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Abstract A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each

other and ultimately follow the genome data. With the number of sequenced genomes reaching tens

of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We

now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based

web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive,

collapsible, and expandable tree display. It is capable of comparing the tree branching order with

prokaryotic classification at all taxonomic ranks from domains down to species and strains.

CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it

reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces

print-quality subtree figures. After giving an overview of retrospective verification of the CVTree

approach, the power of the new server is described for the mega-classification of prokaryotes

and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies

between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic

revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/ without login

requirements.
Introduction

Prokaryotes are the most abundant and successful organisms
on Earth [1]. However, their phylogeny and taxonomic classi-

fication had been a long-standing challenge until Carl Woese
and coworkers suggested using the small subunit (SSU or
16S) rRNA sequences as molecular markers in the late 1970s

[2]. The completion of the second edition of the Bergey’s
Manual of Systematic Bacteriology [3] (hereafter referred to
nces and
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as the Manual) marked a culmination of 16S rRNA analysis as
the Manual ‘‘follows a phylogenetic framework based on
analysis of the nucleotide sequence of the small ribosomal

subunit RNA, rather than a phenotype structure” (George
Garrity’s preface). As early as in 1985, Woese et al [4]
proposed a phylogenetic definition for the major eubacterial

taxa using all available 16S rRNA sequences, about 400 in
total.

The challenge in ‘‘congruence” of prokaryotic phylogeny

and taxonomy on the basis of SSU rRNA analysis, however,
raises a question of principle. In order to establish an objec-
tive and valid classification of microbes, the present 16S
rRNA-based scheme needs cross-verification. By all means

the verification should follow the genomic data. In fact, an
Ad Hoc Committee on Reconciliation of Approaches to Bac-
terial Systematics stated in a 1987 Report that ‘‘there was

general agreement that the complete DNA sequence would
be the reference standard to determine phylogeny and that
phylogeny should determine taxonomy” [5]. Since then,

genome-based phylogeny and taxonomy studies have been
touched on by many research groups from different angles
[6–10].

From a taxonomic perspective, although only a small frac-
tion of the genomes sequenced so far corresponds to prokary-
otes with a type strain (1725 among 12,000 [10] as of early
2014), an ambitious program to sequence a myriad of type

strains, known as the Genomic Encyclopedia of Bacteria and
Archaea project (GEBA) [11,12], has made rapid progress.
The taxonomic coverage of sequenced genomes will soon catch

up with that of the 16S rRNA collection.
Only a quarter of a century since the release of Ad Hoc

Committee report, with the total number of sequenced

microbial genomes reaching tens of thousands, the materializa-
tion of ‘‘general agreement” has become feasible. However,
effectively inferring phylogenetic trees from the genome

sequences and comparing the branching orders with taxonomy
at all ranks present challenges. To this end, the composition
vector (CV) approach to prokaryotic phylogeny developed
by our group in the last decade [13–24] has the potential to

meet this challenge. In this paper, we describe the latest version
(Version 3) of the CVTree web server and demonstrate its
applications. Detailed application of CVTree3 to various

aspects of microbiology will be presented in subsequent
publications.

Methods

Since the methodology and foundation of the CVTree
approach has been demonstrated in numerous previous

publications [13–24] as well as discussed by other authors
[25,26], we provide only a brief summary of the essentials in
this paper.

CVTree approach

CVTree uses the whole genomes as input, thus avoiding ambi-

guities in selecting orthologous genes and circumventing the
problem of lateral gene transfers. Whole-genome comparison
must be alignment-free, as prokaryotic genomes differ
significantly in their sizes and gene contents. Our method for

conducting alignment-free comparison consists of extending
the amino acid alphabet counts to counting the number of
K-peptides in all protein products encoded in a genome. In
order to highlight the shaping role of natural selection, the

original counts are modified by subtracting the random
background caused by neutral mutations using a (K–2)-th
order Markovian prediction.

In addition to the advantages of using alignment-free data
and performing whole-genome-based analyses, several distinc-
tive features of the CVTree are listed below.

1. The peptide length K looks like a parameter but does not
function as a parameter because K-values are not adjusted
and the same set of K is used for all genomes in a tree. In

the older versions of the CVTree server [27,28], a K-value
must be set for each run. CVTree3 carries out calculations
for a range of K, such as K = 3–8, in a single run. Watch-

ing the branching orders with varying K provides an addi-
tional angle for evaluating the quality of the resulting trees.
We note that the best (in the sense of agreement with tax-

onomy) K-values are 4–5 for viruses, 5–6 for prokaryotes,
and 6–7 for fungi. Proof of this statement as well as a
description of the role of K had been provided in previous

reports [16,23].
2. Traditionally, an inferred phylogenetic tree is subject to

statistical re-sampling tests such as bootstrap and jack-
knife analyses. However, successfully passing these tests

only indicates the stability and self-consistency of the
tree with respect to small variations of the input data,
but not the objective correctness of the phylogeny.

Though the CVTree results indeed have passed these
time-consuming tests [19], we advocate the viewpoint
that phylogenetic trees should be checked directly with

taxonomy.
3. The comparison with taxonomy requires a reference clas-

sification scheme. In the CVTree server, each built-in gen-

ome is associated with initial lineage information taken
from the NCBI Taxonomy (www.ncbi.nlm.nih.gov/taxon-
omy). The information is written in one line with the
abbreviations hDi, hKi, hPi, hCi, hOi, hFi, hGi, hSi,
and hTi, which stand for Domain, Kingdom, Phylum,
Class, Order, Family, Genus, Species, and sTrain, respec-
tively. A standard notation for a lacking classifier is

‘‘Unclassified”. For example, ‘‘hFiUnclassified” denotes
a missing family assignment. Lineage information con-
taining one or more ‘‘Unclassified” terms is considered

incomplete.
4. A central notion in comparing tree branching orders with

taxonomy is monophyly. For prokaryotes, while the
notion of species is still under debate, one cannot use

the original definition of monophyly as the collection of
descendants from one and the same common ancestor as
discussed by James Farris [29,30]. Moreover, monophyly

is a reciprocal notion with respect to both phylogeny
and taxonomy. We adopt a pragmatic approach by
restricting ourselves to the input dataset and reference

classification. If all genomes from one and the same taxon
are represented exclusively by leaves in a single branch,
the branch is said to be monophyletic. If a taxon does

not appear to be monophyletic in taxonomy, e.g., the
genus Clostridium consisting of a sensu stricto cluster
and several ‘‘monophyletic” groups as described in volume
3 of the Manual, the corresponding branches cannot be

http://www.ncbi.nlm.nih.gov/taxonomy
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characterized as monophyletic. We use the term ‘‘conver-

gence” to describe these cases. A branch may converge
to a monophyletic branch such as Cyanobacteria{77} or
converge to several partially monophyletic clusters such

as Clostridium{32/49}, Clostridium{7/49}, and Clostridium
{4/49}, meaning that the 49 genomes listed under the
genus Clostridium in the reference taxonomy appear as
several clusters in CVTree.

5. There are two elements of a phylogenetic tree: the
branching order (topology) and the branch lengths. The
former reflects taxonomy and the latter is associated with

evolution. Calibration of branch lengths is always based
on the assumption that the mutation rate has remained
constant over evolutionary history, an assumption that

cannot hold true when dealing with many phyla in a
large-scale study. Although a relationship between the
dis-similarity measure used in constructing the CVTree
and the usual genetic distance has been derived [16], it

does not always preserve the topology of the tree. There-
fore, we do not scale branches in all CVTrees and only
examine the branching orders. To measure evolutionary

time for a group of not-too-distantly-related species, tra-
ditional methods such as multi-alignment of orthologous
proteins would do the job.

CVTree3 web server

We have made the CVTree web server publicly available, so
bench-biologists can take advantage of the whole-genome-
based and alignment-free method. The server has been
released twice: Version 1 in 2004 [27] and Version 2 in

2009 [28]. As the CV algorithm is CPU- and memory-
demanding, previous servers could not cope with the ever-
growing amount of genomic data, and thus we redesigned

the CVTree web server. The new CVTree3 server contains
many enhanced features and is freely accessible at http://
tlife.fudan.edu.cn/cvtree3/. The main improvements are listed

as follows. (1) The CV algorithm has been parallelized and
the new CVTree3 pipeline now resides in a cluster with 64
cores. (2) The CVTree3 web server is not only designed as

a phylogenetic tool, but also enables combined study of phy-
logeny and taxonomy both on a large scale across many
phyla and at lower ranks down to infrasubspecific strains.
(3) The server is equipped with an interactive tree display,

allowing for the collapse and expansion of branches in
accordance with lineage information associated with the
input genomes. (4) The server reports the number of gen-

omes in all monophyletic and non-monophyletic taxa/
branches at all ranks from the domain down to the species.
(5) The server allows for trial lineage modifications and re-

collapsing of the tree with a new report on monophyly.
(6) The server allows print-quality output of any selected
subtree.

Since there is a detailed online (and printable) User’s

Manual (File S1) for the web server, we will not describe
in detail the aforementioned technical points except to
demonstrate some useful features regarding the taxonomic

placement of a few newly-sequenced genomes without proper
lineage information given at the present time.
Genome resources

Inherited from the previous releases, the CVTree3 web server
has a built-in genome dataset. However, because the NCBI
FTP site (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) has nearly

stopped releasing new bacterial genomes since the beginning
of 2014, CVTree3 has to give up monthly automatic updating
from the NCBI. Currently, prokaryotic genomes are collected
from the NCBI, European Nucleotide Archive (ENA) at the

EBI, Integrated Microbial Genomes (IMG) by the Joint Gen-
ome Institute (JGI) of the U.S. Department of Energy (DOE),
the Broad Institute, the J. Craig Venter Institute, and the

Pathosystems Resource Integration Center (PATRIC) (the
URLs of these institutions are listed in CVTree3 User’s Man-
ual, see File S1). In order to demonstrate the capability of the

CVTree, we also included some genomes from the Microbial
Dark Matter Project [31].

In this article, we refer to a fully-fledged Working Project to

demonstrate the features of the CVTree3 web server. The pro-
ject has a specific project number 30150127_1559_28802 in
order to avoid being deleted by the web server in due time.
In the input dataset, there are 342 Archaea, 2870 Bacteria,

and 8 Eukarya genomes. The latter includes 4 fungal and 4
non-fungal genomes serving as candidates of the out-group
in tree construction.

Users may upload their own genomes together with lineage
information. In the Working Project, a total of 21 genomes
were uploaded and their names appeared in the ‘‘Upload User

Genomes and Lineage File” page. The user-supplied lineage
information file carries a fixed name ‘‘Lineage.txt” and it does
not appear explicitly on the page.

The CVTree approach depends on genome annotation, but

is insensitive to the annotation mainly because of the
alignment-free methodology. For example, genomes of Glu-
conacetobacter diazotrophicus PAI 5 from the same source

(ATCC 49037) were sequenced, assembled, and annotated by
two institutions. These assemblies contained ‘‘a surprisingly
high number of differences” [32], yet they appeared in CVTrees

as two closely-related sisters. In addition, two genomes listed

under an unclassified bacterial phylum Acetothermia from
IMG JGI provided another example of the insensitivity of

CVTree to annotation. Both genomes are in the permanent
draft status. GenBank files may be generated from contigs
using the IMG pipeline. Their names appeared in the User
Uploaded Genomes in our Working Project (Acetothermia

bacterium SCGC AAA255 C06 SAK 001 122 and Candidatus
Acetothermum autotrophicum). By using the ‘‘Search Query”
function of the interactive display, the genomes appear

together in CVTree at the phylum level. The fact that CVTree
can accept some permanent-draft genomes greatly widens the
reach of CVTree, as there are more than 23,000 permanent

drafts according to the Genomes Online Database (GOLD,
gold.jgi-psf.org) statistics, and this number is increasing
rapidly.
Applications of CVTree3

Given an input genome set and a parameter-free method such
as CVTree, an inferred tree is a fixed unchangeable subject,

http://tlife.fudan.edu.cn/cvtree3/
http://tlife.fudan.edu.cn/cvtree3/
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and the tree cannot be adjusted or modified. In contrast, tax-
onomy has always been a work in progress. Lineage modifica-
tions and taxonomic revisions are routine issues, leading to a

convergent phylogeny-based classification of microbial organ-
isms. Over the years, CVTree has been applied to viruses
[33,34], Archaea and Bacteria [13–18,20–22,24], chloroplasts

[35], and fungi [36] with remarkable success. The powerful
and parallelized CVTree3 web server will bring about many
additional new applications.

Upon entering the Working Project, a maximally-
collapsed CVTree with three branches, corresponding to the
three main domains of life, appears as shown in Figure 1.
All 3220 genomes are represented in this single screen. Bacte-

ria{2733 + 137} indicates that there are 137 bacterial gen-
omes without proper lineage information. A complete
lineage may also require modification in order to reflect the

actual taxonomic position. By introducing lineage modifica-
tions, these numbers may change, but their sum remains at
2870. By expanding the nodes or making enquiry for a desig-

nated taxon name, any part of the tree may be unfolded for
in-depth inspection.

Retrospective verifications of CVTree

Before describing the applications of CVTree3, we recall
the significant fact that for prokaryotes with sequenced
Figure 1 The most collapsed CVTree with three main domains of life

Note that all 3219 genomes are visible in this single screen (a eukaryotic

indicates that there are n genomes with complete lineage information

{n + m} is indicated as {n} when m= 0, while when n = 0, {n +

kingdom, respectively. Main domains of life were defined as suggested

Lineage information containing one or more ‘‘Unclassified” is conside
genomes, all taxonomic revisions or new proposals published
thus far agree with CVTree or at least do not contradict the
CVTree branching order. These should be regarded as retro-

spective verifications of the new approach. A partial list
follows.

1. The move of the genus Oceanobacillus from the phy-
lum Proteobacteria [38] to phylum Firmicutes in 2003
[39].

2. The move of the species Thiomicrospira denitrificans
from the class Gammaproteobacteria to the class Epsilon-
proteobacteria as Sulfurimonas denitrificans in 2004 [40],
with the reclassification proposal published in 2006 [41].

3. The reassignment of Thermoanaerobacter tengcongensis
to a new genus as Caldanaerobacter tengcongensis in
2004 [42].

4. The transfer of Thermomicrobium roseum from its origi-
nal phylum Thermomicrobia to class Thermomicrobia in
the phylum Chloroflexi in 2004 [43].

5. The reclassification of Sphaerobacter thermophilus from
the phylum Actinobacteria to the class Thermomicrobia
in phylum Chloroflexi in 2004 [43].

6. The transfer of Enterobacter sakazakii to a newly-
proposed genus as Cronobacter sakazakii in 2008 [44]
led to a monophyletic Cronobacter{6} in the current
CVTree.
genome used as the outgroup was hidden). The {n + m} notation

and m genomes with incomplete or missing lineage information.

m} is indicated as {0 + m}. hDi and hKi represent domain and

by Woese and Fox [37]. ‘‘Unclassified” indicates missing classifier.

red incomplete.
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7. The reclassification of a few Clostridium and Ruminococ-

cus species to a newly-proposed genus Blautia in 2008
[45] led to a monophyletic Blautia{6} in current CVTree.

8. The suggestion to exclude Actinobacillus succinogenes

and ‘Mannheimia succiniciproducens’ from their respec-
tive genera in 2008 [46] and the proposal to establish a
new genus Basfia to accommodate similar succinic
acid-producing bacteria in 2010 [47] led to three mono-

phyletic genera Mannheimia{8}, Actinobacillus{4}, and
Basfia{2} in CVTrees.

9. The class Mollicutes never joined the other two classes

Bacilli and Clostridia of the phylum Firmicutes since
the first CVTree was published in 2004. It was removed
from volume 3 (2009) of the Manual on Firmicutes to

become a new phylum Tenericutes in volume 4 of the
Manual in 2010.

10. The reclassification of Bacillus tusciae to a new genus as
Kyrpidia tusciae in the family Alicyclobacillus in 2011

[48].
11. The assignment of Thermobaculum terrenum to the phy-

lum Chloroflexi in 2011 [49].

12. The move of Clostridium difficile and other clostridial
species to new genera such as Peptoclostridium, Lachno-
clostridium, and Ruminoclostridium in 2013 [50], leading

to a monophyletic Peptoclostridium{12} in the current
CVTree. We note that these names are effectively pub-
lished but have not been validly published, based on

their absence in LPSN [51].
13. The reclassification of Agromonas oligotrophica into

Bradyrhizobium oligotrophicum in 2013 [52] led to a
monophyletic Bradyrhizobium{6} in the current CVTree.

14. The reclassification of Thermoproteus neutrophilus to
Pyrobaculum neutrophilum in 2013 [53] led to two mono-
phyletic genera Thermoproteus{2} and Pyrobaculum{8}

in CVTree.
15. A recent proposal to elevate four families in the class

Actinobacteria to corresponding single-family orders

[54] does not contradict the current CVTree. In particu-
lar, the accommodation of the three genera Geoder-
matophilus, Blastococcus, and Modestobacter in the
order Geodermatophilales is supported by CVTree.

16. A recent proposal to split the euryarchaeal order
Halobacteria into three orders [55] is supported by
CVTree [24].

To describe the possible applications of CVTree3 to micro-
biology, we chose a few topics to demonstrate this potential

rather than to explore biological details. These include the fol-
lowing: large-scale classification, taxonomic placement of
newly-sequenced genomes, and high resolution of CVTree at

the rank species and below.

Mega-classification of prokaryotes

Large-scale classification, or as Cavalier-Smith puts it [56],

mega-classification, of prokaryotes, deals with higher taxo-
nomic ranks such as phylum, class, and order (at present,
ranks higher than order are not covered by the International

Bacterial Code [57]). The second edition of Bergey’s Manual
[3] lists 2 archaeal and 26 bacterial phyla. The total number
of prokaryotic phyla may be in the hundreds. In fact, some
newly-sequenced genomes represent yet unclassified phyla or
classes. The Working Project accompanying this paper helps

to comprehend the overall situation. Since a comparison of
the archaeal phyla has recently published [24], we concentrate
on bacterial taxa.

If the ‘‘Modified Lineage” box in the setting-parameter page
is checked, a default Lineage Modification file is used to report
the convergence of taxa. If unchecked, the initial information

from the NCBI Taxonomy is used. In this ‘‘bare” situation, an
overwhelming majority of phyla appear to be well-defined,
i.e., monophyletic for at least one K-value and occupying a
position at the phylum level. These phyla include Acidobacteria

{7 + 2}, Actinobacteria{365 + 2}, Aquificae{14}, Chlamydiae
{141}, Chlorobi{13}, Cyanobacteria{2 + 75}, Deferribacteres
{4}, Deinococcus-Thermus{20}, Dictyoglomi{2}, Fibrobacteres

{3}, Fusobacteria{8}, Planctomycetes{7}, Synergistetes{5},
Thermotogae{19}, and Verrucomicrobia{2 + 2}. In particular,
we point at the relatively-unresolved Cyanobacteria phylogeny

{2 + 75}. The large number (75) of incomplete lineage informa-
tion reveals the long-due challenge ofCyanobacteria taxonomy.
Historically, classification of Cyanobacteria followed the

Botanic Code. Currently, NCBI Taxonomy and the Bergey’s
Manual differ significantly for Cyanobacteria. The complete
solution of this issue should be examined further.

Some ‘‘big” phyla, i.e., those represented by a large number

of genomes, naturally appeared to be non-monophyletic when
no lineage modification was made. These include Bacteroidetes
{88/89 + 5}, Firmicutes{662}, Proteobacteria{1175}, and Spir-

ochaetes{59}. We also encounter a few interesting cases, in
which the CVTree results differ from 16S rRNA-based taxon-
omy. For example, until recently, the species Thermodesul-

fovibrio yellowstonii had been considered a member of the
phylum Nitrospirae [58]. However, in CVTree, it is resolved
to the phylum Thermodesulfobacteria. This lineage modifica-

tion according to CVTree would lead to monophyletic resolv-
ing of Nitrospirae{4} and Thermodesulfobacteria{3}. Similarly,
the family Rhodothermaceae with its two subordinate genera
Salinibacter and Rhodothermus belongs to an uncertain order

(Bacteriales Order II Incertae Sedis in the Manual) of the phy-
lum Bacteroidetes. But in CVTree, it is the nearest neighbor to
the phylum Chlorobi. Corresponding lineage modification

leads to monophyletic Bacteroidetes{88 + 5} and Chlorobi
{13 + 5}.

The clearest distinction of the CVTree phylogeny and 16S

rRNA analyses arises from the phylum Spirochaetes. Species
in this phylum were placed together mainly based on their
morphological similarities in the first edition of the Manual.
Carl Woese described that spirochaetes form a single clade

according to 16S rRNA features [4]. Taxonomically, the phy-
lum Spirochaetes consists of a single class, which in turn is
composed of one order. Therefore, only the rank family makes

sense. In CVTree, the three monophyletic families Spirochaeta-
ceae{44}, Brachyspiraceae{7}, and Leptospiraceae{8} do not
join each other, but the first two are closer together.

Three out of five classes in the phylum Proteobacteria
{1175} appear to be monophyletic clusters, including
Alphaproteobacteria{257 + 9}, Betaproteobacteria{150 + 14},

and Epsilonproteobacteria{104 + 3}. Taking into account
that the Beta- and Gamma- groups together form a greater
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monophyletic cluster, only the class Deltaproteobacteria{61}
challenges the present classification. There is a core
hCiDeltaproteobacteria{43/61}, an order hOiMyxococcales

{13} in the neighborhood of hPiAcidobacteria, an order
hOiBdellovibrionales{4} joining hFiLeptospiraceae as a sister
group, and an outlier hGiHippea escaping to hPiAquificae. In
a sense, only the phylum Firmicutes{662} awaits essential tax-
onomic revision. Historically, many phyla have been taken out
from Firmicutes, e.g., Actinobacteria and Tenericutes. The tax-

onomy of some genera such as Clostridium remains unsettled,
although Clostridium has been modified after separating five
genera in 1994 [59] and six genera in 2013 [50]. CVTree3
may contribute to the further resolution of this problem.

Taxonomic placement of newly-sequenced genomes

The number of unclassified phyla far exceeds that of known

phyla. On the SILVA web page for candidate taxonomic units
(ftp.arb-silva.de/release_108/), 424 ‘‘phyla” are numbered
among one of the 15 groups in the OD1 group only. Fortu-

nately, owing to the advent of relatively inexpensive and effec-
tive sequencing technology, these phyla are beginning to be
discovered. Currently, genome-based phylogeny provides the

only means for judging the taxonomic placement of genomes
without phenotyping data. In CVTree, the collapsing mecha-
nism helps group together closely-related genomes at the phy-
lum level and above. Although not an exhaustive list, we

indicate that (1) Caldiserica and Coprothermobacter (listed
under Firmicutes in the Manual but considered as an ‘‘estab-
lished phylum” in a 2004 microbial census [60]) are within

the branch of hPiThermotogae{19} and hPiDictyoglomi{2};
and (2) Candidate division WWE3, Candidatus Saccharibacte-
ria, and Candidatus Saccharimonas are located next to

hPiTenericutes{99 + 2}. Further expansion of the last taxon
reveals {+2} to be a member of the candidate division SR1
and a misclassified delta-proteobacterium BABL1. Their

relationship is shown in Figure 2.
Details of similar cases are not provided due to limited

space in this paper. Interested readers are recommended to
consult the example Lineage Modification file (File S2) for

plausible lineage modifications.
On CVTree ‘‘outliers” as compared with 16S rRNA taxonomy

Every classification depends on characters and criteria used.
There is no a priori reason that 16S rRNA analysis and
Figure 2 Candidate taxa at the phylum level near Tenericutes

The CVTree3 server collapses candidate taxa at the phylum level near

notation indicates that there are n genomes with complete lineage

information. {n + m} is indicated as {n} when m = 0, while when n =

stand for phylum, class, genus, species, and strain, respectively. ‘‘Uncla

one or more ‘‘Unclassified” is considered incomplete.
whole-genome approaches should yield identical results. The
fact that they agree with each other in an overwhelming
majority of cases confirms the objectivity of the present 16S

rRNA-based taxonomy. However, minor discrepancies cannot
be ignored, and these differences should be recorded and
further studied. In addition to the aforementioned cases such

as the phylum Spirochaetes, the class Deltaproteobacteria, the
orders Myxococcales and Bdellovibrionales, and the ‘‘genus”
Coprothermobacter, we also include a few more as follows.

(1) A new lineage from the genus Dehalococcoides to the class
Dehalococcoidia was proposed recently within the phylum
Chloroflexi [61]. However, the 9 genomes from this taxon in
CVTree, though forming a stable cluster, are not part of

Chloroflexi and probably comprise a separate phylum. (2)
Magnetococcus marinus was recently proposed to be a single-
species lineage from genus to order at the base of the class

Alphaproteobacteria [62]. Although this species surely belongs
to the phylum Proteobacteria, it was separated from the main
body of Alphaproteobacteria by a group of insect symbionts

with highly-degenerated genomes. Whether this phenomenon
is an artifact caused by the influence of their very small
genomes [9,16] requires further analysis. (3) Hippea maritime

definitely escapes from Deltaproteobacteria to the neighboring
phylum Aquificae.

Figure 3 is a tree based on all 3220 genomes, with the region
of interest expanded to the rank of phylum and the rest col-

lapsed as much as possible. Most points discussed above can
be observed in this figure. Note that summing up the number
of genomes shown explicitly in this figure yields 3219, because

one genome used as out-group was hidden.

Infrasubspecific interrelationship within species

A prominent feature of CVTree is its high resolution at the
species level and below (for infrasubspecific ranks, see page
30, volume 2 of the Manual), far surpassing the capability of

16S rRNA analysis. Moreover, the simplicity of obtaining a
subtree image is remarkable. Once the genomes are submitted
to the CVTree web server, fine branching for all species is pro-
duced in one run. There is no need to collect orthologous pro-

teins and to conduct multiple alignments. We provide a few
examples to show that the resulting subtrees make sense.

1. Serotypes of Streptococcus pyogenes. Figure 4 was isolated
from a 3220-genome CVTree. The serotype of the 20 strains
was placed in parentheses at the end of each entry, e.g., M3

or M59. The branching order follows the serotype.
Tenericutes to a single note hPiTenericutes{99 + 5}. The {n + m}

information and m genomes with incomplete or missing lineage

0, {n + m} is indicated as {0 + m}. hPi, hCi, hGi, hSi, and hTi
ssified” indicates missing classifier. Lineage information containing



Figure 3 A 3220-genome CVTree collapsed to highlight the position of Acetothermia, Dehalococcoidia, Hippea, and Coprothermobacter

The {n + m} notation indicates that there are n genomes with complete lineage information and m genomes with incomplete or missing

lineage information.hDi and hKi, hPi, hCi, hOi, hFi, hGi, hSi, and hTi stand for domain, kingdom, phylum, class, order, family, genus,

species, and strain, respectively. ‘‘Unclassified” indicates missing classifier. Lineage information containing one or more ‘‘Unclassified” is

considered incomplete. The fraction 2577/2733 means 2577 from a total of 2733 genomes.

Figure 4 Serotypes of the Streptococcus pyogenes strains

Only strain tags are shown. Serotypes are given at the end of each entry. Whether the unknown {?} is M53 may be tested when serotype of

the strain becomes available. hTi stands for strain.
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2. Population genetics of bacteria is an important but
much less-studied subject. For example, the clonal struc-
ture of naturally occurring Escherichia coli communities
persists despite frequent recombination events [63,64].

Experimental methods are available for determining the
phylogroups of E. coli, as the groups are associated
with pathogenic or commensal behavior. Figure 5 shows
a branch composed of 67 E. coli strains. The major
branches in this figure correspond to the well-known

phylogroups.



Figure 5 Phylogroups of 67 Escherichia coli strains

The phylogroups A, B1, B2, D, and E are shown on the common branches. hTi stands for strain.
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3. Biogeographic distribution of plants and animals lays the

foundation for Darwin’s theory of evolution. However,
the biogeography of bacteria has not been thoroughly
examined. We refer to a recent paper [22] describing various

strains of Sulfolobus islandicus collected from different
parts of Euro-Asian and North-American continents
as geovars. This work used CVTree and electronic
DNA–DNA hybridization. The subtrees of Helicobacter

pylori or Chlamydia trachomatis strains may be correlated
with human migration patterns (figures not shown, but
can be obtained from the Working Project of CVTree3).

4. As a potential application of CVTree’s high resolution
power, electronic screening may be used to examine bacte-
rial metabolic products. Screening bacterial mutant strains

for pharmaceutical purposes is a costly and time-
consuming process. However, when a sufficiently large
amount of experimental data has been accumulated, it is
easy to map new mutant genomes into a phylogenetic tree

based on previous screening knowledge labeled on the
branches. Thus, only promising strains are selected for fur-
ther examination in laboratory screening.

Discussion

Biology commences with taxonomy. However, the field of
taxonomy as a subfield of biology, and particularly microbial
taxonomy, is on the decline. Although the number of living

microbial cells is estimated to be of the order of 1030 [1]
and the number of species surely exceeds 106 [65], the number
of described species is only slightly above 1.1 � 104 [10]. The

pace of describing prokaryotic species will likely not catch up
with the speed of discovery of new microorganisms. So called
‘‘minimal standards”, practiced by some editorial offices of

microbiological journals [66], further hinder the valid publica-
tion of bacterial names. In the 20-th century, the Interna-
tional Code of Nomenclature of Bacteria [57] has played a

unifying role in the field of microbial taxonomy. However,
as pointed out by Barny Whitman, the supervisor of the
Bergey’s Manual, ‘‘many biologists will no longer validate
the names of newly described prokaryotes and the literature

will once again be full of names with uncertain meaning”
[66]. Fortunately, development of genome sequencing tech-
nology could help provide a solution to such situation. ‘‘With

the availability of inexpensive DNA sequencing, prokaryotic
species could be routinely described based upon their genome
sequences” [66]. Both phylogeny and taxonomy can become

by-products of genomic analysis. Reliable and easily-usable
tools such as CVTree3 will play a crucial role in future
development.

The whole-genome approach will not replace other meth-

ods. In contrast, we advocate for the viewpoint of polyphasic
phylogeny and taxonomy. With the cost of bacterial genome
sequencing dropping below that of an average phenotyping

experiment, the results of phenotyping tests have become even
more valuable. A tripartite comparison between whole-genome
based CVTree, 16S rRNA sequences based All-Species Living

Tree [67], and the Bergey’s Manual complemented by current
taxonomic literature as reflected in LPSN [51] is becoming a
feasible task.
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[61] Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA,

Konstantinidis KT, Muller JA, et al. Dehalococcoides mccartyi

gen. nov., sp. nov., obligately organohalide-respiring anaerobic

bacteria relevant to halogen cycling and bioremediation, belong to

a novel bacterial class, Dehalococcoidia classis nov., order

Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam.

nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol

2013;63:625–35.

[62] Bazylinski DA, Williams TJ, Lefevre CT, Berg RJ, Zhang CL,

Bowser SS, et al. Magnetococcus marinus gen. nov., sp. nov., a

marine, magnetotactic bacterium that represents a novel lineage

(Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the

base of the Alphaproteobacteria. Int J Syst Evol Microbiol

2013;63:801–8.

[63] Selander RK, Caugant DA, Whitman TS. Genetic structure and

variation in natural populations of Escherichia coli. In: Niedhardt

C, editor. Escherichia coli and Salmonella typhimurium. Cellular

and molecular biology. Washington, DC: American Society for

Microbiology; 1987. p. 1625–47.

[64] Tenaillon O, Skurnik D, Picard B, Denamur E. The population

genetics of commensal Escherichia coli. Nature Rev Microbiol

2010;8:207–17.

[65] Curtis TP, Sloan WT, Scannell JW. Estimating prokaryotic

diversity and its limits. Proc Natl Acad Sci U S A 2002;99:

10494–9.

[66] Whitman WB. Intent of the nomenclatural Code and recommen-

dations about naming new species based on genomic sequences.

Bulletin BISMiS 2011;2(Part 2):135–9.

[67] Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer K-

H, et al. The All-Species Living Tree project: a 16S rRNA-based

phylogenetic tree of all sequenced type strains. Syst Appl

Microbiol 2008;31:241–50.

http://refhub.elsevier.com/S1672-0229(15)00140-0/h0360
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0360
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0360
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0235
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0235
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0235
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0235
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0365
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0365
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0365
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0365
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0365
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0365
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0245
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0245
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0245
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0245
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0245
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0250
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0250
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0250
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0255
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0255
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0260
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0260
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0260
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0260
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0265
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0265
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0265
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0265
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0270
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0270
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0270
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0270
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0270
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0270
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0270
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0275
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0275
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0275
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0275
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0275
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0275
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0280
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0280
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0280
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0370
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0370
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0370
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0370
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0375
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0375
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0375
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0375
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0375
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0295
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0295
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0295
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0295
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0300
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0300
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0305
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0305
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0305
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0305
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0305
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0305
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0305
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0305
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0310
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0310
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0310
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0310
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0310
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0310
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0380
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0380
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0380
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0380
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0380
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0320
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0320
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0320
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0325
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0325
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0325
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0385
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0385
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0385
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0335
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0335
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0335
http://refhub.elsevier.com/S1672-0229(15)00140-0/h0335

	CVTree3 Web Server for Whole-genome-based�and Alignment-free Prokaryotic Phylogeny�and Taxonomy
	Introduction
	Methods
	CVTree approach
	CVTree3 web server
	Genome resources
	Applications of CVTree3
	Retrospective verifications of CVTree
	Mega-classification of prokaryotes
	Taxonomic placement of newly-sequenced genomes
	On CVTree &ldquo;outliers&rdquo; as compared with 16S rRNA taxonomy
	Infrasubspecific interrelationship within species

	Discussion
	Authors&rsquo; contributions
	Competing interests
	Acknowledgments
	Supplementary material
	References


