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Abstract

We show that logic computational circuits in gene regulatory networks arise from a fibration
symmetry breaking in the network structure. From this idea we implement a constructive pro-
cedure that reveals a hierarchy of genetic circuits, ubiquitous across species, that are surpris-
ing analogues to the emblematic circuits of solid-state electronics: starting from the transistor
and progressing to ring oscillators, current-mirror circuits to toggle switches and flip-flops.
These canonical variants serve fundamental operations of synchronization and clocks (in
their symmetric states) and memory storage (in their broken symmetry states). These conclu-
sions introduce a theoretically principled strategy to search for computational building blocks
in biological networks, and present a systematic route to design synthetic biological circuits.

Author summary

We show that the core functional logic of genetic circuits arises from a fundamental symme-
try breaking of the interactions of the biological network. The idea can be put into a hierar-
chy of symmetric genetic circuits that reveals their logical functions. We do so through a
constructive procedure that naturally reveals a series of building blocks, widely present across
species. This hierarchy maps to a progression of fundamental units of electronics, starting
with the transistor, progressing to ring oscillators and current-mirror circuits and then to
synchronized clocks, switches and finally to memory devices such as latches and flip-flops.

Introduction

In all biological networks [1] some simple ‘network motifs’ appear more often than they would
by pure chance [2-4]. This regularity has been interpreted as evidence that these motifs are
basic building blocks of biological machineries, a proposal that has had a major impact on sys-
tems biology [4, 5]. However, mere statistical abundance by itself does not imply that these
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circuits are core bricks of biological systems. In fact, whether these network motifs may have a
functional role in biological computation remains controversial [6-9].

Functional building blocks should offer computational repertoires drawing parallels
between biological networks and electronic circuits [10]. Indeed, the idea of using electronic
circuitry and devices to mimic aspects of gene regulatory networks has been in circulation
almost since the inception of regulatory genetics itself [11]. This idea has been a driving force
in synthetic biology [12]; with several demonstrations showing that engineered biological cir-
cuits can perform computations [13], such as toggle switches [14-17], logic [18], memory stor-
age [15, 19, 20], pulse generators and oscillators [14, 21-23].

In a previous work [24], we have shown that the building blocks of gene regulatory net-
works can be identified by the fibration symmetries of these networks. In the present paper,
we first demonstrate the functionality of these symmetric building blocks in terms of synchro-
nized biological clocks. We then show that the breaking of the fibration symmetries of the net-
work identifies additional building blocks with core logic computational functions. We do so
through a constructive procedure based on symmetry breaking that naturally reveals a hierar-
chy of genetic building blocks widely present across biological networks and species. This hier-
archy maps to a progression of fundamental units of electronics, starting with the transistor,
and progressing to ring oscillators and current-mirror circuits and then to memory devices
such as toggle switches and flip-flops. We show that, while symmetric circuits work as syn-
chronized oscillators, the breaking of these symmetries plays a fundamental role by switching
the functionality of circuits from synchronized clocks to memory units.

Thus, our constructive theoretical framework identifies 1) building blocks of genetic net-
works in a unified way from fundamental symmetry and broken symmetry principles, which
2) assure that they perform core logic computations, 3) suggests a natural mapping onto the
foundational circuits of solid state electronics [12, 13], and 4) endows the mathematical notion
of symmetry fibration [24] with biological significance.

Results
Feed-forward loops do not synchronize

We start our analysis by considering the dynamics of the most abundant network motif in
transcriptional regulatory networks, the so-called feed-forward loop (FFL) introduced by Alon
and coworkers [3, 4, 25]. A cFFL motif consists of three genes (X, Y and Z; ¢ refers to coherent
where all regulators are activators) where the transcription factor expressed by gene X posi-
tively regulates the transcription of Y and Z, and, in turn Y regulates Z (Fig 1A). Fig 1A shows
an example of cFFL motif in E. coli with X = ¢pxR, Y = baeR, and Z = spy. Numerical and ana-
Iytic solutions for the expression levels of the genes in the cFFL (Fig 1B) demonstrate that the
FFL does not reach synchronization (unless for very specific setting of parameters) nor oscilla-
tions in expression levels. This is consistent with previous research which has interpreted the
functionality of the FFL as signal delay [3, 25, 26].

We illustrate this result by presenting an analytical solution of the FFL [2-4]. We use a dis-
crete time, continuous state variable model with a logic Boolean interaction function in the
spirit of the Glass and Kauffman model of biochemical networks [27]. The dynamics of the
expression levels y; and z; of genes Y and Z, respectively, as a function of time ¢ in the cFFL is
given by the following difference equations [4]:

Vi1 = (1 - a)yt + Vxe(xt - kx)’

(1)
2 = (1 - O‘)Zz + yxg(xt - kx) X Vye(yt - ky)7
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Fig 1. Feed-Forward Loop (FFL) and Feed-Forward Fiber (FFF). A: FFL network representation. B: Numerical solution of
FFL dynamics. The expression levels of genes Y and Z do not synchronize. The oscillation pattern presented is due to the
square-wave behavior of gene X expression levels. We use o = 2.0, y, = 0.12, ¥, = 0.7, k, = 0.5, k, = 0.1, yo = 0.7 and z, = 0.0.
C: Input tree representation of FFL. The input trees of genes X, Y, and Z are not isomorphic, as a consequence, their
expression levels do not synchronize. D: Base representation of FFL. The base is the same as the original circuits since there
are no symmetries. E: SAT-FFF network representation. As an example, we consider genes cpxR = X, baeR=Y, and spy = Z
from the gene regulatory network of E. coli. The addition of the autoregulation leads to a symmetry between the expression
levels of genes Y and Z. F: The numerical solution of the SAT-FFF dynamics shows the synchronization of the expression
levels of genes Y and Z. We use & = 0.06, 7, = 0.775, 7, = 0.775, k. = 0.5, k, = 0.1, yo = 0.85 and 2, = 0.0. Again, the oscillation
is due to the wave-like pattern of X. G: As a result, genes Y and Z have isomorphic input trees. However, the input tree of the

D X H
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external regulator cpxR is not isomorphic, despite the fact that it directly regulates the fiber. H: Since Y and Z synchronize,
gene Z can be collapsed into Y, resulting in a simpler base representation.

https://doi.org/10.1371/journal.pcbi.1007776.9001

where x; is the expression level of gene X, a is the degradation rate of the gene, 7, and y, are
the strength of the interaction representing the maximum expression rate of genes X and Y,
respectively, and the thresholds k, and k, are the dissociation constant between the transcrip-
tion factor and biding site. The expression level is measured in terms of abundance of gene
product, e.g., mRNA concentration. The Heaviside step functions 6(x; - k,) and 6(y; - k,) rep-
resent the activator regulation from gene X and Y, respectively. They represent the Boolean
logic approximation of Hill input functions in the limit of strong cooperativity [4, 27]. We con-
sider an AND gate for the combined interaction of transcription factors of genes X and Y onto
the binding sites of gene Z [4]. Analogous results shown in S1 File Section I can be obtained
with an OR gate and with ODE continuum models.

In S1 File Sec. I A, we show that the expression levels of the genes Y and Z do not synchro-
nize, in other words, lim; _, ..(y; — z;) # 0. For example, Fig 1B shows a particular set of
parameters which results in a non-synchronized state. Such state is obtained under initial con-
dition y, > ky and a < 7,. Specifically, we use the parameters: a = 0.2, y, = 0.12, 7,=0.7, k.=
0.5 and k, = 0.1. For this combination, y, and z, do not synchronize since y, saturates at y, —
7x/a = 0.6 when t — o0, and z, saturates at z, — ¥,/ = 0.42, for t — oo. In this figure, we set
x; equal to a square wave and then monitor the expression levels of y, and x,. When x < k,,
both y, and z, decay exponentially to zero. On the other hand, when x > k,, both variables
evolve to saturate again at y, = y,/a and z; = ¥,,/a, in agreement with the analytical solution.

Feed-forward fibers synchronize via a symmetry fibration

In the FFL, gene Z receives input from X and Y, while gene Y, instead, only from X, and there-
fore the inputs are not symmetric (Fig 1C). But as it turns out, a search of motifs in biological
networks [24] shows that the FFL circuit in Fig 1A regularly appears in conjunction with an
autoregulation (AR) loop [28] at Y = baeR (Fig 1E). This minimal inclusion in the FFL symme-
trizes the circuit and we show, next, that this symmetry results in a circuit with a first and
minimal form of function: synchronization in gene expression. This can be formalized by ana-
lyzing invariances in the input tree [24], which represents all the paths that converge to a given
gene (Fig 1C and 1G). The mathematical principle of symmetry fibration in dynamical systems
introduced in [24, 29, 30] predicts this, since symmetries Y < Z that leave invariant the tree of
inputs (but not necessarily the outputs as imposed by automorphisms) are necessary and suffi-
cient to achieve synchronization. When two genes have isomorphic input trees, their expres-
sion levels are synchronized, see [24] for details.

For instance, by means of its autoregulation, baeR forms a symmetry fibration with gene
spy, that can be formalized and characterized by an isomorphism between the input trees of
these genes (Fig 1G). When two input trees, like those of baeR and spy, are isomorphic, the
expression levels of these two genes are synchronized. These genes are said to belong to the
same fiber’[24, 30]. Genes in the same fiber are redundant, and can be collapsed into the ‘base’
(see Fig 1H) by a symmetry fibration [24] (the FFL, instead, cannot be reduced since it has no
symmetry, see Fig 1D). Numerical simulations and analytical solutions (Fig 1F, S1 File Section
IT A and Section II B) confirm that the addition of the AR loop to the FFL—leading to a circuit
that we call the Feed-Forward Fiber (FFF)—changes its functionality qualitatively, leading to
synchronization of genes Y and Z into coherent co-expression. This prediction is confirmed
with experimental co-expression profiles in Ref. [24].
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The FFF with activator regulations in Fig 1E has a simple dynamics converging to a syn-
chronized fixed point: all interactions are satisfied meaning that the Heaviside step functions
evaluate to 1 and we call this circuit SAT-FFF. Instead, when the autoregulation is a repressor,
the loop behaves as a logical NOT gate. When expression is high it inhibits itself shifting to
low state. Instead, if it is low it promotes itself to shift to a high state. Hence, the activity of this
gene oscillates indefinitely [14, 27]. This is the simplest expression of frustration [27, 31], a
core concept in physics which refers to a system which is always in tension and thus never
reaches a stable fixed configuration.

A biological transistor as a core building block

To understand the computation rationale of symmetric and frustrated circuits made of repres-
sors, we map them to electronic analogues. We begin the analogy with the simplest circuit of a
single gene with a feedback loop with repression (AR loop, Fig 2D). The dynamics for the
expression level y, is described by the discrete time model with Boolean interaction [27]:

Ay, =y =y =~y + 7,0k, — ). (2)

Here, o is the degradation rate of the Y gene product, y, is the maximum expression rate of
gene Y, and k,, is the dissociation constant.

The Heaviside step function 6(k,, — ;) reflects the repressor autoregulation in the Boolean
logic approximation. We will show that this genetic repressor interaction, shown as the stub in
Fig 2B, is the genetic analogue of a solid-state transistor shown in Fig 2A.

A transistor is typically made up of three semiconductors, a base sandwiched between an
emitter and a collector (Fig 2A). The current flows between the emitter and collector only if
voltage applied to the base is lower than at the emitter (Vz < V) and thus the transistor acts as
a switch and inverter. In the genetic circuit, the expression y, drives the rate of expression of
gene Y, like the voltage drives current around an electric circuit. Simply comparing Eq (2) to
the pnp transistor in Fig 2A leads to the analogy in which the expression y, is an analogue for
the base potential V of a transistor, k, an analogue for Vg, y, an analogue for the emitter cur-
rent I, ay, an analogue for I, and Ay, an analogue for I. Then, Eq (2) provides the genetic
equivalent of the equation for a transistor’s collector current I¢ = I — Iy (Fig 2C and 2D).

The repressor AR genetic circuit of Fig 2D becomes a one-stage ring oscillator (Fig 2C)
where the collector of the transistor connects to the base forming the minimal signal feedback
loop. As shown in Fig 2D, an example of the AR is the gene Y = trpR from the E. coli transcrip-
tional network. The repressor AR loop can be extended to the FFF by symmetrizing it, adding
gene Z, such that it synchronizes with Y to express an enzyme that catalyzes a biochemical
reaction (Fig 2F). The circuit is completed with the external regulator X which keeps the sym-
metry between Y and Z. The resulting circuit is called UNSAT-FFF (since it is frustrated).

The UNSAT-FFF maps to the so-called Widlar current-mirror electronic circuit shown in
Fig 2E, a popular building block of integrated circuits used since the foundations of the semi-
conductor industry (1967 US patent [32, 33]). It serves two key functions as we show below:
mirror synchronization of y; = z; and oscillatory activity (Fig 2G and S1 File Section III).

UNSAT-FFF solution oscillates and synchronize

Next, we show analytically and numerically that the UNSAT-FFF circuit has an oscillatory
solution plus synchronization of genes Y and Z. S1 File Section III A shows that the prediction
of oscillatory behavior can be obtained also from a model of gene expression in the continuum
time-domain using a first-order ODE model with time delay due to the process of transcrip-
tion and translation. Below, we focus on the discrete dynamics.
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Fig 2. Mapping between electronic and biological transistor. A: A pnp transistor allows current flow if the voltage applied to its
base is lower than the voltage at its emitter (Vy < V). Since it has a high (low) output for a lower (high) input, it is logically
represented by a NOT gate. The yellow box shows the mapping between the pnp transistor and the biological repressor. B: A
repressor regulation link plays the role of the pnp transistor since the rate of expression of a gene is repressed by gene Y if k,, < y;.
C: By connecting the base of the transistor to its collector, one forms a one stage ring oscillator. D: This connection is translated to
the biological analogue as a repressor autoregulation at gene Y. In this way, the rate expression of gene Y is able to oscillate,
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depending on the adjustment of parameters a, k, and y,, (see S1 File Section III). E: Widlar current-mirror circuit and F: its
biological analogue (UNSAT-FFF). By mirroring the ring oscillator, the Widlar mirror circuit allows synchronization and
oscillations (see S1 File Section III). G: Phase diagram of oscillations of the UNSAT-FFF. An oscillatory phase is defined by the
condition y,/k, > (y4/@)™* (see S1 File Section III). For instance, on the right side, we plot the solution of the discrete dynamics for
a set of parameters satisfying such condition. Specifically, & = 0.205, y, = 0.454, 7, = 0.454, k. = 0.5, and k,, = 1.0.

https://doi.org/10.1371/journal.pcbi.1007776.9002

The UNSAT-FFF circuit is obtained by the addition of a repressor AR loop to the FFL: in
Fig 2F, gene Y acts as a repressor regulator on the gene Z and on itself. There are many variants
of this circuit depending on the combinations of activator and repressor regulators. Here, we
use X gene as an activator and Y gene as a repressor. Different variants yields analogous results
and will be discussed elsewhere. The important ingredient is the existence of frustration in the
interactions. For instance if gene X is high, then it will make genes Y and Z high too. However,
this configuration does not satisfy the repressor autoregulation bond neither the repression
from Y — Z. Thus, two bonds are unsatisfied and this circuit unsatisfied: UNSAT-FFF. The
discrete-time dynamics of the expression levels of genes y, and z, are given by:

Vg1 = (1 - a)yt + Vxe(xt - kx) X yyg(ky _yt) ’

2 = (1 - O‘)Zt + Vxe(xt - kx) X yyg(ky - yt) )

where y, and y, are the strength of the interaction (maximum expression rate) of genes X
and Y, respectively, and k, and k, are the dissociation constant, respectively. Similarly to
the SAT-FFF case, synchronization between y and z occurs for the UNSAT-FFF (see S1 File
Section II). However, the impact of the repressor feedback loop on the dynamical behavior
of this circuit is more profound, since it leads to oscillations. Thus, while both, SAT-FFF and
UNSAT-FFF, lead to synchronization of Y and Z, the former synchronizes into a fixed point
and the later into an oscillatory limit cycle.

We set A = 7.,/k, @, and B = 1 — a, so that we rewrite Eq (3) for the rescaled variables
Ve =ydk,and {; = z,/k, as

Vo =P+ oah0(x, — kx)g(ky —¥,),
(t+1 =B+ oc)»@(x, - kx)e(ky - lpr)

Now, we set x, = x constant in time for simplicity. For x < k,, the solutions exponentially
decayas y; = woe_t” and {, = {oe """, where Yo is the initial condition. For x > k,, Eq (4) defines
an iterative map which satisfies the following recursive equation:

W) =1 B0 — 1)+ f7H (B +ad)0(1 — ). (5)

This iterative map results in different solutions depending on the value of A.

We consider first the case where the initial condition is y, > 1. Thus, the solution of Eq (4)
is ¥, = yoe ", where 77! = —log(1 — ). This solution is correct as long as y, > 1, but ceases to
be valid at a certain time #* such that y, < 1, which is given by t* = [71og yy].

Next, we consider the case ¥, < 1. In this case the solution is given by v, = yoe ™" + A(1 —
e¢”"'"), which is always valid for A < 1. Thus, when A < 1 the system does not oscillate but it
converges monotonically to a fixed point ¥, = . However when A > 1, this solution ceases

=Yg

to be valid at the time t* = [t log5—] such that y; > 1. Therefore, the solution v, oscillates

in time for A > 1. For the case of y, > 1, the explicit solution is given by the general analytical
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expression which is plotted in Fig 2G, right:

Y, = Ype " for t € {0, ..., =1t loglﬁo]},

—(t— T —(t— T 7\/_‘#
Y, = e/ +x<1,e ( a)/) for t € {tl,...,t2t1+ [‘clog 7»—11”’ (6)
W, = e R for t € {tQ, et =1+ [t log%]}.

The general solution with initial condition y(t,) < 1 can be written in a similar way.

Thus, the main condition for oscillations in the circuits is A > 1, and if A < 1, there is no
oscillatory behavior, and the solution y, converges monotonically to L. Therefore, the oscil-
latory phase is separated from the non-oscillatory phase by the condition:

=) o)

y

which is depicted in the phase diagram in Fig 2G, left.

Thus, the repressor autoregulation at gene Y converts the circuit into a synchronized clock,
a primary building block in any logic computational device. S1 File Section V and S2 File show
all FFFs found across gene regulatory networks of the studied species spanning A. thaliana, M.
tuberculosis, B. subtilis, E. coli, salmonella, yeast, mouse and humans. We also show in Table 1
the count of circuits across species and their associated Z-scores showing that these circuits are
statistically significant. The algorithm to find these fibers in biological networks is explained in
[24] and S1 File Section IV and it is available at https://github.com/makselab/FiberCodes.

Table 1. Symmetric circuits (fibers) count [24].

Species Database Nodes | Edges AR Fiber FFF Fibonacci Fiber n = 2 Fiber
Nreal | Nrana£SD | Z- | Nreal | Nuana Z- | Nreal| Nuana Z- |Neeal| Neanat | Z-
score SD score SD score SD score
Arabidopsis Thaliana ATRM 790 | 1431 | 2 0.2+0.5 4 2 0+0 Inf 5 | 03+£06 | 81 0 N/A N/A
Micobacterium Research article | 1624 | 3212 | 11 0.7+£0.8 13.2 6 02+04 | 146 4 1.7+14 1.7 0 N/A N/A
tuberculosis
Bacillus subtilis SubtiWiki 1717 | 2609 | 35 0.3+£0.5 64.6 13 | 0.3+£0.5 234 1 1.3+1.2 -0.2 2 00 63.2
Escherichia coli RegulonDB 879 1835 14 0.2+£0.5 29.1 12 | 0.1£0.2 | 494 2 0.5+0.8 1.9 1 00 >3
Salmonella SL1344 SalmoNet 1622 | 2852 | 21 0.7+0.8 25 14 | 02+£04 32 2 14+1.3 0.5 3 0+0 >3
Yeast 10 5 3

YTRP_regulatory | 3192 | 10947 | 10 0.3+0.6 17.3 4 02+0.4 8.5 2 1.8+1.3 0.2 0 N/A N/A
YTRP_binding | 5123 | 38085 | 2 0.1+0.3 6.3 0 N/A N/A 0 N/A N/A 0 N/A N/A

Mouse TRRUST 2456 | 7057 1 0.1+04 2.3 0 N/A N/A 6 0.3 +0.6 9.3 0 N/A N/A
Human 1 1 100 1

TRRUST 2718 | 8215 0 N/A N/A 0 N/A N/A 10 | 04£0.6 | 163 0 N/A N/A

TRRUST_2 2862 | 9396 0 N/A N/A 0 N/A N/A 11 | 04£0.7 16 0 N/A N/A

KEGG 5164 | 59680 | 1 |0.06+025| 3.76 1 00 >3 79 | 0.6+0.7 112 1 0+0 >3

We report the Z-scores showing that all found fibers are statistically significant. We use a random null model with the same degree sequence (and sign of interaction) as

the original network to calculate the random count Ny,,q and compare with the real circuit count Ny, to get the Z-score.

https://doi.org/10.1371/journal.pcbi.1007776.t001
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A broad class of logic and dynamic repertoires in the class of fibers

The procedure to build more complex fibers can be systematically extended through an algebra
of circuits that adds external regulators and loops to grow the base of symmetric circuits (Fig 3
and S1 File Section IV A). In this space, the AR is the core loop unit referred to as [n =1, £ = 0)
in the nomenclature of [24] since it has n = 1 loop and ¢ = 0 external regulator (Fig 3B), and
the FFFis [n =1, £=1) (Fig 3C).

From this starting point, one can grow the number of regulator genes, |1, €) with £ > 1.
This does not affect the complexity because all the relevant dynamics remain constrained to
the sole loop in the FFF circuit. Likewise, there are a number of circuits that can correspond to
|1, 1). However, only certain modifications conserve the topological class identified by |1, 1).
For instance, changing the sign of the edges is allowed as long as the edges of each gene are the
same, but removing the edge X—Z will break the symmetry of the fiber, so it is not allowed.
Adding a second node downstream of Y will conserve the topological class but only if it inter-
acts with X. This situation changes as soon as the fiber feeds information back to the external
world. This is the case of the circuits in Fig 3D, where the gene Y now regulates its own regula-
tor gene X. The inclusion of this second feedback loop results in the coexistence of two time-
scales in the network. This, in turn, increases the diversity of trajectories and delays in the net-
work; a dynamic complexity that is measured by the divergence of the input tree, which is cap-
tured by the sequence Q, representing the number of source genes with paths of length t — 1 to
the target gene, see Fig 3 and [24]. Simply put, the input tree is a rooted tree with a gene at the
root (Q; = 1), and Q, represents the number of genes in the ¢—th layer of the input tree. Then,

the divergence of the input tree is captured by its branching ratio measured by n = (%) ,
t /) t—oo

see [24] for details.

A quantitative analysis of this measure yields exactly the golden ratio (Qé—t') N

(14 v/5)/2 =1.6180... for the circuits in Fig 3D, revealing that the input tree is a Fibonacci
sequence Q; = Q;_; + Q,_, updating the current state two steps backwards, see [24]. We have
called this class of circuits, Fibonacci Fibers, in [24]. For example, the repressor interactions
between genes X = uxuR, Y = exuR, and Z = IgoR from the E. coli network function exactly as a
Fibonacci Fiber (Fig 3D). Other typical examples of Fibonacci Fibers in the transcriptional net-
works across species are also shown in Fig 3D. S1 File Section V and S2 File show all found
fibers, and Table 1 the counts for all fibers and their associated Z-scores showing that these cir-
cuits are statistically significant. The important component of these circuits is the delay in the
feedback loop through the regulator from Y — X and back to Y captured by the Q,_, term in
the Fibonacci sequence. This circuit has been synthetically implemented by Stricker et al. [22]
using a hybrid promoter that drives the transcription of genes araC and lacI forming a dual-
feedback circuit. The functionality of this circuit has been demonstrated to be robust oscilla-
tions due to the negative feedback loop [22]. We will show next that a symmetry breaking in
this Fibonacci circuit forms the base of the JK flip-flop, which is the universal storage device of
computer memories [33].

The complexity of the Fibonacci Fiber with feedback to the regulator is 1.6180. . ., which is
lower than the number of loops in the circuit (two). The intuition of what this reveals is that,
in this circuit the regulator X is still not part of the base (see Fig 3D), since it does not receive
input from itself and hence it is not within the symmetry of the fiber. This, in turn, indicates
naturally that the next element in the hierarchy of fibers results from the inclusion of an AR
loop in X. This creates a fully symmetric circuit (Fig 3E) with a core |2, £ = 0) that feeds the
reporter/enzyme Z. In this case, the complexity of the circuit is exactly two (the number of
autoregulators within the fiber). Examples are shown in Fig 3E and Supplementary Materials.
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Symmetric Circuits
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Fig 3. Symmetric circuits [24] function as clocks. The addition of autoregulation loops and feedback loops results on a
hierarchy of circuits of increasing complexity. For example, turning the A: repressor link into a B: repressor autoregulation
results on an input tree that feeds its own expression levels with Q, = 1 and branching ratio n = 1 and it is equivalent to its own
base. C: The addition of an external regulator (£ = 1) creates the UNSAT-FFF where genes Y and Z synchronize and oscillate.
This can be verified in its corresponding input tree and logic circuit. D: The addition of a second feedback loop results in an
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input tree that follows the Fibonacci sequence Q; = 1,2, 3,5, 8, . . .. Here, gene X is not part of the base. The branching structure
of the input tree implies that the Fibonacci Fiber can oscillate and synchronize, but is unable to store static information.
Examples are shown from all studied species. E: The second autoregulation at X results in a symmetric input tree with Q,; = 2Q,_,
and branching ratio n = 2. This fiber collapses into a base with two autoregulators. Examples of n = 2 Fiber are two fibers from
the regulatory networks of B. subtilis. In this figure, we present activator links (black), repressor links (red), and interactions with
unknown functionality (grey).

https://doi.org/10.1371/journal.pchi.1007776.9003

Broken symmetry circuits as memory storage devices

All symmetric circuits shown in Fig 3 [24] work as clocks with varying levels of sophistication
and robustness given by their time-scales or loops (see S1 File Sections III C and IV A).
Additionally, the more complex Fibonacci Fibers store memory dynamically by integrating
sequences of its two immediate past states, according to the input tree, which computes tempo-
ral convolutions. However, this is only a short-term memory, stored dynamically and continu-
ally erased. This raises the necessity of understanding how these canonical biological circuits
can perform controlled memory set and reset, a fundamental component of all computing
devices [33].

We show next that static memory storage requires breaking the fibration symmetry of each
circuit creating structures analogous to ‘flip-flops’ [33] in electronics that use a bistable toggle
switch [14, 15] to store a bit of binary information into computer memory. As we show below,
in genetic networks, symmetry breaking endows the circuits with the ability to remember.

Next, we extend the constructive process described above to include symmetry breaking.
We do so by mimicking an evolutionary process where circuits ‘grow’ by a ‘duplication’ event
(analogous to gene duplication in evolution) that conserves the base of the original circuit (Fig
4, first and second row). Then, breaking the symmetry creates a new functionality. We begin
this with the simplest case of AR gene Y: |n = 1, £ = 0). This gene is duplicated by ‘opening up’
the AR loop into two mutually repressed replica genes, Y and Y’ (Fig 4, second row). This cre-
ates a bistable toggle switch as studied in synthetic genetic circuits [14, 15] that is topologically
equivalent to the core AR loop |1, 0) since both have the same input tree and base (Fig 4, first
row).

The symmetry of the replica circuit is then explicitly broken by including different inputs,
Sand R, to regulate genes Y and Y’, respectively (Fig 4, third row). S and R represent either
genes or effectors that break the symmetry of the circuit. Symmetry is now broken, and the
genetic circuit becomes analogous to a Set-Reset (SR) flip-flop [33], the simplest canonical
circuit to store a bit of binary information in electronic computer memory (see Fig 4, fourth
row).

The symmetry is explicitly broken by applying set-reset inputs S # R. Specifically, when
S =1 and R = 0, the circuit stores a bit of information. But here is the interesting fact: this state
is kept in memory even when S = R = 1. That is, the circuit remains in the broken symmetry
state even if the inputs are now equal and symmetric. In other words, the symmetry is now
‘spontaneously” broken [34], since a specific state is selected even without external bias, thus
allowing the circuit to remember its state.

Thus, this genetic network is a toggle switch as studied in synthetic genetic circuits [14, 15]
analogous to the SR flip-flop logic circuit shown in Fig 4, fourth row. When the controlling
inputs are § = 0 and R = 1, the SR flip-flop stores one bit of information resulting in Q = 1 and
Q = 0(Q = not Q, and the output Q is the logic conversion of not Y). The SR flip-flop retains
this logical state even when the controlling inputs change. In other words, when S =1 and
R =1, the feedback (the repressor interactions between Y and Y’) maintains the outputs Q and
Q to its previous state. This state changes only when we reset the circuits with S=1and R = 0.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007776  June 17, 2020 11/16


https://doi.org/10.1371/journal.pcbi.1007776.g003
https://doi.org/10.1371/journal.pcbi.1007776

PLOS COMPUTATIONAL BIOLOGY Core logic computations in biological networks through broken symmetry circuits

Symmetry Breaking Circuits
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Fig 4. Broken symmetry circuits function as memory. AR (first column): The replica symmetry duplication of the AR symmetric circuit results in a
network that is analogous to the SR flip-flop circuit. The symmetry between Y and Y’ is broken by the inputs S and R, such that S # R, resulting into a pair
logical outputs Q and Q = not(Q). FFF (second column): Following the same strategy, we replicate the FFF through a replica symmetry duplication. Note
that this operation adds a second level of logic gates to the SR flip-flop. In order to have consistent logic operations, we add an input clock gene CLK in
addition to S and R. The resulting circuit is analogous to the Clocked SR flip-flop logic circuit. Fibonacci (third column: The replica symmetry duplication of
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the Fibonacci Fiber results in a logic circuit which is analogous to the JK flip-flop. For each symmetry breaking class, we show two examples of circuits from
the human regulatory network. The external regulator genes, S and R (J and K), provide inputs which are logically processed by the circuit, accordingly to the
type of interaction links between the genes, activators (black arrows) or repressors (red flat links). The outputs of the circuits (green genes) regulate the
expression levels of other genes (in red) without affecting the circuit functionality. Here, grey arrows correspond to interactions with unknown functionality.

https://doi.org/10.1371/journal.pcbi.1007776.9004

Table 2. Broken symmetry circuits count.

Species Database
Arabidopsis Thaliana ATRM
Micobacterium tuberculosis | Research article
Bacillus subtilis SubtiWiki

Escherichia coli RegulonDB
Salmonella SL1344 SalmoNet
Yeast

YTRP_regulatory
YTRP_binding

Mouse TRRUST
Human
TRRUST
TRRUST_2

In this last case, the SR flip-flop stores Q = 0 and Q = 1, which is also remembered when both
inputs are high (§=1and R = 1, SI File Section IV B).

This spontaneous symmetry breaking [34] has analogy with a ferromagnetic material.
When the temperature is high enough, the ferromagnet does not show any magnetic property.
Moreover, even lowering the temperature, in absence of any polarizing field, the material does
not magnetize. On the contrary, if an external magnetic field is applied to the ferromagnet,
like a magnet put in contact to a needle for enough time, and then removed, then the needle
becomes magnetic itself, in that it remembers the direction of the previously applied magnetic
field, thus breaking, spontaneously, the rotational symmetry. Biological realizations of this
replica symmetry breaking process are shown in Fig 4, last row. Full list of symmetry broken
circuits in gene regulatory networks across species appears in S1 File Section V and S2 File.
Table 2 shows the Z-scores of these circuits indicating their significance. The algorithm to
identify these broken symmetry flip-flops in biological networks is developed in S1 File Section
VII and is available at https://github.com/makselab/CircuitFinder.

Extending this duplication and symmetry breaking process to the FFF (Fig 4, second col-
umn), one can replicate the X and Y genes from the FFF base to create a circuit isomorphic to
the Clocked SR flip-flop, another computer memory building block [33] (see S1 File Section
IV B). The symmetry is broken by regulators or inducers of genes X and X’ acting as S (set)
and R (reset) of memory, and it is restored when S = R, leaving the system ‘magnetized’. The
hierarchy continues by replicating the Fibonacci Fiber and consequent breaking of symmetry
when the inputs J and K are different (Fig 4 third column, see S1 File Section IV B). This struc-
ture is isomorphic (i.e., has the same base) to the JK flip-flop in electronics, which is the most
widely used of all flip-flop designs [33]. In its symmetric state, the JK flip-flop is isomorphic
to the symmetric Fibonacci base. In the symmetry broken phase, it acts as a memory device
which presents two possibilities. A ‘chiral’ symmetry (where Y feeds X and Y’ feeds X’) and a

Nodes | Edges SR flip-flop Clocked SR flip-flop JK flip-flop
Nieal | Nrana £SD | Z-score | Nyeas | Nyana £ SD | Z-score | Nyeat | Nyana = SD | Z-score
790 1431 47 1.6+1.2 36.40 3 0.2+0.5 5.80 2 0+0 >3
1624 3212 6 1.7+14 3.20 0 N/A N/A 0 N/A N/A
1717 2609 3 21+14 0.6 0 N/A N/A 0 N/A N/A
879 1835 14 21+14 8.40 3 03+0.8 3.30 0 N/A N/A
1622 2852 6 14+12 3.80 0 N/A N/A 0 N/A N/A
27 58 1
3192 | 10947 9 5%25 1.60 3 3+3.6 0 0 N/A N/A
5123 | 38085 31 21.6£5.8 1.60 192 | 103.3 £45.6 1.90 2 6.8+6.1 -0.8
2456 7057 82 4+2.1 37.70 216 1.9+2.7 79.50 25 0.004 = 0.06 417
192 566 90
2718 8215 89 43+21 40.50 247 35+48 50.60 45 0.02+0.2 225
2862 9396 103 5+23 43 319 59+72 43.20 45 0.02+0.3 150

We report the corresponding Z-score statistics as computed in Table 1.

https://doi.org/10.1371/journal.pcbi.1007776.1002
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‘parity’ symmetry (left-right reflection, where Y feeds X" and Y feeds X). This last one is the
one realized in biological circuits, see Fig 4, third column. Examples of JK flip-flops are abun-
dant in gene regulatory networks in human and mouse. They are shown in Fig 4, last row and
full list in S1 File Section V, S2 File, and Z-scores in Table 2.

Discussion

In summary, fibration symmetries and broken symmetries in gene regulatory networks reveal
the functions of synchronization, clocks and memory through electronic analogues of transis-
tors, ring oscillators, current-mirror circuits, and flip-flops. They result in a hierarchy of build-
ing blocks with progressively more complex dynamics obtained by iterating a procedure of
replication and symmetry breaking. Beyond the circuits discussed here, the biological hierar-
chy can be extended to any number m of loops of length d and autoregulators in the fiber n, to
form ever more sophisticated circuits whose complexity is expressed in generalized Fibonacci
sequences Q; = nQ,_; + mQy_g4.

Gene regulatory structures are a mixture of combinational logic circuits, like FFF, and
sequential logic circuits, like FF. They provide the network with a structure analogous to a pro-
grammable logic device or chip where the ‘register’ is a set of flip-flop circuits tied up together
acting as the memory clock of the genetic network that feeds the combinatorial logic circuits
made of simpler feed-forward circuit of low symmetry. Complex biological circuitry can then
be seen as an emergent process guided by the laws of symmetry that determine biological func-
tions analogous to electronic components. The discovery of these building blocks and building
rules of logic computation will allow to: (1) systematically design synthetic genetic circuits fol-
lowing biological symmetry, and (2) systematically map the structure and function of all bio-
logical networks, from the symmetries of the connectome [35] to genetic [24], protein and
metabolic networks, following a first principle theoretical approach.

Supporting information

S1 File. Supplementary materials. Detailed description of all analytical solutions mentioned
in the main text, of the data acquisition and treatment, and detailed description of the pro-
posed algorithm to find fibers.

(PDF)

S2 File. List of symmetry and broken symmetry circuits. In S2 File we present a list of cir-
cuits found in different species.
(PDF)
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