practical usefulness

of our framework. In light of the estimations computed via our
approach, oscillations far from the quiescent state can be
modulated as well. The underlying mechanisms and energy
consumptions are also discussed, which might be helpful for
biological regulation in future.

Results
Coordinating a “cancer network” by MM regulations. As a first
example, we consider the cyclic dynamics in a gene-regulatory
network involving a microRNA (miRNA) cluster and a protein
module58. It is called a “cancer network” because the miRNA
behaves as an oncogene or tumor suppressor depending on the
protein concentration. Its mathematical model abstracts the
interaction among the transcription factors and a miRNA
cluster58 whose dimensionless diffusive model is given as (see
Supplementary Note 8 for more details on the model)

∂ϕ

∂t
¼ dp

∂2ϕ

∂x2
þ 1

ϵ
α0 þ κϕ2

Γ01 þ ϕ2 þ Γ02μ

� �
� ϕ

� �
;

∂μ

∂t
¼ dm

∂2μ

∂x2
þ 1þ ϕ� μ;

ð1Þ

where ϕ= ϕ(x, t) and μ= μ(x, t) represent the dimensionless level
of protein and miRNA, respectively. Here we include two diffu-
sive terms (second-order differentiation with respect to the spatial
variable x) into the equations to describe the unbiased molecular
diffusion. With appropriate parameters (Supplementary Table 3),
the model possesses a constant quiescent state (ϕ0, μ0) that
undergoes the Hopf bifurcation at ϵ= ϵ* yielding rhythmic
oscillation when ϵ < ϵ* (Fig. 2).

To achieve frequency and amplitude coordinations, we add two
terms F1(ϕ, μ) and F2(ϕ, μ) into the first and second equation to
regulate the dynamics of protein and miRNA, respectively. They
act as instantaneous regulations on ϕ and μ as follows

F1ðϕ; μÞ ¼ f 11Mðϕ� ϕ0;K11Þ þ f 12Mðμ� μ0;K12Þ;
F2ðϕ; μÞ ¼ f 21Mðϕ� ϕ0;K21Þ þ f 22Mðμ� μ0;K22Þ;

ð2Þ

where M(x, K)= x/(x+ K) is a MM regulation and fij indicate the
intensities. The MM regulation was recently shown to be practical
and useful in implementing the proportional control in biological
molecules59. Here we take into account all possible regulations:
two self-regulations (ϕ→ ϕ and μ→ μ) and two cross-regulations
(ϕ→ μ and μ→ ϕ). We need to point out that the regulations in
Eq. (2) incorporate the coordinate translations because the
dynamics considered in our case oscillates around the quiescent
state (ϕ0, μ0) and we desire to leverage the information on their
displacement from the quiescent state. Actually, such a translated
regulation can be divided into two typical MM functions

Mðx � x0;KÞ ¼
x � x0

x � x0 þ K
¼ x

x þ �K
� x0

�K
�

�K
x þ �K

; ð3Þ

with �K ¼ K � x0.
For the given Michaelis constants (Kij= 5 in our case), we

select appropriate regulation intensities fij to coordinate indepen-
dently the frequency or amplitude of the oscillation near the Hopf
bifurcation (ϵ= 0.08 < ϵ*). By varying the intensities at distinct
time, we eventually accelerate the oscillation with a doubled
frequency. Concurrently, both amplitudes of protein and miRNA
concentrations are kept near constants (Fig. 2a–d). Moreover,
with other well-designed intensities, the independent amplitude
coordination is also successfully performed (Supplementary Fig. 3
and Movie 5).

Depending on the levels of protein module ϕ, the miRNA
cluster is classified as oncogenes or tumor suppressors58. When ϕ
approximately lies between 2.75 and 3.75, the region is labeled as
a cancer zone where hyper-proliferation occurs. Accordingly, the
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probability of oncogenesis is increased. We find that the
oscillation stays away from the cancer zone (i.e., ϕ < 2.75) if it
is close to the quiescent state (Fig. 2a, b). But, when it keeps
growing, its amplitude increases and the peak enters the cancer
zone. For instance, the peak of the oscillation (when ϵ= 0.05
without a coordinator) shown in Fig. 2e, f (t < 50) lies in the
cancer zone. To prevent the oscillation from the entry of
the cancer zone, it is possible to use our coordinator with
appropriate intensities fij to suppress its amplitude. For this
purpose, we design appropriate coordinators and apply them at
different time to decrease the amplitude gradually (50 < t < 300 in
Fig. 2e, f). Eventually, the protein concentration stays away from
the cancer zone. Thus, the miRNA cluster is no longer classified
as oncogenes. Evidently, our designed coordinator is feasible for
coordinating both frequency and amplitude. Let us now introduce
its theoretical background and a universal computational frame-
work for determining the intensities.

Endogenous linear interactions and their interventions. To
investigate the dynamics near the Hopf bifurcation of every
biological diffusive model akin to Eq. (1), we can always translate
the quiescent state to the origin and write the equations into a

generic form (see “Methods” for a detailed description):

∂uðx; tÞ
∂t

zfflfflffl}|fflfflffl{Time evolution

¼DðϵÞ ∂
2uðx; tÞ
∂x2

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Spatial diffusion

þ AðϵÞuðx; tÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{Linear interaction

þ gðuðx; tÞ; ϵÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Nonlinear interaction

:

ð4Þ

Such a system possesses two self-interactions and two cross-
interactions, all of which can be divided into two parts: the linear
interactions Au and the nonlinear ones g. The matrix A is
associated with the Jacobian matrix and can be acquired in any
computational model21. It represents the endogenous linear
interactions, which consists of four coefficients aij (i, j= 1, 2)
representing associated interaction (uj to ui). The sign of aij
indicates the role played by the component j (activator or inhi-
bitor), see below. Their magnitudes represent the intensities that
are determined by system parameters, such as degradation rate,
synthesis rate, Michaelis constant, etc. These parameters are
usually different from system to system (see Supplementary
Note 9 for more details on the linear interactions).

For a given biological system, the endogenous linear interac-
tions always exist in its computational model and have dominant

Fig. 2 Independent frequency and amplitude coordinations in the “cancer network” using Michaelis–Menten regulations. a The time course of protein
concentration in the “cancer network” [Eq. (1)] when ϵ= 0.08. When t < 50, no coordinator is applied to the system. Starting from t= 50, Eq. (2) with Kij= 5
is applied as a coordinator. At time labels t= 50, 100, 150, 200, and 250, the intensities fij are varied. b The time course of protein concentration at x*= π/2.
c The time course of miRNA level corresponding to a. d The time course of miRNA level at x*= π/2. e The time course of protein concentration in the “cancer
network” when ϵ=0.05. The amplitude is gradually and independently suppressed (the color becomes lighter) by varying the coordinator at distinct time
labels. The brown area is the cancer zone with high probability of oncogenesis classified by the level of protein (>2.75). The amplitude suppression prevents
the oscillation from the entry into the cancer zone. For the corresponding time course of the miRNA cluster, see Supplementary Fig. 2. f The time course at
x*= π/2. (For the parameters and intensities of the coordinator used in a–f see, respectively, Supplementary Table 3 and 4).
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impacts on the behavior of the oscillation near the quiescent state.
Specifically, the intensities of these interactions determine the
frequency and amplitude decisively. When translating the
coordinated system, our proposed MM regulations [Eq. (2)] are
also shifted to a regular MM function. For instance,
M(ϕ− ϕ0, K11) is translated to M(Φ, K11) with Φ= ϕ− ϕ0
representing the displacement of the oscillation from the
quiescent state. Near the Hopf bifurcation, the quantity Φ is
relatively small. The MM function is therefore in its linear regime,
that is,

MðΦ;KÞ ¼ Φ

Φþ K
� 1

K
Φ when jΦj � 1: ð5Þ

Consequently, near the Hopf bifurcation, the introduced MM
regulation is analogous to a linear proportional control making
interventions on the original linear interactions, thereby our
proposed coordinator is feasible for coordinating the frequency
and amplitude.

A universal design policy for the coordinator. To design a
feasible coordinator, we need to know how the intensities of the
MM regulations relate to the frequency and amplitude. Here we
apply the center manifold and the normal form theories to
accomplish the task (Fig. 3). In the following computational
framework, we consider the linear regime of the MM function
where the feedback coordinator for Eq. (4) is written as

Fu ¼ f 11 f 12
f 21 f 22

� �
¼ u1

u2

� �
: ð6Þ

Note that the intensities fij in Eqs. (6) and (2) differ by a given
Michaelis constant Kij. Considering solely the linear regime is suf-
ficient to provide accurate estimation of the intensities in Eq. (2).
Comparing with the nonlinear MM functions, the linear terms
significantly simplify the subsequent calculations. Another advan-
tage of investigating the linear terms is that it is applicable for other
cases where the MM regulations may not be used. For instance,
when coordinating a neuronal model, it is possible to integrate the
linear terms as additional stimulus current or power supply. The
result for Eq. (6) is also suitable for other nonlinear functions pos-
sessing a linear regime, such as the sinusoidal signal/current

sinðau1 þ bu2Þ � au1 þ bu2 when ju1j and ju2j � 1; ð7Þ

and other generalized MM functions

u1
u1 þ K1u2 þ K2

� 1
K2

u1 when ju1j and ju2j � 1;

u1
u1 þ K1u

2
1 þ K2

� 1
K2

u1 when ju1j � 1:
ð8Þ

We now present the computational framework that includes the
following steps.

We first perform a persistence analysis (see “Methods”) before
moving into detailed computations. It guarantees the existence of
the oscillation after intervention. This gives us Theorem 1, which
provides the first criteria (f22=− f11) for designing the
coordinator. It indicates that the two self-interactions of a feasible
coordinator must be opposite to one another. Thus, a negative
feedback loop is established providing the potential to produce
rhythmic oscillation in a biological system29, reasoning that it
ensures the occurrence of the Hopf bifurcation leading to a cyclic
oscillation. In practical applications, a stable oscillation is of great
significance and interest. Therefore, we also perform a stability
analysis to guarantee that the oscillation is still stable after
implementing the coordinator (see “Methods”).

The second step is to link the intensities fij with the frequency
and amplitude. Therefore, we exploit the normal form of the
Hopf bifurcation57 utilizing the center manifold and the normal
form theories. For a periodic oscillation, the Poincaré normal
form is always found as (see “Methods” for more details)

_w ¼ λwþ ηw2�wþO jwj4� �
; w 2 C; ð9Þ

where λ= μ+ iω is the complex eigenvalue corresponding to the
Hopf bifurcation and η is the normal form coefficient whose real
part, denoted by χ, is the first Lyapunov coefficient. It is the
simplest form preserving the information and is usually applied
to study qualitative behaviors. Here we extract the quantitative
information (frequency and amplitude) from the normal form. It
serves as a bridge from the original oscillation to the coordinated
one. Therefore, those information are helpful for designing the
coordinator. The quantifying procedure is illustrated in Fig. 3.

The third step is to modulate both components (u1 and u2)
consistently. We notice that they always share the same
frequency, whereas their amplitudes could be distinct. As a
consequence, the variations made by the coordinator may be
inconsistent, in the sense that the amplitude of u1 (e.g., protein
concentration) is increased or decreased while that of u2 (e.g.,
miRNA concentration) is invariant or vice versa. Such a result
may be unexpected for a given biological system. To avoid this

Fig. 3 The process for quantifying frequency and amplitude of a periodic oscillation. A typical periodic oscillation with two components (u1 and u2) in a
R–D system with non-uniform distribution is shown in the leftmost panel. The diffusive (heterogeneity) effect along the spatial variable x can be clearly
seen. By applying the center manifold theory, such an effect is eliminated (see Supplementary Note 5 for details). Then the restricted periodic oscillation is
spatially homogeneous (invariant along x-axis) and finally can be projected into a complex plane which is of dimension two, as shown in the second panel.
By applying the normal form theory, the periodic orbit is converted to a circle (the third panel), whose frequency [ω/(2π)] and amplitude (2

ffiffiffiffiffiffiffiffiffiffiffi
�μ=χ

p
) are

finally collected (the last panel).
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circumstance, we analyze both components when computing the
normal form (see “Methods”). We surprisingly find that the
modulations on both amplitudes are commensurate with one
another if we have:

f 21
f 12

¼ a21
a12

: ð10Þ

This becomes the second criteria for the design policy. Reason-
ably, it incorporates the endogenous cross-interactions and their
interventions. The ratio of two amplitudes is affected by the cross-
intensities. To keep this ratio unvarying, the intensities of the
interventions must also follow a fixed ratio determined by the
intrinsic ones (i.e., a21/a12).

In the final step, we derive two algebraic equations for the
coordinator. From Eq. (9), the frequency and amplitude are
extracted and approximated as ω/(2π) and 2

ffiffiffiffiffiffiffiffiffiffiffi
�μ=χ

p
, respectively.

Note that μ is independent of the intervention coefficients,
whereas ω and χ are expressed in terms of f11 and f12, i.e.,
ω= ω(f11, f12) and χ= χ(f11, f12). Before going any further, it is
worth pointing out that the approximated amplitude is
independent of x (i.e., the spatial variable). In spite of this, the
coordinator designed here still works for the entire space, because
the spatially heterogeneous effect is eliminated during the
computation (see Supplementary Notes 5 and 6 for more details)
and it does not affect the final coordination.

We then denote by ω0 and χ0 the two values for the original
oscillation [i.e., ω(0, 0) and χ(0, 0)], and ωc and χc the coordinated
ones. To accomplish the coordination at the desired frequency
and amplitude, we only need to solve two algebraic equations: ωc/
ω0= rF and

ffiffiffiffiffiffiffiffiffiffiffi
χ0=χc

p ¼ rA, where rF and rA indicate, respectively,
the fold changes of the frequency and amplitude with regard to
the original quantities. For instance, to coordinate frequency
independently, we set rA= 1 and an unrestricted rF. Analogously,
we coordinate amplitude independently by setting rF= 1 and a
free rA. The frequency and amplitude are coordinated simulta-
neously if neither of rF and rA is one. Generically, the equations
afford an accurate prediction for designing the coordinator
(Supplementary Fig. 5). For higher accuracy, we numerically
search more appropriate values close to the predicted ones.

Following the above procedure, we design feasible coordinators
for the independent frequency and amplitude coordinations in
the “cancer network” (see Supplementary Note 8 for computa-
tional details). As mentioned before, Eq. (6) provides accurate
estimation of Eq. (2). To verify this fact, we also compare the
efficacy of the linear coordinator and that of the MM regulations.
Our proposed nonlinear coordinator is indeed well approximated
by the linear coordinator even if the oscillation is relatively far
from the quiescent state (Supplementary Fig. 4).

Independent coordination in a neuronal model. To further
demonstrate the efficacy of our framework, we also apply it to the
FitzHugh–Nagumo (F–N) system, a representative model simu-
lating biological neuron60–62 (see “Methods”). The parameters we
used under distinct boundary conditions and other information
are provided in Supplementary Table 5. Following the procedure
introduced before, we design some feasible linear coordinators
such that the frequency of a periodic oscillation is gradually
increased or decreased under different boundary conditions
(Fig. 4a, f, g and Supplementary Figs. 6 and 7). Simultaneously,
the amplitudes of both components are almost kept as constants.
For more examples of independent frequency coordination, see
Supplementary Figs. 8–10 and Movies 1–3.

Given a fixed fold change rF, some computed intervention
intensities should be abandoned as their magnitudes are too large
for practical applications. Besides, to guarantee that the

coordinated periodic oscillation is still stable, we require the
coordinator to satisfy two stability conditions: the negativity of
the first Lyapunov coefficient χ and the positivity of another
measure index c0(ki) (see Theorem 2 in “Methods”). Accordingly,
a fixed rF yields two coordinators (f11, f12), where f11 are identical
and the two values of f12 are symmetric to a constant.

We present in Fig. 4b–d the relations between the intervention
intensities and the ratio of frequencies. The two coefficients show
an almost linear relation. When ω0/ωc < 1 (i.e., rF > 1), the large
magnitudes of f11 and f12 imply that a more intense coordinator is
needed for acquiring a higher frequency. As a comparison, it is
much easier to decrease the frequency in the sense that the
required interventions are relatively moderate.

Analogously, we also accomplish the independent amplitude
coordinations with the proposed approach. Under different
policies, the oscillation is gradually amplified (for both compo-
nents) while the frequency remains unchanged (Fig. 5a, b). See
Supplementary Movie 4 and Figs. 13, 14, and 16 for more
instances. We find that the amplitude fold change rA has a lower
bound (e.g., about 0.723 for the NBC case), below which the
oscillation cannot be coordinated successfully (Fig. 5c, d). In
other words, the periodic oscillation cannot be suppressed to an
arbitrarily small size. This is caused by the instability of the
oscillation. Although we find some coordinators for every rA < 1,
they may violate Theorem 2 (see “Methods”). Consequently, the
oscillation becomes unstable. To analyze the lower bound, we
investigate the minimum of the index c0(ki), whose negativity
implies instability (see Supplementary Fig. 15). In the unstable
region (Fig. 5c, d), the oscillation cannot be observed since it
would converge to a different state (possibly a steady state) or
undergo a finite time blowup.

As claimed before, one feature of our method is the capability
to modulate the amplitude in the entire spatial domain by almost
identical fold change rA. Specifically, we illustrate in Fig. 5e, f an
adequate example. Apparently, for both components (V and W),
the amplitudes are increased for all spatial variable x (the vertical
axis) indicating that the spatially non-homogeneous property
does not influence the effect of our coordinator.

The optimal energy consumption of a coordinator. In practice,
the consumption of a coordinating policy for sustaining an
oscillation is of great significance. Therefore, an index E is always
introduced to measure the performance of a specific control
policy63, see “Methods” for the one used in our problem. Fig-
ure 4e shows the energy consumption of independent frequency
coordination in the F–N system with NBC. It is clear that there is
a big difference between the two policies. Usually, the blue one is
the optimal one that we may use because its consumption is
lower. It is worth pointing out that, throughout this work, we only
illustrate the coordinations attained by the optimal coordinator. A
clearer energy consumption of the optimal frequency coordinator
for the F–N model is provided in Supplementary Fig. 11 from
which we deduce that the coordinator consumes more energy for
acquiring a decreased frequency (i.e., ω0/ωc > 1). In Fig. 5d, the
energy consumption for the optimal independent amplitude
coordination is also given. Apparently, the magnitudes of
the index E are exceedingly different for the two cases in the sense
that the amplitude coordination consumes more energy than the
frequency coordination. Moreover, increasing and decreasing
the amplitude yield analogous energy consumptions. In Fig. 6c,
the optimal energy consumptions for the four cases are indicated
according to their magnitudes.

Coordinating the “bigger” oscillation. Until now, our frame-
work are verified on distinct oscillations in the two models, most
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of which are the oscillations near the Hopf bifurcation with
relatively small amplitudes. Our method, based on dynamical
systems tools, provides a reliable design policy for coordinating
such oscillations. In practice, an oscillation far from the quiescent
state with greater amplitude is, however, more likely to exist and
needs to be coordinated. For such an oscillation, our approach
provides an estimation of a feasible coordinator. Mostly, it may
not be accurate enough to obtain desired frequency or amplitude
because they are also affected by the nonlinear terms as the
oscillation grows bigger. But, we can vary the four intensities fij
and search a more appropriate combination numerically in the
neighborhood of our estimations. Compared with seeking a fea-
sible coordinator in the entire space R4, the numerical investi-
gation based on proposed approach significantly reduces the
computational consumption. As two examples, we perform the
independent coordinations on “bigger” oscillations in both “cancer
network” (Fig. 2e, f) and F–N system (Supplementary Fig. 16).

Independent coordinator is an amplifier or a damper. Though
we have successfully performed independent coordinations under
distinct circumstances, there is still no overview picture on the
coordinator configurations. That is, it is not apparent whether the
four interventions in Eq. (6) are positive or negative, whereas this
information could be significant for understanding the underlying
mechanisms. For this purpose, we ignore the exact values of the
intensities and focus only on their signs, positive (activator) or
negative (inhibitor) (Fig. 6). We observe that, for both models, in
order to acquire an increased frequency or amplitude, the
required intervention coefficients follow the endogenous ones in
the same direction (i.e., fij ⋅ aij > 0), while we have fij ⋅ aij < 0 for a
decreased frequency or amplitude. Specifically, the designed
coordinator is a reversible version of the endogenous interactions
for suppressing either frequency or amplitude. In summary, the
designed independent coordinator is just like a two-way dial,
which can be turned up or down. When serving as an amplifier, it

Fig. 4 Independent frequency coordination in the neuronal model. a The time course of the periodic oscillation in the F–N model with NBC. We achieve
gradually and independently a twofold increase for the frequency by varying the coordinator at time labels t= 200, 400, 600, 800, and 1000. The colors
(light and dark blue) of the stripes suggest a near constant amplitude. b The relation between f11 and f12 of an optimal coordinator (the one with minimum
energy consumption). The solid curve and circles represent theoretical and numerical results, respectively. The oscillation is accelerated (respectively,
decelerated) when f11 > 0 (respectively, f11 < 0). When f11 approaches the critical value (approximately −0.25), the period of the oscillation tends to infinity.
The oscillation eventually disappears in the darkest region. The coordinating policies applied in a as time increases are highlighted (from left to right) with
light blue circles. c, d The values of f11 and f12 for obtaining different frequencies. Two distinct strategies are shown in different colors. Note that the
horizontal axis indicates the value of ω0/ωc (i.e., 1/rF) for readability. e The average energy consumed by a coordinator to sustain an oscillation at desired
frequency. The two colors correspond to the two policies shown in d. f Independent frequency coordination (threefold decrease) in the F–N neuronal model
with DBC. The frequency is gradually and independently decreased by varying the coordinator at each time labels t= 200, 400, 600, 800, and 1000.
g The time course at x*= π/2.
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accelerates and reinforces the reaction in a system raising the
frequency or amplitude. Otherwise, the coordinator serves as a
damper slowing down or mitigating the reaction (akin to breaks
of a car).

Hybrid coordination and energy transfer. Besides modulating
frequency or amplitude of a biological oscillator independently,
sometimes a hybrid coordination is also needed to meet a certain
demand (e.g., signal transduction). In this way, the frequency and
amplitude can be interchanged with one another. We can design a
coordinator for any values of rF and rA as long as the two alge-
braic equations have a solution and the coordinated oscillation
remains stable. Therefore, the hybrid coordination can be easily
accomplished by our approach. Figure 7d shows the region of
hybrid coordination bounded by the two curves for the inde-
pendent coordinations (the neuronal model with zero flux at the
boundary). Note that the configurations for independent fre-
quency and amplitude coordinations (Fig. 7f, g) obey the
mechanisms presented in Fig. 6. For an oscillation moving in the
hybrid region, its frequency and amplitude are coordinated in a
reverse way. An example for the hybrid coordination is shown in
Fig. 7a–c. The oscillation in the beginning (t < 200) has already
experienced a frequency coordination. It has the same amplitude

and higher frequency (rF= 5/3) as the original oscillation. As
time goes on, it undergoes a hybrid coordination along the green
curve (circles from left to right) in Fig. 7e. With such a sequence
of coordinations, the amplitude is increased (up to rA= 5/3),
whereas the frequency is gradually decreased until it reaches the
same amount as the original one (1000 < t < 1200). We also
computed the energy consumed by the hybrid coordinators
(Fig. 7h, i). Along the hybrid coordination, more energy are
required from sustaining higher frequency to higher amplitude,
because an oscillation with higher amplitude consumes more
energy than the one with higher frequency. If the hybrid coor-
dination is performed in an opposite way, some energy can be
released. This finding is in accordance with the results shown in
Fig. 6c.

Discussion
Over the past decades, it was widely recognized that frequency
and amplitude variations are fundamental processes in biological
oscillators. While their precise coordinations via either internal
regulation or external intervention have great benefits for health,
the underlying mechanisms and the coordinating strategies are
rarely studied. Especially, there are few works focusing on con-
current regulation of both quantities rather than a single one and

Fig. 5 Independent amplitude coordination in the F-N model. a The time course of V for the periodic oscillation in the F–N model with NBC. The amplitude
is independently increased by varying the coordinator at each time labels t= 200, 400, 600, 800, and 1000. The gaps between each stripes remain
invariant. See Supplementary Fig. 12 for the time course ofW. b The time course at x*= π/2. c The relation between f11 and f12 of an optimal coordinator for
the independent amplitude coordination. The circles (from left to right) represent the policies applied in a as time goes on. When f11 is greater (respectively,
less) than zero, the amplitude of the oscillation is increased (respectively, decreased). A critical value exists (approximately rA= 0.723), below which the
oscillation turns out to be unstable. d The average energy consumed by a coordinator to sustain an oscillation at desired amplitude. When suppressing an
oscillation (the light gray region), the energy consumption grows rapidly as the amplitude becomes smaller. Contrarily, the energy growth is not significant
for magnifying the amplitude (white region). e, f A typical example of amplitude amplification in the F–N model with RBC. e, f show, respectively, the
original oscillation and the one with magnified amplitude in (x, V,W, )-space. The dark circles are the projections of parametric orbits (V,W) onto the
(V,W)-plane with the greatest amplitude. In each panel, two examples of amplitudes are marked by arrows. The smaller one corresponds to x= 0 while
the larger one to the dark circle.
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the intensities of the motif are usually ignored. Through this
work, we accomplish this task with a well-designed coordinator
intervening the linear interactions. We find that the interventions
of linear interactions play dominant roles for the coordinations
on both frequency and amplitude. Also, with two concrete and
successful examples, we demonstrate that the designed coordi-
nator are heavily dependent on the endogenous linear interac-
tions. According to required outcomes, it is considered as either
an amplifier or a damper (Fig. 6). This unprecedented finding
may lead us to a better understanding of the underlying
mechanism of biological oscillations. Of course, it is a challenge to
address the questions: Is our discovery a universal principle? Is
there any other mechanism behind frequency and amplitude
coordinations? They are beyond the scope of the present article,
which could be important directions for future study. The pro-
posed coordinating strategy can be regarded as either an internal
or an external intervention. Therefore, our discovery provides
significant information for not only the steering of traditional
biological models but also the designing of flexible artificial bio-
systems in future.

Compared with the recent work focusing on the re-design of
specific oscillators32, our approach pays attention to the oscillator
itself and the intensities of its linear interactions. On the one
hand, we focus on coordinating the frequency and amplitude of
the components inside the oscillator rather than using a main

oscillator to control an outside gene32. Therefore, the two works
have practical usefulness under distinct circumstances. If the
main oscillator is more important and needs to be modulated,
then our framework is appropriate to accomplish the task. On the
other hand, our designed coordinator is able to precisely acquire
desirable frequency and amplitude. It provides the possibility of
precise coordinations. Though it has not been verified experi-
mentally in this work, it may be realized in future by a well-
designed computer-based microfluidic device. For various biolo-
gical systems, such as the neuronal model and the gene-regulatory
network considered in this work, the endogenous interactions are
always extractable, if its corresponding computational model is
given (or discovered via machine leaning from data64,65).
Therefore, the proposed strategy can be applied to those systems
straightforwardly. This work serves as a necessary foundation for
precise biorhythm regulation. It may fill the gap between
experimental data and theoretical coordinating strategies making
a potential contribution for precision medicine.

In the field of dynamical systems, the center manifold and the
normal form theories are usually used to carry out qualitative
analysis, specifically, to investigate the direction of the Hopf
bifurcation and the stability of associated periodic oscillation57.
Here we show that they are also powerful for coordinating bio-
logical oscillators. We exploit their roles for analyzing quantita-
tive information of rhythmic oscillations. In such a way, the

Fig. 6 The underlying mechanisms and energy consumptions of independent frequency and amplitude coordinations. a The optimal coordinator [the
one with minimum energy consumption E, see “Methods” for its definition] for independent frequency and amplitude coordination follows the two rules.
The four linear interactions aij (arrow: activation; I-shaped: inhibition) between two components (blue and red circles) are intervened by the linear regime
of the coordinator [Eq. (6)] with intensities fij. For both independent frequency and amplitude coordination, all the four interactions are either enhanced
(thicker curves) or mitigated (thinner curves) simultaneously. Thus, the coordinator can be viewed as either an amplifier or a damper. b The non-
intervened oscillation in the neuronal model Eq. (14) (blue: V; red: W). All four configurations for independent frequency and amplitude coordination are
tabulated below. Only the signs of the linear interactions and interventions are taken into account. If fij (or aij) is positive, then component j can be regarded
as an activator to i, otherwise, an inhibitor. It can be observed that all the intervention intensities follow the same sign as that of the corresponding
endogenous interaction, if an increased frequency or amplitude is desired (the case of enhancement in a). On the contrary, for acquiring a decreased
frequency or amplitude, the designed intervention exhibits as a reversible version of the endogenous one (the case of mitigation in a). c The four intervened
examples for each case given in b. The energy consumption for each case is sketched by arrows on the right of the motif. A higher and darker arrow
suggests a greater energy consumption.
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intervention intensities and desired frequency or amplitude are
connected, whereby simple criteria are derived for designing
coordinators. Consequently, we can alter the frequency and
amplitude independently or simultaneously. With these tools, we
also show that the diffusive effects are preserved from the original
oscillation during the coordination so that our approach is
applicable for the entire spatial domain. In fact, biological pro-
cesses following certain rules are dynamical systems described by
either discrete or continuous mathematical models. Besides the
Hopf bifurcation yielding rhythmic oscillation, there are other
bifurcations accounting for various biological phenomena53.

Analogously, dynamical systems tools can be applied for certain
biological coordinating tasks, such as controlling spatial patterns
induced by Turing instability66 and excitability related to canard
phenomenon in biological systems with multiple time scales67, to
name a few.

The present approach sheds some light upon the tunability of
heterogeneity biological oscillators and their energy consumption.
Though we only consider two-component systems in this work,
our systematic approach can be readily adapted to the one with
more components following the idea that we can decouple and
extract the information of frequency and amplitude via the center

Fig. 7 Hybrid coordination and energy transfer. a Time course of the periodic oscillation in the F–N neuronal model (zero flux at the boundary) under
hybrid coordination. Both frequency and amplitude are gradually and simultaneously coordinated. As time goes on, the frequency and amplitude undergo a
5/3-fold decrease (wider gaps) and increase (brighter colors), respectively. Different coordinators are applied at distinct time labels t= 200, 400, 600,
800, and 1000. For the corresponding time course ofW, see Supplementary Fig. 17. b The time course at x*= π/2 in a. c The phase portrait corresponds to
the temporal profile in b. The larger the circle, the greater the amplitude. See Supplementary Movie 6 for the trajectories in each time interval. d The
relations between f11 and f12 of an optimal coordinator for the independent frequency and amplitude coordination are shown, respectively, by the blue and
yellow curves. The gray area between the two curves is labeled as hybrid coordination region, where the frequency and amplitude can be coordinated and
interchangeable with one another. e A zoom-in view at the red rectangle in d. The oscillation shown in a is coordinated along the green curve. The policies
applied as time goes on are highlighted by circles from left to right. f, g The optimal configurations for the four cases tabulated in Fig. 6b (the curves for
ij= 11 and ij= 22 are not visually distinguishable). For an increased (respectively, decreased) frequency (blue) or amplitude (yellow), we have aij ⋅ fij > 0
(respectively, <0). h, i The frequency (blue) and amplitude (yellow) variation (rF and rA) together with the average energy (green) consumed by hybrid
coordination along the green curve in d.
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manifold and the normal form theories. For instance, the
Kim–Forger model describing the circadian rhythm regulated by
BMAL1:CLOCK transcription factor and PER:CRY complex53

can be investigated with the present approach. In this model, the
cyclic oscillation also arises from the Hopf bifurcation. More
components imply more intervention coefficients. Therefore, we
would have more choices to design coordinators for such systems.
More importantly, the energy consumption may be further
reduced or follows a different rule compared to the one in Fig. 6.
Remember that the amplitude coordination is restricted in some
range due to the instability of the oscillation. With diverse
coordinating policies, this range may also be extended.

Although we show that the linear regime of a well-designed
coordinator works well for both “small” and “big” oscillations in
the two models, its efficacy may be less than satisfactory for
systems with greater nonlinear coupling effect. Also, a coordi-
nator sometimes cannot be instantly implemented due to delay.
Therefore, besides the linear interventions, we can also take
advantages of nonlinear interventions (e.g., the Hill function of
multimer) or the one with time lag to improve our results in
future. On the other hand, an oscillator over a two- or three-
dimensional spatial domain could be considered and some
boundary control techniques68 are also possible for coordinating
such oscillations.

Methods
Generic R–D model. The periodic oscillation arising from the Hopf bifurcation are
studied in this work. Thus, for every R–D system investigated here, it possesses a
constant stationary solution (i.e., homogeneous quiescent state). By appropriate
transformation and Taylor expansion, this solution is moved to the origin and the
system is written as Eq. (4).

In this PDE, u ¼ u1; u2; � � � ; un

 �> 2 Rn and is well defined on (x, t)∈ [0, π] ×

[0,+∞), ϵ is the bifurcation parameter, D(ϵ)= diag[d1(ϵ), d2(ϵ),⋯ , dn(ϵ)] is the non-
zero diagonal matrix consisting of non-negative diffusive coefficients, A(ϵ) is an n × n
real matrix, and g(u, ϵ) includes nonlinear terms that satisfies g(0, ϵ)= 0. Particularly,
we focus on the case of n, the number of components, as 2 throughout the work. The
methods proposed in this work can be extended straightforwardly to a system with
more components or spatial variables.

Coordinator configuration. The coordinator used in the computational frame-
work is Eq. (6). For simplicity, we define a linear operator as
LðϵÞ :¼ DðϵÞ∂2=∂x2 þ AðϵÞ þ F. The coordinated system is then written concisely
as

∂u
∂t

¼ LðϵÞuþ gðu; ϵÞ: ð11Þ

Eigenvalues of the operator L. For all the three boundary conditions considered
in this work, the Laplacian operator in L possesses countably infinitely many
eigenvalues k2i ðki ≥ 0; i 2 N0Þ, and they are always ordered as 0≤ k20<k

2
1<k

2
2< � � � 69.

Further, for each ki, we deduce the eigenvalue problem LðkiÞψki
¼ λkiψki

, where

LðkiÞ :¼ ð�k2i Dþ Aþ FÞ and ψki
is the eigenvector corresponding to λki . Then,

every λki is also an eigenvalue of L and can be solved from the characteristic
equation given by

λ2ki þ c1ðkiÞλki þ c0ðkiÞ ¼ 0; ð12Þ
where

c1ðkiÞ ¼ ðd1 þ d2Þk2i � a11 � a22 � f 11 � f 22;

c0ðkiÞ ¼ d1d2k
4
i � ½d1ða22 þ f 22Þ þ d2ða11 þ f 11Þ�k2i

þ ða11 þ f 11Þða22 þ f 22Þ � ða21 þ f 21Þða12 þ f 12Þ:
For the details on the corresponding eigenvector, see Supplementary Note 2.

Persistence and stability analysis. Depending on the particular parameters and
boundary conditions, the periodic oscillation arising from the Hopf bifurcation
would be either stable or unstable57. First, to guarantee its existence with or without
a coordinator at the same bifurcation parameter, we have the following proposition
(see Supplementary Note 3 for more details).

Proposition 1. For Eq. (11), there exists ϵ� 2 R such that both original system (i.e.,
F vanishes) and coordinated one undergoes the Hopf bifurcation when ϵ= ϵ*.

As the Hopf bifurcation occurs at the same critical value for any F, we deduce
the theorem below (see Supplementary Note 4 for a detailed proof).

Theorem 1. The Hopf bifurcation of u≡ 0 in Eq. (11) always occurs at the same
system parameters if and only if the matrix F satisfying f11+ f22= 0.

Second, to guarantee that the Hopf bifurcation yields a stable oscillation, we also
have the following proposition (see Supplementary Note 3 for more details).

Proposition 2. When ϵ= ϵ*, the operator L has a unique pair of purely imaginary
eigenvalues yielding the Hopf bifurcation. All other eigenvalues strictly lie in the
left-half complex plane.

We now analyze the spectrum of L and determine ϵ*. According to Proposition 2,
the roots of Eq. (12) must be non-zero and their real part are non-positive (for all ki).
Then, a simple manipulation (Supplementary Note 4) implies the following theorem.

Theorem 2. c0(ki) is strictly positive for all ki.
Generically, the quiescent state u≡ 0 undergoes infinitely many Hopf

bifurcations. That is, for each ki, there is a critical value such that Eq. (12) has a pair
of purely imaginary roots. Consequently, there exists a sequence of periodic
oscillations arising from each Hopf bifurcation. It is then natural to raise the
question: Which oscillation should we coordinate its frequency and amplitude?
Thanks to the following theorem (proved in Supplementary Note 4), the only case
that we need to investigate is i= 0. All other Hopf bifurcations yield unstable
oscillations that is of less interest in practice. We finally have the two
theorems below.

Theorem 3. Assume that the stationary solution u≡ 0 of Eq. (11) undergoes a
Hopf bifurcation satisfying Proposition 2. Then the unique pair of purely ima-
ginary eigenvalues of L must be the roots of Eq. (12) with i= 0.

Theorem 4. The critical value ϵ* for the Hopf bifurcation of u≡ 0 in Eq. (11)
satisfies c1(k0)= 0 [in Eq. (12)], if the arising periodic solution is stable.

Normal form and quantitative information. Having analyzed the stability of
periodic oscillation, we then compute its normal form, from which its frequency
and amplitude are extracted. We do this by applying the projection method57,70.
According to Theorem 3, the pair of purely imaginary eigenvalues is solved from
Eq. (12) when i= 0. For readability, we drop the subscript and represent the two
eigenvalues as λ and �λ. Then, for ϵ sufficiently close to ϵ*, they can be written as

λðϵÞ ¼ μðϵÞ þ iωðϵÞ; �λðϵÞ ¼ μðϵÞ � iωðϵÞ with ωðϵÞ> 0; ð13Þ
where

μðϵÞ ¼ 1
2
a11 þ a22 � k20ðd1 þ d2Þ

 �

;

ω2ðϵÞ ¼ �ða12 þ f 12Þða21 þ f 21Þ � ξ2;

and

ξ ¼ f 11 þ
1
2

a11 � a22 þ k20ðd2 � d1Þ

 �

:

Following the standard procedure given in Supplementary Note 6, we finally obtain
the Poincaré normal form given in Eq. (9) from which the frequency and amplitude
are finally quantified.

Modulating both components. To approximate the amplitude of the first com-
ponent u1 from the normal form, we carefully determine the coefficient of the
eigenvector corresponding to λ (see Supplementary Note 6 for details). Also, if we
want to implement a commensurate variation on the second component u2
simultaneously, the transformation acted on u2 should also be considered.
Otherwise, as stated in “Results”, the amplitude of u2 could be increased or
decreased, whereas that of u1 is invariant, or vice versa. Our computation [Sup-
plementary Eq. (S17)] shows that the approximation for the amplitude of u2
includes a coefficient

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ða21 þ f 21Þ=ða12 þ f 12Þ

p
. We finally deduce Eq. (10)

[Supplementary Eq. (S18)] to eliminate this influence.

The F–N system and its coordination. The R–D version of the F–N model is
given by

∂V
∂t

¼ d1
∂2V
∂x2

þ VðV � θÞð1� VÞ �W þ I;

∂W
∂t

¼ ϵd2
∂2W
∂x2

þ ϵV � ϵγW;

ð14Þ

where all system parameters are positive and ϵ is the bifurcation parameter. With
appropriate parameter values, it possesses a positive stationary solution denoted by
(V,W)= (V0,W0). Before investigation, we first convert the system into the form
of Eq. (11). The formulation of the coordinator together with the detailed com-
putations can be found in Supplementary Note 7.

The index for assessing energy consumption. For different biological models,
distinct definitions may be introduced to assess the energy consumption. For the
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diffusive neuronal model considered here, we adopt the classical definition used in
the cable model71. Accordingly, the energy at time t* induced by the stimulus
current I in a diffusive neuronal model is defined as

H ¼
Z t�

0

Z π

0
IVðx; tÞdxdt: ð15Þ

Since we consider the periodic oscillation in this work, in order to make a fair
comparison, we take the average energy consumption into account. It is defined as

�H ¼ 1
T

Z T

0

Z π

0
IVðx; tÞdxdt; ð16Þ

where T is the period of the considered oscillation. To implement our designed
coordinator, the linear terms f11(V− V0)+ f12(W−W0) (Supplementary Note 7)
can be integrated as an additional stimulus current Ic. Our aim is to assess the
energy consumption of the coordinator alone rather than the entire system. We
therefore refer to an analogous power consumption index used in controlling the
activity of the F–N neuron72. Consequently, we finally define the index for our
purpose as follows

E ¼ j�Hc � �Hoj ¼
1
T

Z T

0

Z π

0
ðIc þ IoÞVc � IoVo


 �
dxdt

����
����; ð17Þ

where Io is the original constant stimulus current and Vo and Vc are the membrane
potential in the original and controlled system, respectively. This index evaluates
the average energy consumption of the designed coordinator.

As for the other biological models such as the “cancer network” considered in
this work, the energy can be evaluated by the average L2-norm of the designed
coordinator over one period, which yields the following index

E ¼ 1
T

Z T

0
k Fu k dt; ð18Þ

where T is the period of oscillation and ∥ ⋅ ∥ is the L2-norm induced by the inner
product [Supplementary Eq. (S4)].

We introduce L2-norm here because it is a generic definition for the assessment
of a control policy73 including the one used in a biological network with
protein–protein interactions63. Moreover, the biorhythm can be regarded as a
cyclic signal for information processing whose energy is also conventionally
defined as the integral of L2-norm74. Therefore, it is appropriate for the “cancer
network”. Of course, there could be other definition for a different model. It is
worth pointing out that the two definitions introduced here can be computed in
practice once the signal of a biorhythm (e.g., action-potential or expression level) is
measured.

Numerical simulations. All the numerical simulations are performed using PDE
solver pdepe in MATLAB R2019a (The Mathworks), and both absolute and relative
tolerance are set to 1e−8.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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