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Insights into the challenges of 
Lyme disease diagnosis
Lyme disease is the most common tick-
borne infection in North America (1). 
Two-tiered serologic testing, consisting 
of an ELISA followed by immunoblotting 
against Borrelia antigens, is routinely used 
to aid clinicians in the diagnosis of Lyme 
disease. The sensitivity rates, however, 
are not always ideal, particularly during 
early infection, when Borrelia burgdorferi– 
specific antibodies have not yet developed 
(2, 3). In addition, the long-term presence 
of B. burgdorferi–specific antibodies after 
an initial infection can make serodiagno-
sis of a repeat infection difficult. In this 
issue of the JCI, Gwynne et al. demonstrate  
that mice developed antiphospholipid anti-
bodies following B. burgdorferi infection 
(Figure 1 and ref. 4). Further, the authors 
found many of the same antibodies in  
the sera of patients with Lyme disease, 

mostly in early disease marked by erythe-
ma migrans. A further comparison with 
sera from patients with syphilis implied 
that some of these antiphospholipid anti-
bodies were specific to B. burgdorferi infec-
tion. The findings suggest that antibodies 
against specific phospholipids could aid in 
the diagnosis of early or repeat infection by 
the Lyme disease spirochete.

Dependence of Borrelia on host 
lipids
The B. burgdorferi membrane includes 
lipoproteins and lipids, such as phospha-
tidylcholine (PC), phosphatidylglycerol 
(PG), and cholesterol (5–8). Because of an 
evolutionarily reduced genome, B. burg-
dorferi lack the metabolic pathways to 
synthesize many required lipids and rely 
on scavenging lipids from the host envi-
ronment or culture medium (9). Choles-
terol, for example, is taken directly from 

the host. Cholesterol and cholesterol- 
glycolipid rafts present on the B. burgdorferi 
surface can also interact with the lipid rafts 
of host cells and help Borrelia adhere to 
cells (10). Lipids are transferred between B. 
burgdorferi and host cells by direct contact 
and outer membrane vesicles released by 
the host (10). Using a delipidated medium, 
Gwynne et al. showed that B. burgdorferi 
was unable to grow in the absence of envi-
ronmental lipids and that this growth was 
restored when fatty acids and cholesterol 
were added to the medium (4). The growth 
was also dependent on the concentration 
of these fatty acids and cholesterol. While 
the Borrelia membrane is known to contain 
PC and PG (11), Gwynne and colleagues 
revealed that other phospholipids — phos-
phatidylethanolamine (PE), phosphati-
dylserine (PS), and phosphatidic acid (PA) 
— were incorporated into borrelial mem-
branes. Further, the study compared PC 
uptake in different bacteria and revealed 
that such uptake was specific to Borrelia 
and likely acquired by random diffusion. 
Borrelia lipase (bb0562) contributes to fatty 
acid scavenging and Borrelia survival under 
conditions in which free fatty acids are lim-
ited (12), but a comprehensive understand-
ing of uptake will require further work. 
Gwynne and co-authors also demonstrated 
that the ratio of environmental lipids found 
in the growth media directly correlated with 
the proportion of lipids found in the Borrelia 
membrane (4). This lipid ratio agrees with 
previous work, demonstrating that Borrelia 
membrane lipid composition reflects the 
environmental lipid composition. It stands 
to reason that the membranes of Borrelia 
infecting a host would reflect this pattern, 
whereby the composition of lipids in the 
host environment would directly relate to 
the composition of lipids in the infecting 
Borrelia membrane. Borrelia may scavenge 
host lipids as a strategy to evade the host 
immune response directed against Borrelia 
antigens. The incorporation of host fatty 
acids into the membrane may allow the spi-
rochetes to evade immune cells patrolling 
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Lyme disease is the most common tick-borne disease in North America and 
Europe, however, current biomarkers inconsistently detect the disease. In 
this issue of the JCI, Gwynne et al. revealed how the Lyme disease agent 
Borrelia burgdorferi relies on host lipids for growth. The authors used a 
murine model to show that B. burgdorferi infection led to the production 
of antibodies against phospholipids, possibly as a consequence of 
incorporation into the spirochete membrane. Antibodies were induced 
against phosphatidic acid, phosphatidylcholine, and phosphatidylserine. 
Notably, no antibodies against cardiolipin were found, distinguishing Lyme 
disease from syphilis and some other diseases. Sera samples from patients 
with Lyme disease suggested that these antibodies may help diagnose B. 
burgdorferi infection and that antibody titers may effectively indicate the 
response to treatment. These findings suggest that B. burgdorferi–induced 
anti-lipid antibodies, in conjunction with a careful clinical assessment, may 
aid in the diagnosis of Lyme disease.
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correctly identified antibody responses in 
individuals who only presented with ery-
thema migrans. In addition, the antiphos-
pholipid antibodies peaked during B. burg-
dorferi infection in humans and declined 
following antibiotic treatment, which con-
trasts with the more prolonged antibody 
response toward Borrelia antigens. These 
antiphospholipid responses could depend 
on invariant natural killer T (iNKT) cells, 
which are capable of recognizing lipid anti-
gens and assisting B cells with antibody 
production (23, 24). Future studies to val-
idate antiphospholipid responses with B. 
burgdorferi infection should include a larg-
er number of patients with Lyme disease 
and individuals with other infectious and 
autoimmune illnesses. The lipid autoanti-
bodies described in the study by Gwynne 
and colleagues represent potentially prom-
ising biomarkers that could aid clinicians in 
the diagnosis of Lyme disease and mean-
ingfully impact patient outcomes.
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Antiphospholipid-specific 
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Antiphospholipid antibodies in 
different diseases
Gwynne and co-authors demonstrate that 
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recognizing host phospholipids, reveal-
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Figure 1. Model for antiphospholipid antibody production following Borrelia infection. Borrelia spiro-
chetes incorporate host lipids into the Borrelia membrane. Subsequently, the host develops antiphos-
pholipid antibodies against PC and PA. Elevated antiphospholipid antibodies may detect Lyme disease 
at early infection points in human serum.
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