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ABSTRACT

Why do evolutionarily distinct microorganisms display similar physiological behaviours? Why are transitions from
high-ATP yield to low(er)-ATP yield metabolisms so widespread across species? Why is fast growth generally accompanied
with low stress tolerance? Do these regularities occur because most microbial species are subject to the same selective
pressures and physicochemical constraints? If so, a broadly-applicable theory might be developed that predicts common
microbiological behaviours. Microbial systems biologists have been working out the contours of this theory for the last two
decades, guided by experimental data. At its foundations lie basic principles from evolutionary biology, enzyme
biochemistry, metabolism, cell composition and steady-state growth. The theory makes predictions about fitness costs and
benefits of protein expression, physicochemical constraints on cell growth and characteristics of optimal metabolisms that
maximise growth rate. Comparisons of the theory with experimental data indicates that microorganisms often aim for
maximisation of growth rate, also in the presence of stresses; they often express optimal metabolisms and metabolic
proteins at optimal concentrations. This review explains the current status of the theory for microbiologists; its roots,
predictions, experimental evidence and future directions.
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PREAMBLE

In this review, we provide predictions and – hopefully – under-
standing by taking a systems biology perspective on protein
expression, growth and fitness. We will discuss a growing
body of associated theory, explain its fundaments and pro-
vide experimental evidence. The theory aims to predict com-
mon behaviours of microorganisms from first principles, derived
from evolutionary, biochemical and molecular-biological con-
siderations.

The basic premise of the theory is that microorganisms
have been selected in evolution to maximise their (immediate)
growth rate; this maximal growth rate may be very low or even
(below) zero during stressed conditions. Microbes achieve max-
imal growth rate by expressing all their needed proteins to opti-
mal concentrations, within physicochemical constraints that
limit the concentrations and activities of proteins. An important
aspect of this theory is that it considers the expression of all cel-
lular proteins. It also aims to be as generic as possible.
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Like any theory, it needs to pass the test of empirical valida-
tion to be able to stand the test of time.

Unity of microbial life?

Our planet is teeming with microbial life (Gibbons and Gilbert
2015). Microbial niches vary greatly and individual species
vary in their mechanisms for energy and mass assimilation
(Falkowski, Fenchel and Delong 2008). Most microorganisms
appear in a constant competition, e.g. scavenging nutrients for
growth and survival. Selection filters out those that perform
best, either alone or in communities.

One goal of microbiology is to explain the differences and
commonalities between microbes in the light of this competi-
tion and their interactions. This requires integration of genetic
information, molecular biology, biochemistry, ecology and evo-
lutionary history.

Many microorganisms show very similar behaviours, sug-
gesting a common origin. For instance, ‘Why do so many uni-
cellular microorganisms respire at low concentrations of sug-
ars (and low growth rate) and initiate seemingly-wasteful over-
flow metabolism at high concentrations (and high growth rate)?’;
‘Why are fast growing cells less stress tolerant than slow grow-
ing ones?’; ‘Do stress tolerance and growth rate always trade
off?’; ‘Why do microbes often form tiny subpopulations of hardly
growing, stress-tolerant persister cells, while the majority is
stress-sensitive and fast growing?’; ‘When is one metabolic
pathway preferable over another?’; ‘What explains the variation
of lag phases of microbial adaptation across conditions?’; and,
‘Can a cell robustly steer protein expression, with its molecu-
lar control circuits, to states that support increased, or perhaps
even maximal, fitness when conditions change?’

Many of these questions touch on fundamentals of evolu-
tionary biology, enzyme biochemistry, cellular metabolism and
growth. Is there a conceptual framework, ‘a theory’, that can
provide answers to such questions, which is quantitative and
makes testable predictions? We think there is.

One molecular theory of microbial physiology?

Any theory about microbial physiology can only be widely
applicable if evolutionarily distinct species are sufficiently alike
in terms of their molecular biology and selective pressures.
This appears to be the case: microorganisms function very
similarly (Neidhart, Ingraham and Schaechter 1990; Peregrin-
Alvarez, Sanford and Parkinson 2009); they all obey the same
physicochemical laws and are composed out of the same types
of macromolecules (Neidhart, Ingraham and Schaechter 1990;
Schaechter, Ingraham and Neidhardt 2005). Thus, their basic bio-
chemistry and molecular biology is essentially identical. More-
over, biosynthesis routes of macromolecules are largely con-
served (Neidhart, Ingraham and Schaechter 1990; Schaechter,
Ingraham and Neidhardt 2005). And, enzymes all work accord-
ing to the same kinetic principles (Cornish-Bowden 2012) and
the reactions they catalyse follow the same limited set of basic
chemical principles (Noor et al. 2010; Rabinowitz and Vastag
2012).

It appears, therefore, that molecular mechanisms, biosyn-
thesis and growth can all be understood in terms of the same
fundamental principles. Some of these are: conservation of
chemical elements, reaction stoichiometry, Gibbs-free energy
potentials and energy-equivalent recycling (Schuster and Hein-
rich 1996). Thus, as Jacques Monod put it: ‘What’s true for E. coli
is also true for the elephant.’

Selection also has a highly similar influence on different
microorganisms (Orr 2009). It is much like François Jacob once
remarked, ‘The basic purpose and desire of each cell is to
become two cells.’ Accordingly, genotypes are selected that pro-
duce (the most) offspring, despite dynamic, sometimes harsh,
conditions. They either fix, or stably co-exist in communities
(Orr 2009; Saether and Engen 2015).

In this light, it is perhaps not a surprise that evolutionar-
ily distinct microorganisms have such similar physiologies, i.e.
metabolic behaviours. In 1924, Kluyver, then a Dutch pioneering
microbiologist, called this similarity the ‘Unity of Biochemistry’
(Kluyver 1924; Singleton and Singleton 2017).

So if indeed many microorganisms obey the same biochem-
ical and metabolic principles, and they are subject to the same
physicochemical constraints and selective forces, then micro-
bial physiology may be understood in terms of these universal
forces and a single theory may exist. This review is about such
an emerging ‘molecular-systems’ theory of microbial physiol-
ogy: what its premises and predictions are, its roots, its experi-
mental evidence, and future directions.

The theory we shall outline is in its essence the formula-
tion and solution of a constrained-optimisation problem. (Not
unlike the maximisation of entropy in equilibrium statistical
mechanics, leading for instance to the ideal gas law.) It takes
foundations from physics, (bio)chemistry and cell biology to
understand the relevant (protein-expression) constraints, and
evolutionary thinking to define the objective to optimise (‘fit-
ness’). We use understanding of metabolism and cell growth to
define a growth rate in molecular terms—our proxy for fitness.
Metabolism then leads to growth as it is responsible for the syn-
thesis of all cellular components that occupy space—and the
required (energetic) driving force.

Not only because of natural selection do we resort to a study
of the (constrained) optimisation of growth rate. Since we lack
the molecular and kinetic information for a complete mechanis-
tic description of cells and calculation of their growth rate, our
mechanistic understanding is very fragmentary and ‘patchy,’
which prevents the development of a predictive, mechanistic
model of a cell. In such cases of limited knowledge, optimisa-
tion methods can be used as predictive tools, instead of com-
plete, mechanistic models. If those optimisation methods are
successful then the postulated optimisation objective and con-
straints correctly mimic the outcome of optimisation processes
in nature, e.g. constrained maximisation of entropy equilibrium
physics and of fitness maximisation in evolutionary biology.

Despite it being an optimisation-based theory, instead of a
purely mechanistic theory, it makes biologically relevant pre-
dictions. The mathematical analyses of the growth-rate max-
imisation formulations indicates properties of optimal protein
expression and metabolisms. For instance, it predicts that an
optimal cell uses the simplest metabolic network, which con-
verts all nutrients into all needed cell material, provided only
one protein expression constraint limits growth rate (Wortel
et al. 2014; de Groot et al. 2019, 2020b). No expressed enzyme is
then redundant, no enzyme is under- or over expressed, and the
network has only a single degree of freedom in the number of
fluxes (Gagneur and Klamt 2004).1 The number of elementary

1 This means that if you known one flux you can calculate all others from
the flux relationships that exist in steady-state metabolism. A simple
example where this is not the case is the system with three enzymes,
enzyme 1 making the molecule ‘X’ and enzyme 2 and 3 consuming it.
The steady-state flux relation is v1 − v2 − v3 = 0 (with v’s as enzyme rates)
and clearly you need to know two values of the v’s to determine them
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metabolisms that a cell uses is almost always equal to the num-
ber of protein-concentration constraints that limit growth rate
(Wortel et al. 2014; de Groot et al. 2019, 2020b). All of this will be
discussed in detail below.

As in all the sciences of complex natural systems, we need
to simplify to understand, and the main simplification for now
is that we limit ourselves to a discussion of optimal growth
behaviour under constant conditions – i.e. at balanced growth.
Most of the experimental evidence comes from model laboratory
organisms, mainly E. coli and S. cerevisiae. We hopefully provide
the reader with food for thought and inspiration to help extend
this theoretical framework.

A final note before we start

We hope that we do not scare away any experimentalists by
using equations. In fact, we aim for the opposite. Many of equa-
tions we show are empirical – phenomenological – and require
a fundamental explanation. Finding candidate explanations is
what the theory is made for. Validation experiments should then
follow. We sincerely hope that this theory is useful, accessi-
ble and insightful to many microbiologists – theoreticians and
experimentalists alike.

We believe that a system as complex as a living micro-
bial cell cannot only be understood from experiment, nor solely
from theory. Scientific progress requires the integration of both.
Physics and engineering have shown us the successes of this
approach. We believe that microbiology is approaching such a
phase too; considering our advanced state of understanding of
the molecular-systems underlying physiology and the realisa-
tion of a ‘unity of biochemistry and selective pressures’.

The remaining text is divided into three parts. In part I, we
provide the fundaments needed to understand cellular growth-
rate maximisation, e.g. a fitness measure and the state of bal-
anced growth. We motivate the choices and assumptions that
we will need, and provide definitions. In part II, we focus on
the growth-rate costs (and benefits) of protein expression, and
describe the evidence that cells often carefully tune of protein
concentrations to maximise their growth rate. In part III, we
show how individual proteins should be considered in a sys-
temic, network context to understand metabolic behaviours –
e.g. respiration, respirofermentation – as the outcome of fitness-
maximisation strategies of cells. To achieve this, we focus on the
characterisation of the optimal metabolic networks that max-
imise growth rate. Throughout these three sections, experimen-
tal evidence will be provided for most of our assertions.

FOUNDATIONAL PRINCIPLES

A universal fitness measure maximised by evolution

The common concept of the fittest genotype is that it increases
most in frequency when competing with others (Orr 2009;
Saether and Engen 2015). This competition may occur in a
dynamic environment with varying nutrients, periods of famine
and stresses, and may involve either autonomous microorgan-
isms or ones that are also dependent on others in communities.

all, not one. This does not mean that elementary metabolisms cannot
be branched or cannot contain cycles. They can, but all those metabolic
routes eventually all converge to one supramolecular reaction ‘growth’
(at fixed cell composition).

The eventual winner, at some moment in time, left the most off-
spring: its fold change in abundance was the greatest (Orr 2009;
Saether and Engen 2015).

Let’s be precise. We denote the number of cells of a microbial
genotype at time t by N(t). Over evolutionary time, different con-
ditions – ‘epochs’ – occur that influence the number of offspring
made. The net fold change in the abundance of microorganisms
after E epochs, after tE time, equals

N(tE )
N(0)

= N(tE )
N(tE−1)

N(tE−1)
N(tE−1)

. . .
N(t2)N(t1)
N(t1)N(t0)

,

with N(tj)/N(tj−1) as the fold change of the abundance in the j-th
epoch, which we shall denote by wj. The j-th epoch lasted �tj =
tj − tj−1 time. Thus, the net fold change equals the product of
the fold changes of the sequence of epochs. These epochs could
be a period of fasting, stress, or feast, and, therefore, w j can be
smaller or greater than 1.

Fitness is now generally defined as (Bull 1987; Haccou and
Iwasa 1995) (Appendix A),

F = 1
tE

ln
N(tE )
N(0)

=
〈

ln w

�t

〉
,

with 〈·〉 denoting an average value. We believe that this is a
proper way to define fitness for microorganisms: it integrates
the fitness outcomes of different strategies over time. This def-
inition of fitness also ties in with the common notion of fit-
ness under constant conditions: If only a single environment
occurred, during which the microorganism grew at a constant
(specific) growth rate μ, then F = μ.

Two informative limiting cases can be considered: a ran-
dom and deterministic (non-random) limit. Lewontin and Cohen
(Lewontin and Cohen 1969) considered a completely random
environment (the random limit). Accordingly, they consider the
fold-change factors wj as independent random variables. They
found that the microorganism with the highest average growth
rate (〈w/�t〉) across conditions will not necessarily win; It may
loose from a competitor with a lower average growth rate, but
also a lower variance across conditions; for example, because it
is better equipped with signalling systems.

The deterministic limit is reached when microorganisms
always adapt perfectly and instantaneously to new environmen-
tal conditions (i.e. in the absence of lag phases and phenotypic
heterogeneity); then, at all times exponential (balanced) growth
occurs, and fitness is now equal to the average specific growth
rate across all conditions,

F = 1
tE

∑
j

ln eμ j �tj = 〈μ〉.

Maximal fitness now requires maximisation of the mean
growth rate.

Any realistic case lies in between these random and deter-
ministic limits. Their analysis become more involved. Lag times,
phenotypic heterogeneity and diversification, stresses, and fit-
ness costs can, however, still be introduced. This makes the the-
ory harder to interpret, but still intelligible (Kussell and Leibler
2005; Rivoire and Leibler 2011).
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Fitness maximisation strategies

Different microorganisms may have different fitness-
maximisation strategies to deal with the same dynamic
environment. Accordingly, they vary in their fold change value
in the same environment (epoch). Who wins depends on their
net behaviour, their F value. This might be a microorganism
that performs badly in some environments and really well
in others. It can be one that performs reasonably well in all
environments. Or, one that makes persister cells to prepare
for future, extinction-threatening conditions, one that senses
and aims to adapt quickly, or one that is always stress tolerant,
at the expense of its instantaneous growth rate. Who wins
depends also on the exact dynamics of the environment. Using
fitness theory, the pros and cons of such fitness-maximisation
strategies can be compared [e.g. (Bull 1987; Haccou and Iwasa
1995; Wolf, Silander and van Nimwegen 2015)].

The theory we will introduce below is largely limited to bal-
anced growth, i.e. to long periods of constant conditions, and
assumes that microorganisms aim to maximise their immediate
growth rate (μ) – a particular fitness-maximisation strategy.2 The
resulting theory leads, as we shall see, to growth-rate depen-
dent metabolic behaviours as fitness-maximisation strategy – as
we indeed observe them in the lab: At low growth rates, they
prepare for future adverse conditions, and at high growth rate,
they invest all resources into growth at the expense of stress
tolerance and phenotypically diversify into growing and stress-
tolerant subpopulations. We will return to this later.

Evolution and optimality of (balanced) growth

The mean growth rate 〈μ〉 of a population of competing (differ-
ent) genotypes changes in time, because faster growing geno-
types become relatively more abundant. In 1930, Fisher pub-
lished a theorem (Fisher 1930), now known as Fisher’s theorem,
indicating that the rate of change of 〈μ〉 equals the genetic varia-

tion in the growth rate, i.e.
d
dt

〈μ〉 = 〈δ2μ〉 (Appendix B). This cor-

responds to intuition: If a greater spread (genetic variance) in fit-
ness exists, some genotypes grow much faster than others, out-
grow them quickly and the mean population growth rate varies
greatly.

This evolutionary process of genotype successions is, for all
we know, everlasting; there is now no reason to believe it is near-
ing its end. How can a microorganism then ever behave close
to its optimal behaviour if evolution continues indefinitely? We
need to address this question, because in the theory we shall be
outlining below, we will assume that microorganisms operate
close to their optimal behaviour. The answer is twofold.

First, a microorganism can attain a maximal growth rate
only given its genotype, by expressing the right combinations of
proteins at the right concentrations (without its growth rate
being evolutionarily maximal; it is maximal given its current
capacities). So what will become crucial, is the nature of the
genotype-derived constraints that bound the maximal growth
rate (optimality), in addition to the physicochemical ones,
when considering optimal protein expression for growth-rate
maximisation.

Second, we should distinguish two complementary evolu-
tionary processes, which we term ‘innovation’ and ‘pruning’.
Innovation is the evolutionary emergence of new capabilities,
such as the evolution of novel metabolic pathways that degrade

2 When we write growth rate, we mean the specific, or per capita, growth
rate, with unit 1 over time.

plastics, via horizontal gene transfer or evolution after gene
duplication. Pruning refers to the improved exploitation of exist-
ing capacities. It proceeds via mutations too, such as via those
that lead to improved protein expression. Pruning improves phe-
notypic adaptation; innovation facilitates exploration and niche
expansion. Evolutionary pruning improves phenotypic adapta-
tion to growth-supporting conditions, leading to faster adapta-
tion and an increased growth rate. Mutations in key transcrip-
tion factors or in promoter sequences are an example (Kussell
2013; Price et al. 2019).

One possible outcome of evolution is therefore that microor-
ganisms have evolved protein-expression control strategies, via
pruning, that allow them to maximise growth rate in each con-
dition, given their genomic potential, and that these strategies
work optimally regardless of which metabolic proteins are being
regulated (Planque et al. 2018; de Groot et al. 2020b). Thus, the
subtly is that, in our theory, an optimal microorganism has the
maximal growth rate given its genotype, it expressed the opti-
mal set of proteins at optimal concentrations. Point mutations,
leading to new genotypes, can therefore still occur that increase
growth rate.

This may sound farfetched but we think that this is very
likely. As an example consider a thermostat connected to a heat-
ing/cooling system, it robustly keeps a room at setpoint temper-
ature, regardless of the room and environmental conditions. It is
based on control principle called ‘integral feedback control’ that
steers a system always to a desired state within its design spec-
ification – it does not work at a 1000 degrees Celsius or in water,
for instance. Thus, that cells have evolved control systems that
steer them always to the ‘desired’ state of maximal growth rate
cannot be ruled out – in fact we will show evidence of this. How
this is possible is not entirely clear. Maybe they evolved with
the right combination of integral controllers? What we do not
known is that optimal control systems may not even have to
rely on complex biochemistry (Berkhout, Teusink and Brugge-
man 2013; Towbin et al. 2017; Planque et al. 2018) and should
therefore evolve readily.

Summarising, evolution may have stumbled on regulatory
motifs of protein expression that are capable of optimal expres-
sion across conditions. We believe there is evidence that indeed,
after four billion years of evolution, current microorganisms have
protein-expression control systems that maximise growth rate,
even though they are still subject to evolution. Before we review
the experimental evidence, we will first discuss the quantitative
definition of the specific growth rate in constant conditions.

Balanced growth

When a population of (isogenic) microorganisms is cultivated
under constant conditions it generally relaxes to a constant
growth rate. Then, all the properties that are proportional to
mass (extensive properties) increase exponentially in time, at
a fixed rate (Fig. 1). The ratios of extensive properties (intensive
properties, such as concentrations;) remain constant. This state
is formally called ‘balanced growth’ (Campbell 1957).

Two views exist on the balanced growth state: a population-
level, macroscopic view and a single-cell, microscopic view. The
microscopic view [e.g. (Painter and Marr 1968)] has recently
been reviewed (Jun et al. 2018). The theory we discuss in this
review is limited to the macroscopic view. That description
refers to the average cell, typically at steady state. It is, there-
fore, relevant to consider to which state of a single cell that
corresponds.
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Figure 1. Experimental illustration of balanced growth. A fluorescent-protein
expressing B. subtilis strain was grown in mineral medium on glucose in shake
flask. Samples of it were measured in a flow cytometer. This data was reproduced
from Nordholt et al. (2017).

In the microscopic perspective, individual cells differ in their
birth and division sizes, durations of their cell cycles and molec-
ular content. During balanced growth these cellular observables
obey time-invariant probability distributions (Jun et al. 2018).
These distributions can be measured with real-time imaging of
the growth of single cells (Young et al. 2011), using, for instance,
fluorescent reporters of gene expression. Results from single-
cell experiments are generally close to theoretical expectations
(van Heerden et al. 2017).

The balanced growth state of a cell in the macroscopic the-
ory corresponds to a cell in the microscopic theory that has the
mean age 〈a〉 in the growing population (Jun et al. 2018). This
mean age is related to the mean generation time 〈tg〉 of cells as
〈a〉 ≈ 0.44〈tg〉 (see the Appendix C). Thus, in the macroscopic the-
ory we refer to the average cell that has completed its cell cycle
by about 44%.

We can also use the microscopic theory to calculate the
mean copy number of a molecule that the average cell con-
tains. Then, we indeed can recover the expected macroscopic
value, with μ as the (balanced) growth rate of the population
(see the Appendix C). We note that these two results hold when
it is assumed that no variation of generation times exists; This
assumption can therefore be viewed as a macroscopic limit
of the microscopic description, and the macroscopic theory is
therefore an approximation.

Clearly, individual cells are not always in the average state
that the macroscopic description of balanced growth refers to
(Nordholt, van Heerden and Bruggeman 2020). DNA replication
is, for instance, not continuously occurring along the cell cycle.
The same applies to septum formation, which is happening at
later times in the cell cycle. Thus, individual cells do not experi-
ence constant concentrations of all molecules during their cell
cycle and the metabolism of single cells may adapt during the
cell cycle (Nordholt, van Heerden and Bruggeman 2020). Thus,
the macroscopic theory of balanced growth that we present
below rather describes the average behaviour of a population of
single cells.

Constraints from metabolism at steady state

At balanced growth, the concentration c = n/V of all molecules
in the cell are constant (see Appendix D). The rates of all cel-
lular reactions are then constant too, as they depend on those
(constant) concentrations (Schuster and Heinrich 1996). If we
consider the stoichiometries and rates of all cellular reactions
in balanced growth, the concentration of molecules stays con-
stant when their net synthesis rate is balanced by what is often
referred to as ‘dilution by growth’ (Schuster and Heinrich 1996;
de Jong et al. 2017; de Groot et al. 2020b):

dc
dt

= 1
V

∂n
∂t

− n
V2

∂V
∂t

= Nj(c) − μc = 0,

with N as the stoichiometry matrix (containing the reaction stoi-
chiometries), j(c) as a vector containing the steady-state enzyme
conversion rates (the flux vector) that depends on the concen-
trations (and kinetic and environmental parameters),3 and μc
capturing the dilution of molecules due to cell-volume growth
occurring at a rate equal to dV/dt = μV.

Note that this formalism applies to all molecules in a cell,
including the macromolecules, such as proteins, lipids and
RNA/DNA. When only metabolism is considered, dilution by
growth is generally neglected based on the (often implicit)
assumption that metabolic fluxes are much faster than dilu-
tion by growth. In steady state, we then arrive at Nj ≈ 0. Flux
vectors can now be predicted using dedicated methods such as
Flux Balance Analysis (FBA) (Orth, Thiele and Palsson 2010). Such
approaches only require the stoichiometry of all the biochemical
reactions in a cell, i.e. knowledge of all the reactions catalysed by
the metabolic enzymes encoded on a microorganism’s genome
(Price, Reed and Palsson 2004).

Constraints on rates from physics and (bio)chemistry

The enzyme conversion rates that were mentioned in the previ-
ous section follow rate equations of enzyme kinetics (Cornish-
Bowden 2012). Many different catalytic mechanisms of enzymes
exist (Cleland 1963a; Cleland 1963b; Cleland 1963c; Cornish-
Bowden 2012), each having its own rate equation. The simplest
example of a rate equation is the Michaelis–Menten equation
– it has unfortunately little relevance to metabolism as most
enzymes catalyse multi-reactant reactions and are reversible,
despite its prevalence in textbooks.

As long as enzymes are not active in complexes and directly
‘channel’ reactants to each other – which is, in fact, rare –,
the rate of an enzyme-catalysed reaction is proportional to the
concentration of the enzyme (Giersch 1988; Cornish-Bowden
2012) (Appendix E). Enzyme-kinetic rate equations also have
other common features (King and Altman 1956; Cleland 1963c;
Hofmeyr 1995), they can all be written as,

ν = k+
cat · e · f (c),

with k+
cat as the forward (catalytic) rate constant, e as the con-

centration of enzyme, and f(c) as a nonlinear saturation function

3 We find it useful to distinguish the rate (or activity, symbol v) of an
enzyme and a particular steady-state flux through that reaction, denoted
by j. The rates v can be a function of time. We will further only consider
the steady (or balanced) state, to which the dynamics generally settle if
the environmental conditions are constant for long enough.
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of reactant concentrations (c) and parameters (e.g. kinetic con-
stants and environmental conditions). The rate of an enzyme
has an upper and a lower maximal rate, where the maximal for-
ward rate of the enzyme equals V+

max = k+
cat · e and the maximal

backward rate V−
max = k−

cat · e (Cornish-Bowden 2012). The func-
tion f(c) is therefore bounded,

− k−
cat · e < ν < k+

cat · e ⇒ −
k−
cat

k+
cat

< f (c) < 1.

This bound indicates that there exists an upper limit to
what metabolite levels can achieve to increase rates at con-
stant enzyme concentrations. This result is going to be impor-
tant later, when we are considering maximisation of the enzyme
conversion rates to achieve growth-rate maximisation, via opti-
misation of concentrations of metabolic reactants and proteins
(enzymes).

In addition to their reliance on the concentrations of the
reactants and the catalytic enzymes, enzyme rates are con-
strained by ‘physicochemistry’ too. Diffusion coefficients of
reactants impose a maximal bound on the conversion rate of
multi-reactant reactions occurring in the cytosol, in the mem-
brane, and between a membrane-embedded and an extra- or
intracellular molecule (Berg and Purcell 1977; Calef and Deutch
1983; Wiegel 1983). This limit is hit when the enzyme converts
substrates faster into products than the rate at which substrates
collide with the enzyme. It has been suggested that translation
in E. coli operates close to its diffusion limit (Klumpp et al. 2013).

Due to the unintuitive, erratic properties of the random walks
of diffusing molecules, the membrane area that needs to be cov-
ered with membrane proteins to achieve near-maximal import
rates is much lower than one would expect, far below 1% (Berg
and Purcell 1977; Wiegel 1983). Still membranes are packed with
different protein species (Guigas and Weiss 2016), indicating that
cells have limited space for proteins and that some force pushes
(some) cellular compartments to be filled to their brim with
proteins. Since enzyme-rates are proportional to enzyme con-
centrations, growth-rate maximisation might be the underlying
driving force. We will return to this idea later.

Protein-expression constraints

Since the kinetic parameters of enzymes can only change
through mutations, cells adapt to new conditions via changes
in protein expression at short times scales. That occurs, in addi-
tion, to metabolic regulation of proteins, via post-translational
modifications and (allosteric) feedback regulation (Chubukov
et al. 2014). When we assume that each change in conditions
that lead to an immediate growth rate reduction is followed
by a protein expression response to increase growth rate then
this implies for many enzymes that their concentrations have
to increase.

In principle, an increase of an enzyme concentration
enhances the rate of the reaction it catalyses (Cornish-Bowden
2012), but it also enhances macromolecular crowding and vis-
cosity that, in turn, lowers diffusion rates of reactants (Zimmer-
man and Minton 1993), possible reducing the rate of the reaction.
This argument is most relevant for bulky, slowly-diffusing reac-
tants such as proteins and (loaded) tRNAs. It been proposed that
cells are confronted with this trade off and evolved an optimal
protein density that maximises reaction rates (Dill, Ghosh and
Schmit 2011; Klumpp et al. 2013).

Figure 2. Cellular compartments have finite protein storage capacities. In the
theory, protein compete for biosynthetic resources, like RNA polymerases, sigma

factors, nucleic acids, ribosomes, amino acids, etc. and space, as shown in this
figure.

A cell that hits one (or more) of its bounds for protein con-
centrations, e.g. its periplasm, membranes or cytosol is full with
enzymes, will not be able to further increase its growth rate
when it has optimal protein concentrations (Fig. 2) (de Groot
et al. 2019, 2020b).4 Then growth rate has attained its maximal
value and is limited by the ‘active’, or ‘hit’, protein-concentration
bounds. We note that this occurs regardless of the occurrence
of post-translational or feedback regulations, those regulations
only influence the actual optimal protein amount – they do not
influence the maximal protein-solvation capacity of compart-
ments.

In the theory, protein-expression bounds correspond to the
maximal protein solvent capacities of the various protein-
containing compartments of a microbial cell (de Groot et al. 2019,
2020b). For bacteria, these compartments are the periplasm,
plasma membranes, and cytoplasm (Fig. 2), while for eukary-
otic microorganisms organelles are also relevant. It turns out
that the interiors (Zimmerman and Minton 1993) and mem-
branes (Guigas and Weiss 2016) of cells are extremely crowded
with proteins. About 20% of the interior of cells is occupied by
proteins (with 58% being the theoretical maximum) and they
occupy 30%–50% of the membrane. This means that protein-to-
protein distances are of the order of the diameter of a protein
(∼5 nm), both in a cell’s interiors and membranes.

Since cells are so packed with protein, the synthesis of one
particular protein influences the space available for others. In
fact, increasing the protein concentration of cells, by reducing
the water content by increasing the osmotic pressure, reduces
growth rate (Cayley and Record 2004). This suggests that diffu-
sional speeds of proteins and large molecular complexes can
limit growth rate (Klumpp et al. 2013).

To summarise, each protein-containing compartment in
a cell has a limited protein storing capacity. A growth rate
increase requires increased rates of biosynthetic reactions,
and since those rates are proportional to the concentration of
their catalysing enzyme, this requires enzyme concentration
increases. Growth rate can increase until one or more protein-
containing compartments is filled with needed protein. We will
show later that not all protein-containing compartments are
limiting growth simultaneously. Which ones do depends on con-
ditions.

4 Below we will show that now only change its growth rate by chang-
ing of metabolic strategy, e.g. switch from pure respiration to overflow
metabolism, for instance, such that this new strategy can exploits a cel-
lular compartment that is not yet full with protein.



Bruggeman et al. 827

Figure 3. Illustration of the fitness cost (growth-rate reduction) due to the expres-

sion of an unneeded enzyme. The black line illustrates a fit with slope −2.7, indi-
cating that growth rate is zero at an unneeded protein expression of 37% (Bentley
et al. 1990; Dong, Nilsson and Kurland 1995; Snoep et al. 1995; Scott et al. 2010C).

We hypothesise that the resulting competition for con-
strained biosynthetic resources – for space, but also for RNA
polymerases, ribosomes, etc. – has shaped cell physiology (Mole-
naar et al. 2009; de Groot et al. 2019). We hypothesise also that
constraints leads to bounds on cellular growth rate that enforce
particular metabolic behaviours. In our view, in agreement with
that of others (Kjeldgaard 1963; Maaloe 1969; Ehrenberg and
Kurland 1984; Scott et al. 2014), evolution has led to optimal
allocation of limited biosynthetic resources over cellular pro-
teins, such that protein concentrations are optimal and max-
imise growth rate.

In the next section, we will provide evidence that protein
synthesis involves both a growth-rate benefit and cost and that
microbes appear to maximise their difference and, hereby, max-
imise growth rate.

FITNESS EFFECTS OF PROTEIN EXPRESSION

Growth costs of competition for limited biosynthetic
resources

Genes ‘compete’ for limited biosynthetic resources such as RNA
polymerase and sigma factors, their mRNAs for ribosomes and
loaded tRNAs, and their proteins for space in cellular compart-
ments such as membranes and the cytosol. Therefore, the syn-
thesis of one particular protein is at the expense of another.

Due to ‘biosynthetic resource competition’, gene expression
of unneeded proteins reduces growth rate (Dykhuizen, Dean
and Hartl 1987; Dykhuizen and Dean 1990; Stoebel, Dean and
Dykhuizen 2008; Scott et al. 2010). Beta-galactosidase, for exam-
ple, is required for lactose growth, but has a growth-rate reduc-
ing effect—it is a ‘burden’—during glucose growth (Scott et al.
2010). Examples of this protein burden are shown in Fig. 3. In
those studies, one result is particularly intriguing: the relation-
ship between growth rate and unneeded protein expression is
linear. We can explain this behaviour with a simple model if
we accept one peculiar assumption, that of ‘even competition

for resources’ (Berkhout, Teusink and Bruggeman 2013). All pre-
existing protein concentrations then reduce by the same frac-
tion λ after the gene activity of an unneeded protein is changed
and a new steady state of growth is established. The linear rela-
tion is derived in the Appendix F.

Growth benefit and costs of needed protein expression

A cell growing on lactose as its sole carbon source needs beta-
galactosidase. Accordingly, under those conditions, the growth
rate can be expected to increase when a cell starts to express
it. As long as the growth rate increases, the protein is underex-
pressed – the growth rate still ‘benefits’ from more of that pro-
tein. Above some threshold, optimal expression level, the growth
rate is expected to reduce again. Beta-galactosidase is now over-
expressed, its synthesis consumes resources that would bet-
ter be allocated to other needed proteins. One should therefore
expect an optimum in protein expression.

Protein-expression optimality has been confirmed with
enzyme-titration experiments (Fig. 3). In those studies, the
microorganism is grown under a condition where the titrated
protein is needed. The dependency of the growth rate on the
titrated concentration results from concentration dependency
of the (growth-rate) benefit minus that of the (growth-rate) cost
of the protein [e.g. (Dekel and Alon 2005; Kalisky, Dekel and
Alon 2007)]. Experiments indicate too that the relation between
growth rate and the (titrated) expression level of a needed
protein generally displays an optimum (Jensen, Michelsen and
Westerhoff 1993; van der Vlag et al. 1995; Koebmann et al. 2002;
Koebmann Solem and Jensen 2005; Solem et al. 2007; Solem,
Koebmann and Jensen 2008; Keren et al. 2016).

Remarkably, it is often observed that the titrated optimum
of titratable mutant strain coincides with the the growth rate and
protein expression of the wild type strain (Fig. 3) (Jensen, Michelsen
and Westerhoff 1993; Koebmann et al. 2002; Koebmann Solem
and Jensen 2005; Solem et al. 2007; Solem, Koebmann and Jensen
2008). (Exceptions exist too, perhaps hinting at evolutionary
trade offs (Bren et al. 2016; Towbin et al. 2017).) Such optimal
protein expression by the wild type has indeed been found
for evolutionarily unrelated species, such as Lactococcus lactis,
Escherichia coli and Saccharomyces cerevisiae (Jensen, Michelsen
and Westerhoff 1993; van der Vlag et al. 1995; Koebmann et al.
2002; Koebmann Solem and Jensen 2005; Solem et al. 2007;
Solem, Koebmann and Jensen 2008; Keren et al. 2016).

The fitness potential of an enzyme

That the optimal concentration of a needed protein results from
a maximisation of its benefit minus its cost also becomes clear
when one derives a relation for the slope of the growth-rate
versus titrated protein-concentration relationship (as shown in
Fig. 3) (Berkhout, Teusink and Bruggeman 2013). In this deriva-
tion, we assume that the total protein concentration of a cell
remains constant during the protein titration. We consider that
the experimentalist sets the concentration of the titrated pro-
tein and we further assumed that the cell optimally allocates
the remaining protein concentrations over its needed reactions.
We defined the growth rate (μ) as the protein synthesis rate (jp)
divided by the total protein concentration of a cell (pT) (as others
do (Scott et al. 2010)).

For the derivation, the assumption of the constant protein
concentration means that during the environmental condition,
at which the protein of interest is titrated, the cell does not
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Figure 4. Illustration of enzyme titration and optimal protein-expression by a wild type L. lactis (A) and E. coli (B) strain. A. Three glycolytic enzymes and an operon

display optimal expression levels in L. lactis (Koebmann et al. 2002; Koebmann Solem and Jensen 2005; Koebmann, Solem and Jensen 2006; Solem et al. 2007; Solem,
Koebmann and Jensen 2008). B. H+-ATPase of E. coli is optimally expressed in two growth environments (Jensen, Michelsen and Westerhoff 1993).

change its total protein concentration as function of the concen-
tration of the titrant. The fraction of protein dry-mass as func-
tion of cellular dry mass and cell volume are both growth-rate
dependent (Bremer and Dennis 2008; Si et al. 2017), whether this
leads to a constancy of cellular protein concentration as func-
tion of environment conditions is unclear to us.

Under those assumptions, the normalised slope �i of the
growth rate versus the protein fraction φi of protein i, defined as
its concentration divided by the total protein concentration i.e.
pi/pT, equals (see Appendix G) (Berkhout, Teusink and Brugge-
man 2013)

�i = φi

μ

dμ

dφi
= C jp

i − φi

1 − φi
.

The C jp

i coefficient quantifies the beneficial effect of the pro-
tein on the protein synthesis rate, and is called a flux control
coefficient in metabolic control theory (Kacser and Burns 1973;
Fell 1997). The cost of the protein is captured by its φi term.

If C jp

i is positive and high (≈1), the protein has a high control
on the protein-synthesis rate. The equation indicates that such
enzymes have a high influence on fitness, regardless of their pro-
tein fraction.

Unneeded proteins have a C jp

i of zero. For such proteins,
integration of the �i equation then recovers the linear relation
between growth rate and the unneeded protein fraction (Fig. 2)
(see Appendix J).

Abundant proteins generally have a large fitness
influence

We view �i as the fitness potential of an enzyme, as it quanti-
fies the fractional change in the growth rate (fitness) (i.e. dμ/μ)
upon a fractional change in the concentration pi of a protein i (i.e.
dpi /pi = dφi /φi ). A protein with a high �i value (≈1) indicates a
large fitness influence—their concentration is far from optimal.

Since abundant enzymes have lower 1-φi values, they
generally have a higher fitness potential than scarce enzymes
(regardless of their flux control coefficient). This predicts that

abundant enzymes, such as the ribosome or the glycolytic
enzyme glyceraldehyde 3-phosphate dehydrogenase, should
therefore be more carefully tuned in concentration than tran-
scription factors, which are low in abundance.

This makes sense, as an abundant enzyme that is 5%
removed from its optimal level corresponds to a significant
waste of resources compared to a minority enzyme that is 5%
from optimality. Thus, an order may exist for the evolutionary
need of tuning enzyme concentrations: the order of their abun-
dance. Evolution then proceeds in the direction of diminishing
returns by optimising the expression of proteins in the order of
their abundance.

At the optimum, where �i = 0, any change in the enzyme
concentration reduces fitness. Then, the flux control coefficient
equals the fraction abundance of the protein: C jp

i = φi (in agree-
ment with earlier findings (Klipp and Heinrich 1999)).

This establishes another rule. In addition to abundant pro-
tein having a large effect on fitness when they are not optimally
expressed, they also have a high control on protein synthesis
when they are optimally expressed.

Thus, ribosomes, being amongst the most abundant proteins
in E. coli during moderate to high growth rates, can be expected
to have such high control. In the next section, we describe evi-
dence that this abundant enzyme is likely optimally regulated
in expression by E. coli.

Optimal regulation of the ribosome concentration in E.
coli

Two studies analysed the regulation of the ribosome concen-
tration in E. coli from the perspective of optimal allocation
of biosynthetic resources (Scott et al. 2014; Bosdriesz et al.
2015). They were inspired by work that dates back decades
ago (Schaechter, Maaloe and Kjeldgaard 1958; Kjeldgaard 1963;
Maaloe 1969; Ehrenberg and Kurland 1984) and suggest that
ribosome concentrations are optimal and operate close to sub-
strate saturation. About 85% of the ribosomes are bound to
amino-acid loaded tRNA’s and are actively translating (Scott
et al. 2010).
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E. coli regulates the concentration of its ribosomes according
to their demand – by aiming to keep the fraction of active ribo-
somes constant (Bosdriesz et al. 2015). Likely other microorgan-
isms do that too (Cox 2004). According to basic enzyme kinetics
that fraction equals the actual rate of the enzyme divided by its
maximal rate (Cornish-Bowden 2012); i.e. v/Vmax, which equals
the f-function introduced above, equal to S/(S + KM) in the case
of Michaelis Menten kinetics.5

When an amino acid is limiting, for instance, upon a nutri-
ent downshift, such that ribosomes become overexpressed, ribo-
somes bind more often to unloaded tRNAs. Then their satura-
tion with loaded tRNA is below optimal, leading to the synthesis
of ppGpp by RelA, which binds to unloaded-tRNA-bound ribo-
somes (Potrykus and Cashel 2008). Subsequently, ppGpp binds
RNA polymerases and lowers their affinity for ribosomal pro-
moters, in concert with DksA (Potrykus and Cashel 2008). As a
consequence, RNA polymerase is redirected to (binds more often
to) non-ribosomal (catabolic) operons, leading to an enhanced
synthesis of amino-acid synthesising proteins (and fewer ribo-
somes), an increase in the loaded tRNA concentration, such
that the ribosome’s saturation level is restored, RelA makes less
ppGpp, and a reestablishment of a steady state at higher growth
rate follows. (Higher than immediately after the nutrient shift.)

When ribosomes are under-expressed, for instance when
nutrient conditions improve, the converse happens; ppGpp con-
centration is low, more RNA polymerases allocate to riboso-
mal promoters, ribosomes are made at the expense of catabolic
proteins, and a novel steady state follows, again with a higher
growth rate then immediately after the nutrient shift.

These two mechanistic stories are examples of (optimal)
biosynthetic resource re-allocation—dictated by the microor-
ganisms’s evolved behaviour of growth-rate maximisation and
the competition of biosynthetic resources, because they are lim-
ited.

Using simulations, Bosdriesz et al. (2015) and Scott et al. (2014)
showed that the ribosome-expression control circuitry is indeed
able to maximise growth rate. Bollenbach et al. provided experi-
mental evidence: they sequentially removed ribosomal promot-
ers (E. coli has 7 of them) and found a growth rate maximum at
the promoter combination active in the wild type (Bollenbach
et al. 2009).

The control objective of ribosome expression regulation

Thus, the regulatory mechanism for ribosome expression has as
its control objective the prevention of wasteful under- and over-
expression of ribosomes. It aims to keep the saturation degree of
the ribosome with loaded tRNA’s as close to 1 as possible. This
had already been suggested decades ago (Maaloe 1969; Ehren-
berg and Kurland 1984).

Kjeldgaard wrote in 1963 (Kjeldgaard 1963), five years after
he, together with Maaloe and Schaechter, established the
(almost) linear relationship between ribosome concentration
and the growth (Fig. 5), ‘In other words, the number of protein-
synthesising units within the bacteria is regulated in such a way that
individual units always function at the same rate. If this fixed rate of
protein synthesis per ribosome [note: fr(m)] is assumed to be optimal,
or nearly so, it is clear that RNA synthesis in the cell is regulated in
a manner which affords a high degree of economy to the growing cell.
This again would mean a selective advantage in the competitive envi-
ronment in which bacterial species have probably evolved. It would be

5 (with s as the substrate concentration and K M as the Michaelis Menten
constat).

tempting to assume that such constant efficiency also applies to the
synthesis of other macromolecular species of the bacteria.’

When the saturation function is (high and) constant, the
ribosomal protein fraction in E. coli becomes a linear function
of the growth rate (Scott et al. 2010; Scott et al. 2014; Bosdriesz
et al. 2015). This relation was first found experimentally in 1958
(Schaechter, Maaloe and Kjeldgaard 1958) and has recently been
revisited (Scott et al. 2010; Metzl-Raz et al. 2017) (Fig. 5). Given the
universal importance and costs of ribosomes, we expect that the
linear relation between ribosomal protein fraction and growth
rate holds for many more microorganisms, as was shown for
some already (Cox 2004; Scott et al. 2010; Metzl-Raz et al. 2017).

The linear relation between the ribosomal protein fraction
and the growth rate may have a surprising evolutionary origin.
When growth-rate maximisation is the objective, i.e. maximisa-
tion of protein synthesis flux per unit protein, it is advantageous
that enzymes have high affinities for substrates (to enhance sub-
strate saturation) and low affinities for products (to prevent inhi-
bition). It turns out that these saturation conditions are exactly
the limit in which the relationship between growth rate and
protein fraction becomes linear. This might still be a coinci-
dence, but we doubt that. We illustrate this result with a sim-
ple example in Appendix H, where we also show that evolution
towards maximisation of flux per unit invested protein leads
to enhanced affinities for substrates and reduced affinities for
products.

The control objective of ribosomal protein expression, i.e.
to keep the ribosome’s saturation with its substrates (loaded
tRNA’s) constant by inhibiting ribosomal gene expression when
this saturation drops and activating it when it rises, indi-
cates the great potential of metabolite-mediated control of
metabolic gene expression for maximisation of growth rate.
Since metabolite-binding to transcription factors that regulates
metabolic gene expression is a general phenomenon in micro-
biology, we asked (Berkhout, Teusink and Bruggeman 2013;
Planque et al. 2018) how likely it is that metabolic pathways are
optimised by this mode of regulation. We found that already
simple biochemical interactions, e.g. metabolite binding to a
monomeric transcription that binds non-cooperatively to a pro-
moter, can maximise metabolic pathway flux per unit invested
protein. We also discovered a rule: the number of metabolites
that binds to transcription factors equals the number of envi-
ronmental parameters at which the metabolic pathway shows
self-optimising behaviour (Planque et al. 2018).

The relationships between protein synthesis,
ribosomes and balanced growth rate

At balanced growth, the concentration of any active protein in a
cell is established by the balance between its rates of synthesis
by ribosomes, degradation by proteases (or spontaneous unfold-
ing) and dilution by (volume) growth. The concentration of the
ribosomes is set by the same balance. If we ignore degradation
of proteins, which is justified for ribosomes and stable proteins
such as metabolic enzymes, we obtain the following relation
between the concentration of a protein (p) and the ribosome (r)
(Appendix I),

p
r

∝ αp

αr
,

where the factor αp specifies the fraction of the total translation
rate devoted to the protein (or to ribosomal protein r). This rela-
tion leads to the insight that, at balanced growth, the ratio of
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Figure 5. Linear relation between ribosomal activities and growth rate in E. coli and S. cerevisiae. Data is from Scott et al. (2010) and Metzl-Raz et al. (2017).

protein and ribosome concentration is proportional to the ratio
of the number of ribosomes respectively allocated to their syn-
thesis. Thus, ribosome profiling results should agree with pro-
teomics experiments at balanced growth. We are not aware of
an experimental confirmation of this result.

When we sum all synthesis-degradation rate balances of the
proteins in a cell we obtain a relationship between the ribosomal
protein fraction φr and the growth rate (Appendix I),

μ = kr fr (c)φr ,

with kr as the catalytic rate constant and fr(c) as the satu-
ration level of the ribosome with its reactants. The equation
implies—perhaps somewhat counterintuitively—that increas-
ing all enzymes by the same factor does not change the growth
rate, as the fractions will not change; Only changes in the rela-
tive protein concentrations can do that, via reallocation of lim-
ited resources.

Many of insightful relationship between growth rate, ribo-
somes and protein fractions can be found in the papers by the
Hwa lab [e.g. (Scott et al. 2010)].

The proportional relation between the ribosomal
protein-fraction and growth rate

The ribosomal protein-fraction of E. coli, measured as μg of total
RNA per μg of total protein, as function of growth rate is shown
in Fig. 5. It is a linear relationship and not a proportional relation,
as was derived above . The experimental relation has an offset
ribosomal-protein fraction φ0 at zero growth rate:

φr = φ0 + aμ,

with a as its slope. This relation has been explained in two ways.
If all the ribosomes are active, the relationship between the

growth rate and the ribosomal protein-fraction is only propor-
tional if the saturation degree of ribosomes is not constant. For
proportionality, the saturation degree has to depend on growth
rate as in a hyperbolic manner,

fr (c) = μ

krφr
= 1

kr

μ

φo + aμ
.

But this argues against the suggested control principle above,
i.e. that the saturation degree is kept constant by ppGpp control.
Although this result can still result from optimisation of growth
rate, as has been suggested (Ehrenberg and Kurland 1984), we
doubt that this is the explanation. We consider it more likely
that the saturation degree is (kept) constant and that φo reflects
a pool of inactive ribosomes – then the slope a equals (krfr(c)-1)
as has been suggested too (Scott et al. 2010).

The next question is whether this pool of inactive ribosomes
are ‘idle’ – preparatory – and can be used for growth when con-
ditions change (Mori et al. 2017), for instance via activation of
‘hibernating ribosomes’ (Song and Wood 2020). The advantage
of having a reserve of idle ribosomes is that when nutrient are
scarce, it provides a fitness benefit when nutrients become sud-
denly available (Mori et al. 2017).

But, we may still wonder why those idle ribosomes do not
actually reduce the growth rate – especially at low growth rates,
when nutrients are scarce. If that would be the case, prolonged
growth at nutrient limitation would lead to a reallocation of
biosynthetic resources to other now-needed proteins, at the
expense of the idle ribosomes. This has not been observed in lab-
oratory evolution experiments under nutrient-limited chemo-
stat conditions, as far as we are aware.

So, either microorganisms have evolved regulatory networks
under dynamic nutrient conditions that are not easily mutated
away in the lab – requiring several mutations –, or idle ribosomes
at nutrient limitation do not reduce growth rate. We expect that
the latter is the case – paradoxically perhaps.

The proportional relation between ribosomal protein-
fraction and growth rate does not mean that ribosomes are
limiting growth rate. The growth rate may in fact be limited by
the supply of substrates instead, which influence the ribosome
by its saturation degree fr(c) with its loaded-tRNA substrates.
Thus, an optimal fr(c) value requires a sufficiently active ‘supply
metabolism’ (Bosdriesz et al. 2015) and supply metabolism
might be running into a cellular constraint that limits growth
rate – and not the ribosome. This likely occurs at nutrient-
limited growth by E. coli, then nutrient-import capacity of a cell
is likely limiting growth (O’Brien et al. 2013) – its membrane is
then exhausted with needed proteins and the cytosol in which
ribosomes reside is partially vacant, allowing, for instance, for
expression of idle ribosomes.

This brings us to section III, where optimal protein expres-
sion and growth-rate maximisation are related to the entire
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metabolic network of a cell and this entire system is being opti-
mised by global protein expression, subject to physicochemical
and protein-concentration constraints.

FITNESS AND MICROBIAL PHYSIOLOGY

From proteins to metabolic networks

Obtaining an understanding of the ability of cells to express pro-
teins at growth-rate-maximising concentrations is only part of
the challenge. Proteins function concertedly in networks, and it
is those networks that ultimately set cellular growth rate. The
cell therefore needs to express the right combination of pro-
teins, at the right concentrations, that together form a reaction
network that gives rise to a competitive growth rate. This net-
work is responsible for the conversion of all the nutrients into all
the cell material required for growth and the relief of stresses.
Our goal is, therefore, to understand why a cell chooses for the
(sub) network it expresses and not another one. Microbial phys-
iology is therefore at its heart a systems biology problem (Neid-
hardt 1999; Schaechter 2006). Several principles of growth-rate
maximising metabolic networks have also been discovered. An
example reaction network is shown in Fig. 6.

Principles of optimal metabolic networks are partially based
on the stoichiometry of metabolic reactions (Fig. 6). Shortly
after metabolic reaction networks were experimentally deter-
mined in the 1950 and 1960’s, stoichiometric modelling of
metabolism started, for example, with the work of Umbarger
(Umbarger 1977) and Stouthamer (Stouthamer 1973). Central to
those ‘maps’ is the concept of reactant stoichiometry – how
many moles of each of the substrates are needed to make each
of the products in certain molar amounts (Schuster and Hein-
rich 1996). These stoichiometric coefficients follow from know-
ing the reactants, their elemental composition, and balancing
the number of each element right and left of the reaction arrow.
When all enzymes and all their reactants have been identified,
the reaction network is known (Fig. 6).

Since all the molecular concentrations in a cell are constant
at balanced growth, all the net synthesis and degradation rates
of each of its molecules balance. Then, the synthesis rates of
all the macromolecular components of a cell, such as its DNA,
mRNA and proteins, can be calculated given its growth rate and
its macromolecular composition – this is what Umbarger and
Stouthamer did for the first time (Stouthamer 1973; Umbarger
1977). Models that do this are so-called structured, or stoichio-
metric models, models (De Hollander 1991). (Unstructured mod-
els also exist. They are very simple, but lack detail, and just give
the overall conversion stoichiometry of nutrients into cells and
byproducts (Roels 1983).)

Nowadays, we have detailed structured models that con-
sider the stoichiometry of all metabolic reactions encoded on
an organism’s genome (Price, Reed and Palsson 2004). These
are so-called genome-scale stoichiometric models, pioneered
by Bernard Palsson and colleagues (Varma and Palsson 1993;
Varma, Boesch and Palsson 1993; Varma and Palsson 1994).
Bioinformatics tools and literature surveys are used to recon-
struct the complete network of reactions that the enzymes
encoded on a genome catalyse (Price, Reed and Palsson 2004;
Teusink et al. 2005; Feist et al. 2009). Genome-scale metabolic net-
work typically contain over a thousand reactions.

When the kinetics of enzymes is not considered, only their
stoichiometry, determination of flux values that agree with the
steady state assumption—so that all net synthesis and degra-
dation rates balance – is computationally an easy problem. The

associated set of equations consists of linear functions of the
unknowns fluxes, and linear algebra can be used to find steady-
state flux vectors. Since more unknown flux values occur than
metabolites, directly solving for the fluxes is not possible as too
few equations exist. Linear optimisation is therefore often used
– called linear programming. A metabolic objective function is
then postulated, typically the formation rate of all macromolec-
ular components (the so called biomass reaction), and by impos-
ing bounds on several incoming fluxes, optimal flux solutions
can be calculated. This was pioneered by Fell and Small (Fell and
Small 1986). Those methods are nowadays better know as flux
balance analysis (FBA) (Orth, Thiele and Palsson 2010).

Stoichiometric modelling methods, like FBA, ignore many
aspects of the true problem of optimal biosynthetic resource
allocation that cells face when they steer protein expression.
Recently, methods have been improved to deal with resource-
allocation reactions and associated constraints (Goelzer et al.
2015; O’Brien and Palsson 2015; Mori et al. 2016; Nilsson and
Nielsen 2016)—albeit that they remain approximations, we will
return to this later.

The ‘real’ optimisation problem is nonlinear, as it contains
kinetics of all molecular interactions and catalytic conversions,
it is not numerically solvable and nearly all kinetic parame-
ters are unknown. Still, its analysis led to some deep insights
into how natural selection shapes microorganisms for maximal
growth rate.

Maximisation of metabolic network flux per unit
protein

We will next consider the general case of metabolism modelling,
the kinetic equations of enzymes are now considered in addi-
tion to their reactant stoichiometries (Fig. 6). This means that
the concentrations of metabolites and enzymes play a role now
too, in stoichiometric models only the enzyme-catalysed rates
(fluxes) were considered. So the situation is more complicated.
Again, we take the common view that the growth rate equals the
flux of protein synthesis per unit protein. Accordingly, growth-
rate optimisation requires the optimal allocation of a finite total
amount of protein over all the considered metabolic reactions.
Or, equivalently, we can ask what the amount of protein is that
is minimally required to obtain 1 unit of protein synthesis flux.
Solving this optimisation problem is complicated.

Clearly, the optimal cell expresses only a subset of all the
enzymes encoded on its genome. And, when the enzymes’
kinetic equations would be changed, a different optimal solu-
tion occurs. The question that we aim to answer now is: what
are the characteristics of the metabolic networks that maximise
a particular flux given a limited amount of protein that can be
allocated over all the reactions in the network? To our surprise,
it turned out that a lot can be learned by looking at the mathe-
matical formulation of this problem (Muller, Regensburger and
Steuer 2014; Wortel et al. 2014; de Groot et al. 2019, 2020a,b).

For instance, for nearly all enzyme kinetic equations this
optimisation problem has one unique optimal solution (Planque
et al. 2018).6 We (Wortel et al. 2014), and Muller, Regensburger
and Steuer (2014), found that optimal metabolic networks have
a very well-defined structure, in the form of what are known as
‘elementary flux modes’ (EFMs).

EFMs are minimal metabolic networks (Hilgetag and Schus-
ter 1994; Schuster, Fell and Dandekar 2000; Gagneur and Klamt

6 The optimisation problem is strictly convex for most enzyme kinetic
equations.
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Figure 6. Illustration of a stoichiometric model of metabolism and enzyme kinetics. The fermentation of glucose into ethanol via glycolysis, as it occurs in S. cere-

visiae, is shown as an example reaction network, together with its formulation in terms of stoichiometric matrix. Each metabolite is denoted by the number of

carbon atoms it contains. An example of an enzyme rate equation is also shown. This network has 15 reactions, 18 intracellular, variable metabolites concentra-
tions and 4 conservation relations of chemical moieties, i.e. total nicotinamide adenine dinucleotide (NAD), total phosphate (P), total adenosine (A) and electrons (e.g.
AP2 + AP3 = constant = Atotal). Therefore, 18 steady-state flux relationships exist, deriving from the requirement that the 18 concentrations are at steady state. Four of
these relationships are redundant—they are linear combination of the remaining 14, due to the moiety conservation. Thus, 15 unknown reaction rates and 14 linear

relationships between them exist in this network. This we means that we need to known only 1 value to determine all values—thus this network is an elementary
flux mode. Say we know the value of reaction rate 5 then all there equal the values shown in the steady-state flux vector.

2004), minimal (elementary) in the sense that no reaction of an
EFM can be removed without violating the steady-state require-
ment. EFMs (therefore) have only one degree of freedom, which
means that: i. if you know one flux value, you can determine
them for all reactions in the EFM and ii. EFMs have fixed yields
of products from substrates. EFMs are defined only in thermody-
namically feasible directions and can therefore be irreversible.
Finally, EFMs span ‘flux space’, i.e. all possible steady-state flux
distributions of a metabolic networks can be expressed as a
weighted sum of the flux distributions of the EFMs of this net-
work. Thus, the elementary units of metabolic activities that
lead to growth of a cell are its EFMs. Evolutionary maximisa-
tion of growth rate pushes microorganisms to use EFMs (Muller,
Regensburger and Steuer 2014; Wortel et al. 2014; de Groot et al.
2019, 2020b). If that is the case then metabolic pathway usage
by optimal cells should be understandable in terms of EFMs.
The actual metabolic behaviour of micro-organisms growing, for
instance, in batch or continuous cultures, should then be under-
standable in terms of optimal usage of EFMs. And indeed this
appears to be the case as we shall see next. Examples of ele-
mentary flux modes are shown in Figs 6 and 7.

An extremum principle predicts the number of used
EFMs

Since rates of enzymes are proportional to their concentrations,
a cell with only one constraint that bounds its total protein con-
centration will run into this bound when one of its steady-state
metabolic fluxes – for instance growth rate – is maximised. Then,

one protein-concentration constraint is ‘hit’ and limits growth
rate. In the case of one such protein-concentration constraint,
we proved that the optimal metabolic network (maximising one
flux per unit invested protein) is an EFM (Wortel et al. 2014; de
Groot et al. 2019).

Figure 8 shows evidence that cells indeed sometimes use
only a single EFM. It shows the glucose and oxygen uptake-
fluxes of different microorganisms as function of the growth
rate (dilution rate) in glucose-limited continuous cultures. In all
these cases, a region can be defined at low growth rates, below
the critical dilution rate, during which cells respire glucose. In
this region, the dependencies of the glucose and oxygen uptake-
rate on growth rate are linear, indicating constant ratio’s (so
called yields). Since a single EFM has a constant yield, this very
likely points to the usage of a single EFM. We can rule out the
usage of a fixed combination of EFMs. For instance, for S. cere-
visiae we confirmed that the measured yields – of biomass on
glucose and on oxygen – can indeed result from a single EFM,
using a genome-scale model (P. Grigaitis, Teusink, Bruggeman,
unpublished). (Famili et al. (2003) independently confirmed that
FBA results agree with such data, but did not consider the EFM
argument.)

If cells use one EFM below the critical growth rate then
the theory predicts that growth rate is now limited by a sin-
gle protein-concentration constraint. We believe that this is the
membrane compartment, also based on the outcome of a labo-
ratory evolution experiment (Price et al. 2019). If the membrane
compartment is filled with needed protein, and is the growth-
rate limiting constraint, how can growth rate then still increase
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Figure 7. Elementary flux modes can be complicated metabolic networks, including branches and cycles. A schematic overview of the aerobic respiration of glucose
into carbon dioxide and water is shown by glycolysis and the citric acid cycle. This network has 27 reactants, 23 reactions and 5 conservation relationships of chemical

moieties (i.e. of CoA (B), ubiquinone (U), nicotinamide adenine nucleotide (N), phosphate (P) and adenosine (A)). Thus, we have 22 (linearly independent) relationships
between reaction rates and 23 unknown reactions; thus, we need to 1 flux value to determine them all. This illustrates that this network is an elementary flux mode.

in the chenostat? This happens, not by adding more protein
into the membrane, but because the glucose permeases become
more saturated with glucose such that the activity per protein
increases (O’Brien et al. 2013).

Thus, below the critical growth rate (above which overflow
metabolism occurs), metabolism most likely uses one EFM and
hits only a single protein-concentration constraint. Fig. 8 sug-
gests that many different microbial species exploit a single EFM
during their respiratory region below the critical growth rate.
Then, according to our theory, all these organisms run into
one protein-concentration constraints. Considering that all cells
grow nutrient-limited and at a low growth rate, it is likely that
the protein-concentration constraint that is hit is the membrane
compartment – it is apparently exhausted with proteins, among
others glucose permeases (O’Brien et al. 2013; de Groot et al. 2019;
Price et al. 2019).

After the critical growth rate, overflow metabolism kicks
in. Fig. 9 shows this in more detail for S. cerevisiae, it fer-
ments above the critical growth rate, it produces ethanol as its
main overflow metabolite. Respiration activity decreases (evi-
dent from the reduction of the oxygen-consumption flux) while
glucose-uptake, ethanol-production and growth rate increase;
as if, respiratory metabolism is interchanged for fermentative
metabolism. Thus, the summed activity of respiratory and fer-
mentative metabolism now support growth, the contribution
of respiration decreases and that of fermentation rises. Since,

these contributions change linearly with growth rate, and the
metabolism of respiratory and fermentative growth can each
occur as a sinlge EFM,7 we conclude that after the critical growth
rate two EFMs are used in a growth-rate dependent combination.

To explain the co-occurrence of two EFMs we require an
extremum principle, which we recently found (de Groot et al.
2019): It states that the number of EFMs that an optimal cell uses is
(minimally) equal to the number of protein-concentration constraints
that are hit and limit growth rate.8 (We assume a cell that aims
for maximise its growth rate via optimal protein expression.)
According to this principle, the sudden occurrence of fermen-
tative metabolism at the critical growth rate indicates that a
new protein-concentration constraint is hit – in addition to the
membrane-compartment constraint. This is likely the cytosolic
membrane constraint, although at this stage we cannot be sure.

To be sure, experiments need to be carried out. Experiments
that identify active protein-concentration constraints have been
carried out, for instance, by Basan et al. (2015). They showed
that the critical dilution rate in E. coli (above which it pro-
duces acetate) can be shifted to lower values by overexpres-
sion of an unneeded cytosolic protein. This indicates that at the
critical growth rate the cytosolic compartment is filled with

7 This we know because of purely fermentative anaerobic growth.
8 We put ‘minimally’ between brackets because that situation is in fact

unlikely.
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Figure 8. Illustration of common microbial physiology: overflow metabolism occurs after a critical growth rate and linear flux-growth rate relations. Values of the
glucose (A) and oxygen (B) uptake fluxes in glucose-limited chemostats from different studies (Postma et al. 1989; Holms 1996; Van Hoek, Van Dijken and Pronk 1998;

Nanchen, Schicker and Sauer 2006; Fonseca et al. 2007). The figures shows on the right are examples, shown also in the left figure.
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Figure 9. Occurrence of linear relations between flux and growth rate and a criti-

cal dilution after which fermentation starts in a glucose-limited chemostat of S.

cerevisiae (Van Hoek et al. 1998). The dots are the experimental data and the lines
are linear fits.

needed proteins and that when the growth rate increases fur-
ther respiratory metabolism is interchanged for acetate-forming
metabolism, which requires less cytosolic proteins than pure
respiratory growth. An experimental illustration of the pre-
diction that the membrane compartment is already filled at
growth rates below its critical value is unfortunately lacking.
These interpretations of the experimental data are in agree-
ment with predictions of a genome-scale stoichiometric model
of E. coli, considering protein and mRNA synthesis, that assumes
growth-rate maximisation (O’Brien et al. 2013), the mathemati-
cal description of which is identical to our theoretical analysis
that led to the discovery of the extremum principle (de Groot et
al. 2019, 2020a,b).

The trade off between growth and stress demands

The growth-rate reducing effect of unneeded protein expres-
sion (discussed above) indicates that preparatory protein expres-
sion reduces instantaneous fitness too. This happens because
it occurs at the expense of growth-promoting protein expres-
sion. Thus readiness for stresses or alternative, better carbon
sources comes with an immediate fitness cost – which may
explain why cells sometimes resort to phenotypic diversification
rather than adaptation of the average cell (Norman et al. 2015).
At low growth rates, below the critical growth rate, when we pre-
dict that only the membrane protein-compartment is filled and
limiting growth rate, the cytosolic compartment is not yet filled
to its brim with needed proteins so space is left for preparatory
proteins. This is in agreement with experimental data (Ihssen
and Egli 2005; Berney et al. 2006), model predictions (O’Brien et al.
2013) and our theory (de Groot et al. 2019, 2020a,b).

The experimental data (Ihssen and Egli 2005; Berney et al.
2006) indicates that slow-growing cells are better prepared for
stress and alternative carbon-source usage than fast-growing
cells, because of preparatory expression of the associated pro-
teins. This is partially due to a relief of catabolite repression
(Gorke and Stulke 2008) and increased concentrations of ppGpp

Figure 10. The simplest, biological self-fabricator. For a cell to grow, it needs to
make its own components out of nutrients, which it takes up from its environ-
ment. For it to grow at a constant rate, it needs to make all its components in con-
stant proportions, such that their concentrations remain constant and, therefore

all biosynthetic fluxes. Then, self-fabrication occurs as balanced growth. The
nutrient S is the growth substrate, X is a metabolite, E is a membrane-embedded
uptake enzyme, and R is the ribosome that makes E and itself. The regulation of
the synthesis of the E and R are regulated by the concentration of X (Price et al.

2019).

– which activates alternative sigma factors that control stress
responses (Potrykus and Cashel 2008).

But still, why does preparatory expression of now-unneeded
proteins not reduce the immediate growth rate? Is it not bet-
ter to leave non-limiting protein compartments partially empty?
Is a cell that does not fill its cytosol partially with preparatory
proteins, e.g. if it is only membrane limited in a glucose-limited
chemostat conditions, not fitter than one that does? We struggle
with finding an adequate answer to this question.

Vazquez (2012) suggested the following: They showed that
the protein density of a cell (∼20% volume fraction (Zimmer-
man and Trach 1991)) is remarkably close to the optimal volume
fraction of macromolecules that maximises biosynthetic rates.
That such an optimum must exist follows from the insight that
at low-volume fractions macromolecule collision rates are lim-
ited by their collision time, while, at high volume-fractions, pro-
tein crowding increases viscosity, decreasing the diffusion coef-
ficient of proteins. Thus at intermediate protein concentrations,
rates maximise. Thus, perhaps, under- and overfilling of com-
partments with proteins reduces fitness, regardless of whether
those proteins are needed or not.

Thus, the apparent trade-off between growth rate and stress
resistance (Nystrom 2004) maybe not be a trade off at slow
growth. Thus, the emerging picture is that, as growth rate
increases, cellular protein compartments are progressively filled
with needed proteins, reducing preparatory protein expression.
It may even explain the need for stochastic phenotypic diver-
sification – for instance leading to persister formation – at high
growth rate and less so at low growth rate. Although circumstan-
tial evidence exists, many aspects of growth-stress relationship
need to be more firmly established experimentally.

The intrinsic nonlinearity of cellular
self-fabrication

Finally, we shall discuss why most genome-scale models of
metabolism and growth currently ‘circumvent’ modelling of the
essence of cellular growth. They fail to truly capture that a cell
makes itself, which exploits molecules it made itself to synthesise
these same molecules and double them in number (Fig. 10), from
birth to division, such that on average a daughter cell is iden-
tical to her mother, one generation ago. It has to choose the
right molecules, a ‘self-fabricating set’ that can make itself from
the available nutrients. Natural selection forces cells to choose
molecular components that run this process of self-fabrication
(Fig. 10) at the highest possible rate. This means that growth rate
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depends on the identity and concentrations of all those compo-
nents, as these determine the reaction rates which with compo-
nents are made by their own concerted activities.

Classical analyses of genome-scale models uses a biomass
reaction as a user-defined requirement of biosynthetic precur-
sors, e.g. lipids, amino acids, nucleic acids, in proportions that
reflect the macromolecular composition of the average cell, i.e.
its protein, R/DNA and membrane content per gram dry weight.
Thus, the composition does not emerge from the cell itself,
the ‘magic’ of the self-fabricating molecular set and the rate of
the self-fabrication process is not determined by the cell itself.
Moreover, since fluxes are often used as the to-be-determined
variables, concentrations of molecules do not even play a role.
Consequently, the fact that an enzyme with a certain concentra-
tion catalyses its reaction at a certain rate and, hereby, indirectly
necessitating, and contributing to, its own synthesis, to balance
its own dilution due to cell-volume growth, is not considered.
Thus, by not focusing on concentrations and all reactions the
essence of self-fabrication is missing.

The ME model by O’Brien et al. (O’Brien et al. 2013) was a key
step in the direction of self-fabrication models. Its optimisation
problem is nonlinear in the growth rate of the microorganism.
It does, however, only consider protein concentrations (and not
metabolite concentrations). As a consequence, the saturation
functions of enzymes (the fi(c)’s) are constants. ME models are
the simplest variants of models of self-fabrication (de Groot et al.
2020b).

To truly model self-fabrication, we need to consider all the
machinery, all their kinetics, and the concentrations of all the
molecules a cell contains. We have recently proposed such a
general formalism (de Groot et al. 2020b). In it, the ribosome
makes itself as well as all the enzymes to drive this ‘circular’ pro-
cess. While more proteins are made, the rates of all metabolic
reactions and translation increase, as well as the cell volume,
causing a dilution rate by volume growth that balances the syn-
thesis of new molecules, leading to balanced growth. To see why
this process is nonlinear in the growth rate, we have added an
example to the Appendix.

We have found that even in the full-blown nonlinear case,
i.e. with enzyme kinetics, one can still define networks that are
minimally required for growth (de Groot et al. 2020b). They are
minimal self-replicating metabolic systems, called elementary
growth modes (EGMs), that can self-fabricate of all their molecu-
lar components at a fixed (balanced) growth rate from nutrients.
They truly describe balanced growth in all biochemical detail.
EFMs refer to metabolic networks, in the absence of volume dilu-
tion of metabolites and the synthesis of the catalysing enzymes;
EGMs refer to metabolic networks catalysed by proteins synthe-
sised by ribosomes, and all these components are diluted by
growth. Thus, metabolic networks are subnetworks of EGMs.

Some of the results obtained with EFMs turn out to be valid
for EGMs too (de Groot et al. 2020b). We could show that also
the number of EGMs is maximally equal to the number of hit
constraints on protein pools. With only one hit constraint (which
is the condition that the volume of a volume is directly tied to
molecular contents), a single EGM is the growth rate maximiser.

A remarkable insight is that if the amino-acid composition of
all proteins in a cell is constant across conditions, the metabolic
subnetwork of any EGM is an EFM. Experimental evidence sup-
ports this constancy of amino acid composition (de Groot et al.
2020b).

To summarise, we have dived deep into the mathemat-
ics of the true self-fabrication optimisation problem at steady
state. When we surfaced, we could conclude that the vast

majority of the interpretations of experiments discussed above
are preserved when the EGM framework is used. EGMs are
the most general molecular descriptions of the states under-
lying balanced growth of microorganisms. Therefore, any gen-
eral balanced-growth theory should start from them. This is the
challenge ahead of us in the coming years.

MICROBIAL OPTIMALITY: FACT OR FICTION?

A perspective on microorganisms from the allocation of finite
biosynthetic resources has proven to be extremely fruitful in the
last decade. Without this perspective it is hard to take a systemic
perspective on cells and realise how all molecules in it form a
functional entity. The resource allocation perspective, however,
is in itself not a hypothesis about the optimality of microor-
ganisms. Many of the groundbreaking results from other labs
were obtained without relying on optimality, but rather use phe-
nomenological or empirical laws (Scott et al. 2010; Basan et al.
2015).

Optimality comes into play when one starts to wonder about
why microorganisms express certain proteins and networks
and not others. Then it is very natural to think about nat-
ural selection and evolution leading to microorganisms that
allocate resources optimally to maximise their fitness. Fitness
then equals long-term growth rate, in presence and absence
of stresses. It thus also incorporates survival investments to
avoid a negative growth rate, i.e. death. Without the optimality
hypothesis, it is hard to hypothesise how a cell should direct its
protein economy, in which proteins it should invest. For us, only
when we think about maximisation of the return of those invest-
ments, i.e. making offspring the fastest, do hypotheses emerge
about protein and network expression.

We started the growth-rate maximisation viewpoint as a null
hypothesis, a starting point for the design of experiments and
interpretation of the microbial physiology literature. What has
been mind-boggling is how many puzzle pieces have fallen into
place in the last decade of research. So much makes sense now,
that we start thinking that a general optimisation-based theory
about microorganisms can really be developed. The next step
is to continue to quantitatively test the theory against experi-
ments, preferentially by multiple labs using highly standardised
protocols. We also need to improve the theory, in particular con-
cerning the competition for proteins involved in different types
of constrained commodities.

Richard Feynman once wrote (on his blackboard): ‘What I
cannot create, I do not understand.’, referring to the fact that if
he couldn’t write down a set of equations describing some phe-
nomenon he did not understand that phenomenon. We hope
that microbiology will reach this high standard too. It would give
microbiologists a common language that would facilitate com-
parative microbiology and offer a method to come to grips with
the enormous microbial biodiversity on our planet. It would also
improve the communication of evolutionary biologists, microbi-
ologists and biophysicists, leading to a more unified biology.

Thus, is there a unity in microbiology? We certainly hope
there is.
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APPENDIX A: DERIVATION OF FITNESS
EQUATION

The derivation of the fitness function proceeds as follows,

F = 1
tE

ln
N(tE )
N(t0)

= 1
tE

ln
E∏

j=1

N(ti )
N(ti−1)

= 1
tE

ln
E∏

j=1

w j = 1
tE

E∑
j=1

ln w j

= 1
tE

E∑
j=1

�tj
ln w j

�tj
=

〈
ln w

�t

〉
,

where identifies �tj

tE
as the probability of the occurrence of the

j-th epoch such that the last step in derivation is equivalent to
time-averaging.

APPENDIX B: DERIVATION OF FISHER’S
THEOREM

We define at time t the mean growth rate 〈μ|t〉 of a population of
N genetically different microorganisms as,

〈μ|t〉 =
N∑

i=1

pi (t)μi .

Its rate of change of equals

d
dt

〈μ|t〉 =
N∑

i=1

μi
d
dt

pi (t).

The probability of occurrence of genotype i is given by

pj (t) = nj (t)∑N
i=1 ni (t)

,

with ni(t) denoting the number of organisms with genotype i
growing at rate μi, and,

d
dt

pj (t) =
∑N

i=1 ni (t)
d
dt

nj (t) − nj (t)
d
dt

∑N

i=1
ni (t)(∑N

i=1 ni (t)
)2 = pj (t)(μ j − 〈μ|t〉).

This last equation shows that the abundance of a genotype
that grows faster than average increases while that of a slower-
than-average grower decreases. Finally, the rate of change in the
mean growth rate equals,

d
dt

〈μ|t〉 =
N∑

i=1

μi pi (t)(μi − 〈μ|t〉) = 〈μ2|t〉 − 〈μ|t〉2 = 〈δ2μ|t〉,

which is Fisher’s theorem (Fisher 1930),

d
dt

〈μ|t〉 = 〈δ2μ|t〉 (
Fisher′stheorem

)
.

This theorem indicates that variation in growth rate causes
changes in the mean growth rate.

APPENDIX C: DERIVATION OF PROPERTIES OF
THE AVERAGE CELL IN AN ISOGENIC
POPULATION

A key aspect of the balanced growth theory is that it applies to
the average cell in a population of cells that grows at a logarith-
mic growth rate. If the total number of cells equals n then its rate
of change equals

dn(t)
dt

= μn(t).

The number of cells at time t with age a, defined as the time
elapsed since birth, equals (Painter and Marr 1968),

n(a|t) = n(t)u(a)da = 2μn(t − a)da
∫ ∞

a
f (t)dt

= 2μn(t)e−μada
∫ ∞

a
f (t)dt,

with:

1. u(a)da the probability to have age a and u(a) equals the prob-
ability density function for the cell age a,

2. 2μn(t − a)da is the number of daughter cells formed at t − a
in the time period of length da,

3. n(t) = n(t − a)eμa,
4.

∫ ∞
a f (t)dt equals the probability that a cell has an age greater

than a, and thus a generation time greater than a. Therefore,
f(t) is the probability density function for the generation time
(or the interdivision time).

The probability density function for the cell age (the ‘age dis-
tribution’) is hence given by

u(a) = 2μe−μa
∫ ∞

a f (t)dt. (Cell − age Distribution)

Since,
∫ ∞

0 u(a)da = 1 the growth rate can be solved from the
following characteristic equation,

∫ ∞
0 2μe−μa

∫ ∞
a f (t)dtda = 1. (Population growth rate)

Case of gamma distributed generation times

Experimental generation-time distributions, f(t)’s, are often well
described by gamma distributions,

tg ∼ f (tg) = e− tg
β tα−1

g β−α,

where �(α) = ∫ ∞
0 xα−1e−xdx is the Gamma function and α and β

are positive parameters. The mean generation time then equals
〈tg〉 = αβ and the variance of the generation time 〈δ2tg〉 = αβ2. For
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this case, the growth rate of the population is given by

μ = 〈tg〉
〈δ2tg〉

⎛
⎜⎜⎝2

〈δ2tg〉
〈tg〉2 − 1

⎞
⎟⎟⎠ .

Note that (by L’Hopital’s Rule)

lim
〈δ2tg〉→0

μ = ln 2
〈tg〉 ,

which corresponds to the generation time definition for the pop-
ulation level description

dn(t)
dt

= μn(t).

Thus, generation time, measured at the level of the popula-
tion in a culture of isogenic cells, does not equal the mean gen-
eration time when measured at the level of single cells. This dis-
crepancy has been shown to be in agreement with experimental
data.

We find that

lim
〈δ2tg〉→0

〈a〉 = (ln (2)−1 − 1)〈tg〉 ≈ 0.44〈tg〉, (Mean cell age)

indicating that the average cell is almost at half its cell cycle.
The balanced growth theory applies to the state of the aver-

age cell. To show that this leads to correct predictions, consider
a population level model of a molecule X that is produced at a
constant rate and is diluted only by growth. The rate of change
of its concentration (in copy number per cell) then satisfies

d〈x〉
dt

= k − μ〈x〉,

so that 〈x〉s = k
μ· Now we consider the single cell scenario. The

number of molecules of X that a cell contains at time a equals,

nx|a = nx|0 + Nx|a,

with nx|0 as the number of molecules at cell birth and the num-
ber of molecules produced since birth as Nx|a. The latter quantity
is distributed according to a Poisson distribution (can be derived
from the chemical master equation),

Nx|a ∼ Poisson(ka) (with mean k〈a〉).

Since 〈nx|〈tg〉〉 = 2〈nx|0〉 we know that 〈Nx|〈tg〉〉 = 〈nx|0〉 = k〈tg〉;
thus, in the limit 〈δ2tg〉 → 0,

〈nx|〈tg〉〉 = k〈tg〉 + k〈a〉 ≈ k(〈tg〉 + (ln (2)−1 − 1)〈tg〉) = k〈tg〉 ln (2)−1 = k
μ

.

This equals the population level model result. Thus, the pop-
ulation level model hence assumes that 〈δ2tg〉 → 0 or that

〈δ2tg〉
〈tg〉2 = CV(tg)2 ≈ 0

This is therefore also one of the key assumptions in the bal-
anced growth theory. According to measurements, the coeffi-
cient of variation of the generation time equals,

CV(tg)2 ≈ 0.1,

indicating that the balanced growth theory can be an oversim-
plification.

APPENDIX D: CONSTANCY OF THE
CONCENTRATIONS AT BALANCED GROWTH

Since c = n/V we obtain for its rate of change,

dc
dt

= d
dt

n
V

= 1
V

dn
dt

− 1
V

dV
dt

n
V

= c
(

1
n

dn
dt

− 1
V

dV
dt

)
,

and, since

1
n

dn
dt

= 1
V

dV
dt

,

during balanced growth, concentrations are constant:

dc
dt

= 0. (Steady − state concentrations at Balanced Growth.)

APPENDIX E: THE RATE OF AN ENZYME IS
PROPORTIONAL TO ITS CONCENTRATION

That the rate of an enzyme is proportional to its concentra-
tion follows from a universal property of enzyme mechanisms
(Cornish-Bowden 2012). When we consider those in terms of
their elementary reactions, i.e. of reactant association, dissocia-
tion and catalysis, using mass action kinetics, we observe that all
those rates are proportional to the concentration of an enzyme
species.

Consider, for instance, the following mechanism of an
enzyme that catalyses the reaction A+ B →← C , in an ordered
mechanism of 4 sequential elementary reactions,

E + A
1→
← E A+ B

2→
← E AB

3→
← EC

4→
← E + C.

When we multiply all enzymes species with a factor λ

then the total enzyme concentration, eT = ea + eab + ec,
increases with this factor too. The rate of the enzyme will
do so too, because the rates of all four elementary reac-
tions (v1 = k+

1 · e · a − k−
1 · ea, v2 = k+

2 · ea · b − k−
2 · eab, v3 =

k+
3 · eab − k−

3 · ec and v4 = k+
4 · eb − k−

4 · e · b) then increase by
a factor of λ as well. Thus, the rate of the enzyme obeys

v(λeT ) = λv(eT ). (Proportionality of enzyme rate and concentration)

It can be shown that this holds for all enzyme mechanisms,
and is preserved if nonlinear saturation functions are derived
using Quasi-Steady-State techniques (Schaechter, Ingraham and
Neidhardt 2005).
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APPENDIX F: DERIVATION OF THE COST
EQUATION FOR UNNEEDED PROTEIN
EXPRESSION

We denote the total (cellular) protein concentration (total pro-
teome) by pT. When the unneeded protein is not expressed, pT

equals the sum of all needed protein concentrations

pT =
∑

i

pi , N.

When unneeded protein is expressed, the proteome available
for needed proteins decreases:

pT − pU = pT (1 − φU ) =
∑

i

p′
i , N

with φU = pU /pT and p′
i,N = (1 − φU )pi,N. Thus, each needed pro-

tein is reduced in concentration by the factor (1 − φU ). We already
established that the activity of an enzyme, v, is proportional to
its concentration such that vi (λpi,N) = λvi (pi,N); Hence, λ = 1 − φU .

Since the growth rate μ of a cell equals its overall protein
synthesis jp divided by total cellular protein (derived below), we
obtain that,

μ(λpT ) = jp(λpT )
pT

= λ
jp(pT )

pT
= λμ(pT ).

Thus, finally we obtain μ(pU )/μ(0) = 1 − φU in the even (or
passive) competition model. The growth rate decreases linearly
with the unneeded protein fraction φU .

However, the experimental data of Fig. 4 suggests that the
slope deviates from − 1. One possible explanation is the follow-
ing: the unneeded protein is always expressed in a particular
compartment of the cell, say in the cytosol. Then the unneeded
proteins compete for resources with other cytosolic proteins,
and its expression fraction amongst all the proteins it competes
with equals pU/pT. But we always plot the fraction of unneeded
protein in the entire protein pool pT of the cell. Thus, we plot
pT/PT. Then we have to change the equation we derived above
to,

μ(pU )
μ(0)

= 1 − PT pU

pT PT
,

with PT/pT > 1. The data shown in Fig. 4 has a slope of − 2.7
indicating that pT/PT ≈ 0.37, suggesting that 37% of all cellular
protein is cytosolic. (An improvement of this equation can be
obtained by also taking into account that this protein competes
only with proteins using the same sigma factor. We do not do
this here.)

Most experimental data on protein fraction concentration
mass fraction, instead of number or concentration fractions.
The equations we derived in this section of the appendix are,
however, independent of those units. For instance, say that

mass of the cell equals M and equals M =
r∑

i=1
mi ni with ni as

the number of proteins of type i and mi its molar mass. If
MU mass is spent on unneeded proteins, corresponding to the
unneeded-protein mass fraction φU = MU /M, then M − MU =∑
i

mi n′
N,i mass is left that can be spent on needed proteins, their

numbers reduce from ni,N to n′
i,N. New mass is synthesised by the

needed proteins only, the relationship between the growth rate

μ and the total number of needed proteins, nN,T = ∑
i

nN,i , equals

μ(NT,N) = 1
M

dM
dt =

∑
i mi αi nr f f

M = jM (nT,N )
M and μ(λnT,N) = λμ(nT,N) since

jM(λnT,N) = λ jMu(nT,N) (if all enzymes are multiplied with λ in
number. Now we return to M − MU = (1 − φU )M = ∑

i
mi n′

N,i and

change all the protein number by the same factor 1 − φU such
that M − MU = (1 − φU )M = ∑

i
mi n′

N,i = ∑
i

mi (1 − φU )nN,i and the

total number of needed proteins becomes (1 − φU )nN,T . Given the
above, we can conclude that the new growth rate obeys μ((1 −
φU )nT,N) = (1 − φU )μ(nT,N) and therefore that μ(φU )

μ(0) = (1 − φU ) as
required. The only assumption made is that an even competi-
tion for resources occurs.

APPENDIX G: DERIVATION OF THE FITNESS
POTENTIAL EQUATION

Say we change by titration the concentration of protein i having
concentration pi . The cell responds by changing the concentra-
tion of all other proteins. Thus, the change in the objective flux
equals,

dJ =
⎛
⎝ ∂ J

∂ pi
+

∑
j �=i

∂ J
∂ pj

∂ pi

∂ pi

⎞
⎠ dpi .

We assume that the cell responded by maximising the flux
given the new value of pi by optimally allocating pT − pi over all
the remaining enzymes. This mean that we can define the fol-
lowing objective with a Lagrange multiplier λ,

L(p) = J (p) − λ

⎛
⎝∑

j �=i

pj − (pT − pi )

⎞
⎠ .

For all proteins, except i, optimality requires that,

∂L
∂ pj

= ∂ J
∂ pi

− λ = 0 (for all j, except j = i ).

Thus, ∂ ln J
∂ ln pj

= pj

J
∂ J
∂ pj

= pj

J λ. From the flux summation theorem
from metabolic control analysis (Kacser and Burns 1973; Giersch
1988), we know that,

∑
j �=i

∂ ln J
∂ ln pj

= 1 − ∂ ln J
∂ ln pi

.

Using the last two relations, we obtain

∑
j �=i

∂ ln J
∂ ln pj

= λ

J

∑
j �=i

pj = λ

J
(pT − pi )

so that

λ = J
1 − ∂ ln J

∂ ln pi

pT − pi

and, therefore,

∂ ln J
∂ ln pj

= λ
pj

J
= pj

1 − ∂ ln J
∂ ln pi

pT − pi
.
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Now we substitute this last equation in the one we started
with,

d ln J =
⎛
⎝ ∂ ln J

∂ ln pi
+

∑
j �=i

∂ ln
∂ ln pj

J ∂ ln pj

∂ ln pi

⎞
⎠ d ln pi

=

⎛
⎜⎜⎝ ∂ ln J

∂ ln pi
+

∑
j �=i

pj

1 − ∂ ln J
∂ ln pi

pT − pi

∂ ln pj

∂ ln pi

⎞
⎟⎟⎠ d ln pi

=

⎛
⎜⎜⎝ ∂ ln J

∂ ln pi
+

∑
j �=i

pi

1 − ∂ ln J
∂ ln pi

pT − pi

∂ pj

∂ pi

⎞
⎟⎟⎠ d ln pi

⎛
⎜⎜⎝ ∂ ln J

∂ ln pi
+ pi

1 − ∂ ln J
∂ ln pi

pT − pi

∂
∑

j �=i i pj

∂ pi

⎞
⎟⎟⎠ d ln pi

=

⎛
⎜⎜⎝ ∂ ln J

∂ ln pi
+ pi

1 − ∂ ln J
∂ ln pi

pT − pi

∂(pT − pi )
∂ pi

⎞
⎟⎟⎠ d ln pi

=

⎛
⎜⎜⎝ ∂ ln J

∂ ln pi
+ pi

1 − ∂ ln J
∂ ln pi

pT − pi

⎞
⎟⎟⎠ d ln pi

=

⎛
⎜⎜⎝

∂ ln J
∂ ln pi

− pi

pT

1 − pi

pT

⎞
⎟⎟⎠ d ln pi .

Thus,

d ln J
d ln pi

= �i = C J
pi

− φi

1 − φi
, with C J

pi
= ∂ ln J

∂ ln pi
and φi = pi

pT
.

APPENDIX H: FLUX PER UNIT PROTEIN
MAXIMISATION AND REACTANT AFFINITIES

That evolution towards maximisation of flux per unit invested
protein leads to enhanced affinities for substrates and reduced
affinities for products can be illustrated theoretically. Consider
a linear metabolic pathway for which we aim to maximise the
steady-state pathway-flux per unit invested protein. At steady
state, all enzymes carry the same flux, J = v1 = v2 = . . . = vr , and

the total enzyme contraction equals eT =
r∑

i=1
ei . Since maximisa-

tion of J/eT is the same as minimisation of eT/J, we obtain,

min
e

∑
i

ei

J
= min

e

∑
i

ei

vi
= min

e

∑
i

1
k+

cat,i fi (m(e))
.

We already derived that −k−
cat,i /k+

cat,i < fi (m(e)) < 1. Thus, evo-
lution pushes all saturation functions to high values, maximally
to 1, which means to high affinities for substrates and low affini-
ties for products only in that limit does fi (m(e)) → 1.

We note that this argument applies for metabolic networks
with a single degree of freedom in its fluxes (so we can equate
overall steady-state flux J with each individual enzyme flux j).
Such networks are called elementary flux modes (EFMs) (Hilge-
tag and Schuster 1994; Schuster, Fell and Dandekar 2000; Gag-
neur and Klamt 2004).

Pushing enzymes to substrate saturation might not always
be possible due to a thermodynamic constraint on the values
of the kinetic parameters of an enzyme, known as the Haldane
relationship. A perspective on the optimisation of activities of

single enzymes, given the Haldane constraint, can be found in
Cornish-Bowden (Cornish-Bowden 1976).

APPENDIX I: THE RELATION BETWEEN
PROTEIN AND RIBOSOME CONCENTRATIONS

At balanced growth, the concentration pi of any protein i in a
cell is established by the balance between its rates of synthesis,
degradation and dilution by (volume) growth,

dpi

dt
= αi

kr

Ni
fr (m)r − (μ + kd,i )pi = 0.

The factor αi specifies the fraction of the total translation rate
devoted to metabolic protein i, Ni equals the number of amino
acids in this protein, Kr is the catalytic rate constant of the ribo-
some (unit: number of amino acids per ribosome per minute),
r its concentration, fr(m) its saturation function and kd,i is the
degradation rate constant.

The concentration of the ribosomes is set by the same bal-
ance,

dr
dt

=
(

αr
kr

Nr
fr (m) − μ

)
r = 0.

(We omitted degradation, because ribosomes are stable pro-
teins.) This last equation indicates that the growth rate of a
cell equals the synthesis rate of ribosomes per unit ribosome,
μ = αr kr fr (m)/Nr .

Thus, we obtain the following relation between the concen-
tration of a protein and the ribosome,

pi = r
αi kr/Ni fr (m)

αr kr/Nr fr (m) + kd,i
⇒ pi

r
∝ αi

αr
,

where the proportionality is valid for stable proteins, i.e. most
metabolic proteins. This equation tells us that at balanced
growth the protein i over ribosome concentration ratio equals
the ratio of the number of ribosomes translating protein i over
those translating ribosomes.

Let us now derive the relation between the growth rate and
the concentration of active ribosomes. The total protein concen-
tration in a cell equals pT = r + ∑

i
pi and is determined by the

balance

dpT

dt
=

(∑
i

αi

Ni
+ αr

Nr

)
kr fr (m)r − μpT = k′

r fr (m)r − μpT = 0.

This equation leads to a relationship between the ribosomal
protein fraction, the growth rate and the saturation function of
ribosome fr(m),

r
pT

= μ

k′
r fr (m)

⇒ μ = k′
r fr (m)r

pT
.

In the main text we denote the ribosomal protein fraction
r/pT by φr. Many of these insights can be found in the works of
the Hwa lab too (Scott et al. 2010).



Bruggeman et al. 841

APPENDIX J: DERIVATION OF UNNEEDED
PROTEIN COST EQUATION FROM THE FITNESS
POTENTIAL

An unneeded enzyme has a C J p
p equal to zero. Thus its fitness

potential equals

�FU = d ln J p/pU

d ln pU
=

− pU

pT

1 − pU

pT

,

so that

1
J P

dJ P = −1
pT − pU

dpU ,

and integrating

∫ J p(pU )

J p(0)

dJ P

J P
=

∫ pU

0

−1
pT − pU

dpU

gives

J p(pU )
J p(0)

= 1 − pU

pT
. (Fitness cost of unneeded protein expression.)

When the unneeded protein pool is a subset of the protein
pool of the cell, e.g. the unneeded protein is cytosolic and the
cell has other protein compartments like the periplasm and the
membrane, then

J p(pU )
J p(0)

= 1 − PT

pT

pU

PT
,

(Fitness cost of unneeded protein expression in a pool pT ∈ PT )

with pT < PT and PT as the entire protein pool of the cell. Experi-
ments indicate that PT /pT ≈ 3.

APPENDIX K: A SELF-FABRICATION MODEL
LEADS TO A NONLINEAR
BALANCED-GROWTH EQUATION

We consider the simplest self-fabricating model (see (de Groot
et al. 2020b) for the general exposition), with one metabolite X
that is taken up by enzyme E and used by the ribosome R to syn-
thesise E and itself. We have the following rate of change equa-
tions for the concentrations, x, e, and r,

dx
dt

= ef (x) − rαE gE (x) − rαR gR (x) − μx
de
dt

= rαE gE (x) − μe
dr
dt

= rαR gR (x) − μr

,

with αE and αR as the fraction of ribosome allocated to E or R,
the functions f(x), gE(x) and gR(x) are nonlinear saturation func-
tion (enzyme kinetics), μ is growth rate and concentrations are
defined as molecule numbers (n) divided by volume V.

We assume, for simplicity, that the volume of a cell is the sum
of its protein volumes,

V = vE nE + vRnR ,

with vE and vR as the protein volumes of E and R, respectively.
Thus, the growth rate equals,

μ = 1
V

dV
dt

= vE
1
V

dnE

dt
+ vR

1
V

dnR

dt
= r (vE αE gE (x) + vRαR gR (x))

This leads to the equation

μ

r
= vE αE gE (x) + vRαR gR (x) .

Next, we solve part of the balanced growth equations

dx
dt

= 0 and
de
dt

= 0,

so that

μx = ef (x) − rαE gE (x) − rαR gR (x)

= r
αE gE (x)

μ
f (x) − rαE gE (x) − rαR gR (x)

or

μx
r

= αE gE (x)
μ

f (x) − αE gE (x) − αR gR (x) .

The two equations in the boxes can be combined to

x (vE αE gE (x) + vRαR gR (x)) = αE gE (x)
μ

f (x) − αE gE (x) − αR gR (x) .

Now using from the final balanced growth requirement, dr
dt =

0, from which we deduce μ = αR gR (x), we finally find

(1 + xvR ) μ2 + (αE gE (x) + xvE αE gE (x)) μ − αE gE (x) f (x) = 0.

This a nonlinear equation in the growth rate, μ, and the
metabolite concentrations. The quadratic dependence in the
growth rate can be directly attributed to the ribosome, which
needs to make both itself and the enzyme. (If the metabolite
would in turn catalyse a fourth kind of molecule, the relation
would be third order in the growth rate.) When we set the con-
centration of x fixed we obtain a ME-model, in the spirit of
O’Brien and Palsson. The reader is invited to read (Price et al.
2019) for the mathematical definition of elementary growth
modes. It is built directly on top of systems of nonlinear bal-
anced growth equations such as the one we derived here, but
then for whole cells.
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