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Abstract

Background

Prenatal phthalates exposures have been related to adiposity in peripuberty in a sex-spe-

cific fashion. Untargeted metabolomics analysis to assess circulating metabolites offers the

potential to characterize biochemical pathways by which early life exposures influence the

development of cardiometabolic risk during childhood and adolescence, prior to becoming

evident in clinical markers.

Methods

Among mother-child dyads from the Early Life Exposure in Mexico to ENvironmental Toxi-

cants (ELEMENT) birth cohort, we measured 9 phthalate metabolites and bisphenol A in

maternal spot urine samples obtained during each trimester of pregnancy, corrected for uri-

nary specific gravity and natural log-transformed. In 110 boys and 124 girls aged 8–14

years, we used a mass-spectrometry based untargeted metabolomics platform to measure

fasting serum metabolites, yielding 572 annotated metabolites. We estimated the associa-

tions between trimester-specific urinary toxicants and each serum metabolite, among all

children or stratified by sex and adjusting for child age, BMI z-score, and pubertal onset. We

accounted for multiple comparisons using a 10% false discovery rate (q<0.1).

Results

Associations between exposures and metabolites were observed among all children and in

sex-stratified analyses (q<0.1). First trimester MEP, MiBP, and MCPP were associated with

decreased 2-deoxy-D-glucose among all children. Among girls, third trimester
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concentrations of MECPP, MEHHP, MEHP, and MCPP were associated with 15, 13, 1, and

10 metabolites, respectively, including decreased choline and increased acylcarnitines and

saturated FAs (FA). Among boys, third trimester MIBP was positively associated with 9 fea-

tures including long chain saturated FAs, and second trimester MBzP was inversely associ-

ated with thyroxine.

Conclusions

Metabolomics biomarkers may reflect sex- and exposure timing-specific responses to pre-

natal phthalate exposures manifesting in childhood that may not be detected using standard

clinical markers of cardiometabolic risk.

Introduction

Phthalate esters and bisphenol A (BPA) are endocrine disrupting chemicals (EDCs) and plasti-

cizers found in a wide range of consumer products including but not limited to food packag-

ing, thermal paper, polycarbonate plastics, vinyl flooring, and personal care products [1–3].

These chemicals are detectable in samples from populations all around the world including in

pregnant women [4–8]. Exposure during pregnancy is particularly concerning as EDCs have

been implicated in the developmental origins of health and disease, especially as it relates to

risk for metabolic disorders. In epidemiological and rodent studies, prenatal phthalate or BPA

exposures have been associated with effects on adiposity, pubertal timing, hormone levels, and

metabolic biomarkers in childhood and adolescence [4, 9–16]. Relationships vary by toxicant,

sex, age of children assessed, and timing of exposure (e.g., trimester-specific). There is evi-

dence for gestation, and even certain periods of gestation, as critical windows of susceptibility

to the influence of EDCs on metabolic health. In the Early Life Exposure in Mexico to Environ-

mental Toxicants (ELEMENT) study, associations between prenatal exposures to phthalates or

BPA and adiposity and some metabolic outcomes have been reported in peripubertal children

[4, 11, 15–19]. Outcomes associated with prenatal phthalate exposures included adiposity [11],

BMI trajectories from 8 to 14 years of age [19], pubertal onset and reproductive hormone levels

[15, 16, 18], and fasting glucose and insulin-like growth factor 1 (IGF-1) [4]. While these stud-

ies link prenatal exposures to phthalates to adverse outcomes later in life, our understanding of

biological mechanisms leading to these long-term effects is limited.

The metabolome, encompassing all metabolites in a biological sample, provides insight on

the physiology of the system. Metabolomics has vast potential to improve risk assessment of

chemical exposures by augmenting our understanding of mechanisms of toxicity and disease,

and inter-individual susceptibility to toxicity. Ultimately, this knowledge would inform pre-

vention (i.e. reducing exposures) or intervention strategies to improve cardiometabolic health

[20]. Rodent and human studies suggest that effects from phthalates and BPA are detectable in

the metabolome [21–24], though longitudinal studies on prenatal exposures are limited. In

one study, adult rodents were exposed for four weeks to one of three doses of dibutylphthalate

(DBP) or one high dose of di(2-ethylhexyl)phthalate (DEHP). Dose-dependent (for DBP) and

sex-specific alterations (for DBP and DEHP) to the metabolome were reported with a greater

number of statistically significant findings in the males [21]. In a study using human-relevant

exposure levels, rats treated with diethyl phthalate (DEP) from gestation through adulthood

had 48 altered metabolites involved in pyruvate metabolism, sulfate conjugation, and other

pathways compared to controls [22]. In a cross-sectional study of Chinese adult males,
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associations between biomarkers for DEHP and DEP exposure and the urinary metabolome

were observed [23]. Taken together, these animal and human studies demonstrate the poten-

tial short-term impact of phthalate exposure on multiple classes of lipids, peroxisome prolifer-

ation, and amino acid metabolism. However, whether prenatal exposure to these toxicants

results in altered metabolism years later in childhood or adolescence remains unknown.

Utilizing rich data from the ELEMENT cohort study, we aim to address knowledge gaps

regarding the metabolite profiles in children associated with exposure to phthalates or BPA

assessed in maternal urine from first, second, and third trimesters of pregnancy (T1, T2, T3).

The overall goal is to elucidate altered biochemical pathways in childhood that may serve as

the link between exposures and adverse cardiometabolic outcomes. We hypothesize that pre-

natal exposures will be associated with metabolite profiles relevant to metabolic risk among

children. We hypothesize that associations will depend on the sex of the child and the trimester

of the exposure. We test these hypotheses using untargeted metabolomics to profile the serum

metabolome of 234 children (124 girls and 110 boys ages 8–14 years) from the ELEMENT

study.

Results

Characteristics of the study population

At enrollment during pregnancy, mothers were 27 years old on average, had completed a

median of 11.3 years of education and 71% were married or living with a partner (Table 1).

The urine concentration of BPA and phthalates during pregnancy (pre- and post-imputation)

are presented in S1 Table. The median age of the 234 children was 9.9 years, and 53% were

girls. Median age was the same for both boys and girls (9.9 years). Pubertal onset (Tanner stage

>1) was documented in 39% of the children (32% of girls and 46% of boys). The prevalence of

obesity and overweight were 18.2% and 22.4%, respectively, according to the WHO criteria

[25].

Table 1. Characteristics of the study population (n = 234).

Variable N (%) Mean (SD) or Median (IQR)�

Maternal characteristics during pregnancy:

Maternal age (years) 27.0 (5.7)

Maternal Education (years completed) 11.5 (9, 12)

Marital Status Married 167 (71.4%)

Other 67 (28.6%)

Cohort of ELEMENT 2nd 58 (24.8%)

3rd 176 (75.2%)

Child characteristics:
Sex Boys 110 (47.0%)

Girls 124 (53.0%)

At time of sample collection for metabolomics:
Child’s age (years) 9.9 (8.8, 11)

BMI Z-score 0.862 (1.243)

Pubertal onset Yes 91 (38.9%)

No 143 (61.1%)

�Mean and SD reported for normally distributed variables. Median, Q1 and Q3 are reported otherwise (for maternal

education and child’s age).

IQR = interquartile range; SD = standard deviation

https://doi.org/10.1371/journal.pone.0272794.t001

PLOS ONE Phthalate exposures and metabolomics in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0272794 August 30, 2022 3 / 20

https://doi.org/10.1371/journal.pone.0272794.t001
https://doi.org/10.1371/journal.pone.0272794


Toxicants and metabolites: All children

Linear models were run to examine associations between nine trimester-specific urinary

phthalate concentrations or BPA from T1, T2, and T3 and 572 known metabolites measured

in serum of 234 children. S2 Table summarizes the number of associations between exposure

and metabolites for models with all children and sex-stratified models that are statistically sig-

nificant (q<0.1). Among all children, four phthalates were significantly associated with metab-

olites (Table 2). MBP, MEP and MCPP in T1 were all associated with decreased 2-deoxy-D-

glucose (beta coefficient ± standard error = -0.31±0.08). MCPP was also associated with

increased phosphoserine 41:7 (β = 0.27±0.07). No toxicants assessed in T2 were significantly

associated with metabolites. In T3, MBP was associated with increased homoserine (β = 0.26

±0.07) and MIBP with increased medium and long chain saturated FAs (β = 0.25 to 0.26).

There were no significant associations between BPA or other phthalates and metabolites (all

q>0.1).

Toxicants and metabolites: Girls

Statistically significant relationships between prenatal phthalate concentrations (specifically,

MCPP and biomarkers of DEHP exposure during T3) and metabolites were observed among

124 girls (Table 3). MCPP was positively associated with 10 metabolites including acylcarni-

tines and FAs from the keto pathway (i.e. 7-oxo-11E-tetradecenoic acid). Biomarkers of DEHP

exposure (MECPP, MEHHP, and MEHP) displayed significant associations with 15, 13, and 1

known metabolites, respectively. Diacylglycerol 34:5 was inversely associated with all three (βs

= -0.36 to -0.27). Seven other metabolites were associated with MECPP and MEHHP:

decreased choline and sn-glycero-3-phosphocholine (βs = -0.35 to -0.28); increased phenylala-

nine dipeptide, phosphatidylinositol 38:1, dicarboxylate FA 14:0, riboflavin, and testosterone.

To identify clusters of correlated metabolites that might be influenced by phthalate expo-

sure, we assessed the relationship between exposure-associated metabolites with each other.

Table 2. Significant associations (q<0.1) between maternal trimester-specific phthalates and metabolites among 234 children.

Exposure Trimester of

Exposure Measure

Metabolite

Name��
Model

Estimate� (SE)

p-value q-

value

Mass Retention

Time

Ionization

Mode

Sub Pathway

MEP T1 2-deoxy-D-

glucose

-0.305 (0.08) 1.80E-

04

0.099 164.0684 0.7048 N Fructose, Mannose and Galactose

Metabolism

MBP T1 2-deoxy-D-

glucose

-0.311 (0.08) 1.29E-

04

0.074 164.0684 0.7048 N Fructose, Mannose and Galactose

Metabolism

T3 homoserine 0.256 (0.065) 1.04E-

04

0.059 119.0581 0.6843 P Glycine, Serine and Threonine

Metabolism

MIBP T3 FA 14:0 0.248 (0.067) 2.46E-

04

0.051 228.2091 22.4071 N Long Chain Fatty Acid

FA 15:0 0.249 (0.068) 3.02E-

04

0.051 242.2245 22.6196 N Long Chain Fatty Acid

FA 12:0 0.263 (0.067) 1.26E-

04

0.051 200.1775 21.7155 N Medium Chain Fatty Acid

MCPP T1 phosphoserine

41:7

0.271 (0.067) 7.20E-

05

0.041 847.5315 24.3775 P Glycerophosphoserines

2-deoxy-D-

glucose

-0.307 (0.079) 1.44E-

04

0.041 164.0684 0.7048 N Fructose, Mannose and Galactose

Metabolism

�Estimate is for the exposure (first ln-transformed and standardized to mean 0, variance 1) in a model of the metabolite, adjusting for age, BMI z-score, pubertal onset

(yes/no), and sex.

��FA = fatty acid

https://doi.org/10.1371/journal.pone.0272794.t002
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Table 3. Significant associations (q<0.1) between maternal phthalate exposures during third trimester and metabolites among 124 girls.

Exposure Metabolite Name�� Model Estimate���

(SE)

p-value q-

value

Mass Retention

Time

Ionization

Mode

Sub Pathway

MCPP AC 8:0 (OH) 0.357 (0.092) 1.64E-

04

0.050 303.2045 7.9590 P Fatty Acid Metabolism(Acyl Carnitine),

hydroxy

AC 6:0 (OH) 0.335 (0.089) 2.66E-

04

0.050 275.1739 3.5536 P Fatty Acid Metabolism(Acyl Carnitine),

hydroxy

AC 10:0 (OH) 0.329 (0.091) 4.42E-

04

0.050 331.2357 12.4937 P Fatty Acid Metabolism(Acyl Carnitine),

hydroxy

Keto 14:0 0.325 (0.09) 4.60E-

04

0.050 242.1884 20.7967 N Fatty Acid, Keto

AC 14:1 0.326 (0.091) 4.64E-

04

0.050 369.2874 18.9595 P Fatty Acid Metabolism(Acyl Carnitine)

FA 12:0 (OH) 0.333 (0.093) 5.20E-

04

0.050 216.1724 19.3867 N Fatty acid,hydroxy

O-Acetylcarnitine 0.303 (0.088) 7.57E-

04

0.062 203.116 0.9144 P Fatty Acid Metabolism; BCAA

Metabolism

AC 4:0 (OH) 0.302 (0.089) 9.33E-

04

0.064 247.1422 1.1458 P Fatty Acid Metabolism(Acyl Carnitine),

hydroxy

FA 10:0 (OH) 0.299 (0.089) 1.01E-

03

0.064 188.1411 16.3034 N Fatty acid,hydroxy

7-oxo-11E-tetradecenoic

acid

0.291 (0.09) 1.51E-

03

0.086 240.1727 19.6346 N Fatty Acid, Keto

MECPP Sn-glycero-

3-phosphocholine

-0.34 (0.083) 7.88E-

05

0.036 257.1031 0.6142 P Glycerophosphocholines

dipeptide (phe phe) 0.383 (0.099) 1.78E-

04

0.041 312.1484 8.4177 P Dipeptide

PI 38:1 0.297 (0.086) 7.76E-

04

0.071 752.4347 22.0423 P Phosphatidylinositol

FA 12:0 (OH) 0.294 (0.088) 1.19E-

03

0.071 216.1724 19.3867 N Fatty acid,hydroxy

choline -0.278 (0.084) 1.22E-

03

0.071 104.1083 0.6329 P Phospholipid Metabolism

Dicarboxylic FA 14:0

(OH)

0.318 (0.096) 1.24E-

03

0.071 274.1783 15.6881 P Fatty Acid, Dicarboxylate, hydroxy

DG 34:5 -0.276 (0.084) 1.36E-

03

0.071 586.4577 24.8626 P Diacylglycerol

Keto 14:0 0.28 (0.086) 1.46E-

03

0.071 242.1884 20.7967 N Fatty Acid, Keto

riboflavin 0.3 (0.092) 1.50E-

03

0.071 376.1322 14.1228 N Riboflavin Metabolism

testosterone 0.293 (0.09) 1.54E-

03

0.071 288.1938 17.0763 P Steroid

PI 36:1 0.285 (0.09) 1.88E-

03

0.079 724.4045 21.8264 P Phosphatidylinositol

AC 8:0 (OH) 0.282 (0.09) 2.16E-

03

0.083 303.2045 7.9590 P Fatty Acid Metabolism(Acyl Carnitine),

hydroxy

L-histidine -0.26 (0.086) 2.91E-

03

0.096 155.0693 0.6378 N Histidine Metabolism

tripeptide (gly pro val) 0.274 (0.09) 3.04E-

03

0.096 271.1541 2.8976 P Tripeptide

Dicarboxylic FA 13:0

(OH)

0.274 (0.091) 3.13E-

03

0.096 260.1627 14.1495 P Fatty Acid, Dicarboxylate, hydroxy

(Continued)
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Figs 1, 2, S1 and S2 Figs display these clusters; we refer to them hereafter by their labels within

the figures. There were 2 clusters of highly correlated metabolites associated with T3 MCPP

exposure: 1) a FA metabolism cluster (acylcarnitines and other carnitines, decenoic acids and

other 10 to 16 carbon FAs) that was positively associated with T3 MCPP (Cluster 1 in Fig 1)

and 2) diacylglycerols (DGs) that were inversely associated with T3 MCPP. Correlation analy-

sis of metabolites associated with the DEHP biomarkers MECPP (Fig 2) or MEHHP (S1 Fig)

among girls were similar, showing 3 clusters. The largest cluster (Cluster 2 in the figures)

included testosterone, riboflavin, dicarboxylic FAs, phosphatidylinositols (PIs) and phospha-

tidic acids (PAs) that were correlated with one another and positively associated with MECPP

and/or MEHPP. The next cluster contained acylcarnitines and medium to long-chain FAs,

Table 3. (Continued)

Exposure Metabolite Name�� Model Estimate���

(SE)

p-value q-

value

Mass Retention

Time

Ionization

Mode

Sub Pathway

MEHHP Sn-glycero-

3-phosphocholine

-0.352 (0.087) 8.96E-

05

0.039 257.1031 0.6142 P Glycerophosphocholines

choline -0.336 (0.086) 1.64E-

04

0.039 104.1083 0.6329 P Phospholipid Metabolism

riboflavin 0.335 (0.096) 6.77E-

04

0.076 376.1322 14.1228 N Riboflavin Metabolism

Dicarboxylic FA 14:0

(OH)

0.342 (0.1) 8.64E-

04

0.076 274.1783 15.6881 P Fatty Acid, Dicarboxylate, hydroxy

DG 34:5 -0.299 (0.087) 8.73E-

04

0.076 586.4577 24.8626 P Diacylglycerol

1,2-dipalmitoyl-sn-

glycerol

-0.3 (0.09) 1.22E-

03

0.076 568.5067 26.2195 P Diacylglycerol

dipeptide (phe phe) 0.347 (0.105) 1.27E-

03

0.076 312.1484 8.4177 P Dipeptide

PA 25:3 0.285 (0.088) 1.58E-

03

0.076 530.3468 21.4930 N Glycerophosphates

testosterone 0.305 (0.094) 1.59E-

03

0.076 288.1938 17.0763 P Steroid

PI 38:1 0.292 (0.09) 1.60E-

03

0.076 752.4347 22.0423 P Phosphatidylinositol

Dicarboxylic FA 15:0

(OH)

0.29 (0.091) 1.76E-

03

0.077 288.1942 17.0413 N Fatty Acid, Dicarboxylate, hydroxy

dipeptide 0.349 (0.111) 2.01E-

03

0.079 278.1628 7.8247 P Dipeptide

tripeptide (tyr trp leu) 0.299 (0.095) 2.14E-

03

0.079 457.2177 4.0797 P Tripeptide

MEHP DG 34:5 -0.363 (0.094) 1.91E-

04

0.092 586.4577 24.8626 P Diacylglycerol

∑DEHP� DG 34:5 -0.311 (0.086) 4.42E-

04

0.095 586.4577 24.8626 P Diacylglycerol

Sn-glycero-

3-phosphocholine

-0.31 (0.087) 5.28E-

04

0.095 257.1031 0.6142 P Glycerophosphocholines

FA 12:0 (OH) 0.32 (0.091) 6.08E-

04

0.095 216.1724 19.3867 N Fatty acid,hydroxy

�Molar sum of DEHP biomarkers: MEHP, MEHHP, MEOHP, MECPP

��FA = fatty acid; (OH) = hydroxy; AC = acyl carnitine; PI = phosphatidylinositol; PA = glycerophosphate; DG = diacylglycerol

���Estimate is for the exposure (first ln-transformed and standardized to mean 0, variance 1) in a model of the metabolite, adjusting for age, BMI z-score, and pubertal

onset (yes/no). The only statistically significant associations were between T3 phthalates and metabolites which are shown here.

https://doi.org/10.1371/journal.pone.0272794.t003
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which were also positively associated with T3 exposure (Cluster 3). The last cluster includes

choline, histidine, and diacylglycerols which were inversely associated with exposure (Cluster

4).

Toxicants and metabolites: Boys

There were some statistically significant associations between metabolites and prenatal phthal-

ate exposures among 110 boys (Table 4). In T2, MBP was positively associated with a glycero-

phosphocholine/ethanoloamine (β = 0.44±0.09), and MBzP was inversely associated with

thyroxine (β = -0.34±0.09) and a 16-chain dicarboxylic FA (β = -0.35±0.09). In T3, MIBP was

associated with lower glucose (β = -0.28±0.08) as well as increased long and medium chain

FAs and a 17-chain unsaturated dicarboxylic FA. Cluster analysis of the T3 MIBP results

revealed 2 clusters of correlated metabolites (S2 Fig). The largest cluster consisted of long

chain and very long chain FAs along with ceramides, DGs, phytanate and more (Cluster 5 in

S2 Fig). T3 MIBP was positively associated with the metabolites in this cluster. The next set of

metabolites (Cluster 6) included thyroxine, PCs, and PEs, which were inversely associated with

T3 MIBP.

Discussion

In this study, we observed associations between prenatal exposures to phthalates and the circu-

lating metabolome in children ages 8 to 14 years that were in many cases trimester-, sex-, and

exposure-specific. Phthalates are high production volume chemicals that humans are ubiqui-

tously exposed to through consumer products and the built environment. The greatest number

of statistically significant associations was observed in the girls-only analysis with T3 exposures

including MCPP associated with acylcarnitines and biomarkers of DEHP exposure (MEHP,

MEHHP and MECPP) associated with lipid-related metabolites. In the boys-only analysis, T2

or T3 MBP, MBzP, and MIBP were associated with long chain FAs and several other

metabolites.

These findings inform our understanding of the biological processes impacted by phthalates

that may underlie longer term cardiometabolic effects. Profiling the metabolome provides a

composite measure of biological function and may enable identification of subclinical signs of

toxicity. Most of the statistically significant associations were from sex-stratified analyses.

However, several metabolites stood out in the analysis of all children together. Maternal uri-

nary concentrations of MEP, MiBP, and MCPP in the first trimester were each associated with

decreased 2-deoxy-D-glucose. This is a compound implicated in the metabolism of sugars

(galactose, mannose, fructose) that is not broken down by glycolysis. Altered expression of glu-

cose transporters, such as GLUT1, could explain the association between phthalates and

2-deoxy-D-glucose we observed. An in vitro study using a human pancreatic beta-cell line

(1.1B4) found treatment of MEP led to increased expression of GLUT1 [26]. Increased GLUT1

could lead to more transport of glucose and deoxy-D-glucose into cells (i.e. erythrocytes)

resulting in lower levels in the serum as reflected here.

Fig 1. Clustering of metabolites associated with third trimester maternal urinary mcpp among girls. Metabolites

that had p-values<0.05 for their association with T3 MCPP exposure among girls in childhood are included in the

heatmap below; an �is next to the name of metabolites significant at q-value<0.1. The heatmap shows the Pearson

correlation between these metabolites with each other, and metabolites are ordered by hierarchal clustering. The blue-

gray color indicates an inverse correlation while red indicates a positive correlation. The Cluster 1 box indicates a

group of metabolites that are strongly positively correlated with one another.

https://doi.org/10.1371/journal.pone.0272794.g001
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Statistically significant associations (q<0.1) were observed in the girls-only analysis

between T3 exposures (DEHP metabolites) with three major clusters of metabolites. A cluster

including diacylglycerol 34:5, choline, sn-glycero-3-phosphocholine, and histidine were

inversely associated with these phthalates (Cluster 4 in Fig 2 and S1 Fig). Diacylglycerols (DG)

are lipids important for the structure of membranes, lipid metabolism and DG-dependent sig-

naling. It has been suggested that alterations in the metabolism of DGs are related to metabolic

diseases, including diabetes [27]. In our study, we found that SDEHP and individual DEHP

metabolites were consistently and inversely associated with long-chain DG 34:5. This is consis-

tent with a zebrafish study of embryonic administration of DEHP that reported reduced con-

centrations of saturated DGs, triglycerides, and other lipids [28]. DGs, choline, and sn-

glycero-3-phosphocholine, which were inversely associated with DEHP biomarkers among

girls, are connected to the choline metabolism pathway. Choline is important for cellular

maintenance and growth, membrane synthesis, lipid transport, one-carbon metabolism, and

Fig 2. Correlation among metabolites associated with maternal third trimester mecpp concentrations in

peripubertal girls. Metabolites that were associated with T3 MECPP among girls at an uncorrected p-value<0.05 are

included in the heatmap below; an asterisk � is next to the name of metabolites significant at q-value<0.1. The heatmap

shows the Pearson correlation between these metabolites with each other, and metabolites are ordered by hierarchal

clustering. The blue-gray color indicates an inverse correlation while red indicates a positive correlation. The Cluster 2,

3, and 4 boxes denote groups of metabolites that are strongly positively correlated with one another.

https://doi.org/10.1371/journal.pone.0272794.g002

Table 4. Significant associations (q<0.1) between maternal trimester-specific phthalates and metabolites among 110 boys.

Exposure Metabolite Name� Model Estimate�

(SE)

p-value q-

value

Mass Retention

Time

Ionization

Mode

Sub Pathway

MBP—T2 PC 32:2 or PE

35:2

0.439 (0.092) 6.61E-

06

0.003 729.5338 23.8939 P Glycerophosphocholines or

Glycerophosphoethanolamines

MIBP—

T3

FA 15:0 0.382 (0.092) 6.86E-

05

0.032 242.2245 22.6196 N Long Chain Fatty Acid

FA 14:0 0.323 (0.087) 3.05E-

04

0.042 228.2091 22.4071 N Long Chain Fatty Acid

glucose -0.284 (0.076) 3.12E-

04

0.042 180.0636 0.6499 N Fructose, Mannose and Galactose Metabolism

FA 12:0 0.318 (0.087) 3.87E-

04

0.042 200.1775 21.7155 N Medium Chain Fatty Acid

PC 37:7 or PE

40:7

-0.344 (0.095) 4.52E-

04

0.042 789.5631 24.9077 P Glycerophosphocholines or

Glycerophosphoethanolamines

Dicarboxylic FA

17:2

0.322 (0.092) 6.92E-

04

0.054 296.1984 22.4103 N Fatty Acid, Dicarboxylate

FA 18:0 0.292 (0.087) 1.05E-

03

0.065 284.2719 23.1444 N Long Chain Fatty Acid

FA 20:0 0.279 (0.083) 1.12E-

03

0.065 312.303 23.4789 N Long Chain Fatty Acid

FA 16:0 0.285 (0.089) 1.80E-

03

0.093 256.2406 22.8039 N Long Chain Fatty Acid

MBzP—

T2

Dicarboxylic FA

16:0

-0.349 (0.091) 2.10E-

04

0.063 286.2147 21.1076 N Fatty Acid, Dicarboxylate

Thyroxine -0.336 (0.094) 5.75E-

04

0.086 776.6865 16.1400 P Thyroxine Metabolism

�PC = phosphocholine; PE = phosphoethanolamine; FA = fatty acid; T2 = second trimester; T3 = third trimester

��Estimate is for the exposure (first ln-transformed and standardized to mean 0, variance 1) in a model of the metabolite, adjusting for age, BMI z-score, and pubertal

onset (yes/no).

https://doi.org/10.1371/journal.pone.0272794.t004
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neurotransmission [29]. The importance of decreased choline and related metabolites in Clus-

ter 4 by prenatal DEHP exposure for long-term health, including cardiometabolic health and

neurodevelopment, merits further consideration since studies using human and animal cell

lines exposed to phthalates have shown deleterious effects of phthalates on the neuroendocrine

system and neurodevelopment [30, 31].

For girls, DEHP exposure were also associated with increases in a cluster of metabolites

including testosterone, phenylalanine dipeptide, PIs, PAs, dicarboxylic FAs, and riboflavin

(Cluster 2 of Fig 2 and S1 Fig). Similar to our findings, in a study that analyzed urinary phthal-

ates in the 3rd trimester and metabolomics among pregnant women, testosterone was found to

be positively associated with the phthalates MCNP and MEP; yet metabolomics were measured

in the mothers and not the children [32]. Phthalates are notorious for their disruption of

reproductive hormones and outcomes [33]. The influence of prenatal exposure on peripuber-

tal hormones is only recently coming to light. In this same ELEMENT study population, we

reported that T3 MEHP was associated with early adrenarche (higher odds for Tanner stage>1

for pubic hair development), and prenatal MEP exposure was associated with greater serum

testosterone among girls (ages 8–14 years). We also reported that T3 MBP, MiBP, SDEHP,

and MCPP were associated with higher serum DHEA-S among girls [15]. Using the metabolo-

mics data, T3 concentrations of the same phthalates were positively associated with DHEA-S,

yet only the associations with DEHP biomarkers were near statistical significance. Collectively,

data suggest that late gestational exposure to DEHP, and potentially other phthalates, increases

androgens among peri-pubescent girls. These hormonal changes could be contributing to out-

comes that were previously associated with T3 DEHP in ELEMENT girls: earlier onset of adre-

narche and higher BMI trajectory by age 14 years [15, 19].

Third trimester biomarkers of DEHP were positively associated with additional metabolites

in Cluster 2 among girls include PIs, PAs, and dicarboxylic acids. Of interest, T3 MECPP and

MEHHP are positively associated with multiple saturated dicarboxylic FAs, which are formed

during omega-oxidation of FAs or CoA esters. Omega oxidation increases due to excess fat

intake (e.g. ketogenic conditions) or inadequate mitochondrial beta-oxidation [34]. In girls,

T3 MCPP is associated with the third distinct cluster of metabolites including increased levels

of acylcarnitines and medium to long chain hydroxy FAs (Cluster 3 in Fig 2 and S1 Fig). Acyl-

carnitines are produced during mitochondrial β-oxidation and are required for transport of

fatty acyl-CoA esters across the mitochondrial membrane [35]. This may be one link to the

known association between phthalate exposure and obesity risk given that beta oxidation is

involved in numerous obesity-related physiological processes, including lipid metabolism,

hepatic fat accrual, and glucose-insulin homeostasis [36, 37].

Among boys, third trimester MIBP was positively associated with six medium- and long-

chain saturated FAs and a dicarboxylic FA (q<0.1 for each metabolite). A larger set of corre-

lated metabolites related to lipid metabolism and synthesis including DGs, ceramides, lysopho-

sphatidylethanolamines, lysoPCs, and medium to very-long chain FAs were positively

associated with T3 MIBP among boys at a relaxed p<0.05 (S2 Fig, Cluster 5). The biological

impact of increased medium and long-chain FAs around the time of puberty among boys is

uncertain, and its relationship with adiposity may differ by age and diet. Previously in the ELE-

MENT cohort, the highest tertiles of MiBP, MBzP, MEHP, and MEHHP were associated with

the lowest BMI by age 14 years [19]. Contrarily, positive associations between prenatal bio-

markers of low- (MBP, MEP) and high-molecular weight (SDEHP, MBzP) phthalates with

BMI and waist circumference (standardized to age and sex) were found in children (5–12

years of age) from a Mexican-American cohort. When stratifying by sex, MBP and MCPP

were positively associated with BMI and waist circumference only in boys [38]. Among boys,

we also observed an inverse association between T3 MIBP and glucose. This corroborates our
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previous finding among pubertal boys from the same cohort using standard laboratory assess-

ment of fasting glucose that showed lower glucose with greater prenatal DBP (MBP and MiBP)

or MCPP exposure [17].

The biological mechanisms by which prenatal phthalate exposures alter metabolism and

biological function through childhood and adolescence is not entirely known but may include

peroxisome proliferator-activated receptor (PPAR) activation, disruption of sex steroid and

thyroid hormone synthesis and signaling [39–41], and/or epigenetic programming (reviewed

previously [42, 43]). Phthalates can activate PPARs—transcription factors that regulate genes

involved in adipogenesis, lipid metabolism, and other biological pathways [44, 45]. Activation

of these receptors during pregnancy could lead to aberrant transcription and epigenetic pro-

gramming of PPAR-target genes which could influence gene regulation later in childhood

[46]. Studies using candidate gene and epigenome-wide approaches have identified associa-

tions between prenatal phthalate exposure and DNA methylation at genes related to growth,

endocrine function, metabolism, and inflammation [47, 48]. Since sex-specific associations in

this study were almost exclusively with T3 exposures, it is possible this relationship with PPAR

activation and its subsequent biological effects occur after sexual dimorphism during gestation.

Although hormone fluctuations and the development of gonads extend through T3 in both

sexes, subtle differences in timing could contribute to differences in effects of phthalates

between the sexes [49].

This study used a novel discovery approach with untargeted metabolomics to elucidate

pathways that may underlie the sex- and trimester-specific effects of phthalate exposures mani-

fested later on in childhood. This study had limitations including sample size. Statistical power

was greater in the girls-only analysis due to sample size. By nature, many metabolites are corre-

lated with one another and the phthalate biomarkers are also correlated with one another

within trimesters which may have led to overlap in some of the results. Urinary phthalates and

BPA have short half-lives, and spot urine collection once during each trimester may not reflect

typical exposure throughout that trimester. The one-time metabolomics measure is also a limi-

tation as we are unable to make inferences about metabolic flux, and we did not include dietary

information which could be a confounder. Not all metabolites can be assigned a unique iden-

tity (i.e. DG 34:5 could represent DG 18:2/16:3 or DG 18:3/16:2 as the double bond location

cannot be determined with untargeted data). As such, targeted validation should be done in

future studies for top metabolites of interest.

In summary, we report sex- and trimester-specific associations between biomarkers of pre-

natal phthalate exposures and metabolites in the serum of 8–14 year old children living in

Mexico City. Altered metabolites include those involved in lipid metabolism, utilization, and

transport and thyroid and reproductive hormones. Lipid metabolism and hormones have

been associated with phthalates in animal and human studies of children or adults. This is one

of the first studies to show this association with prenatal exposures, and findings build upon

our understanding of how prenatal phthalate exposures may impact risk for cardiometabolic

complications throughout life (Fig 3). Screening the metabolome instead of traditional lipid

(i.e. cholesterol) or hormone panels enabled detection of potential biomarkers of toxicity from

many pathways of interest. Altered metabolites may biological processes that lead to long-last-

ing health effects from prenatal exposures.

Materials and methods

Study sample

Participants for this study were 234 children age 8–14 years who were originally enrolled in

two cohorts from the ELEMENT study. The ELEMENT project consists of 3 sequentially

PLOS ONE Phthalate exposures and metabolomics in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0272794 August 30, 2022 12 / 20

https://doi.org/10.1371/journal.pone.0272794


enrolled mother-child cohorts from three maternity hospitals in Mexico City. Families from

Cohorts 2 and 3 that were followed-up through peripuberty and had archived samples from

pregnancy for exposure assessment were included in this study [50–53]. Initially, women were

recruited from 1997 to 2004 during pregnancy. Children were subsequently followed up

throughout childhood. The subset of participants who had archived prenatal urine samples

and were followed-up at a visit in 2011–2012 when the children were 8–14 years are included

in this analysis (see [54] for further details). At the follow up visits, demographic and dietary

data were collected via questionnaires, anthropometry measures were taken, and biospecimen

(serum, spot urine samples, whole blood) were collected from the children as previously

described [11].

Prior to participation, research staff explained study procedures to mothers and children.

Mothers provided written consent upon enrollment in the study and at each follow-up visit,

and children provided assent for the follow-up. The research protocol was approved by the

Human Subjects Committee of the National Institute of Public Health of Mexico and the Inter-

nal Review Board at participating institutions including the University of Michigan.

BPA and phthalate assessment in pregnancy samples

Total BPA and nine mono-ester metabolites of phthalate di-esters were analyzed in maternal

spot urine samples from T1, T2, and T3 with isotope dilution-liquid chromatography- tandem

mass spectrometry (ID-LC-MS/MS) at NSF International (Ann Arbor, MI, USA) as previously

detailed [2, 16, 55]. The specific phthalate analytes were low molecular weight phthalates—

monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate

(MIBP)–and high molecular weight phthalates—mono(3-carboxypropyl) phthalate (MCPP),

monobenzyl phthalate (MBzP), and four biomarkers of DEHP exposure: mono(2-ethylhexyl)

phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxo-

hexyl) phthalate (MEOHP), and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP). Specific

gravity of urine samples at each trimester was also measured using a digital refractometer.

Fig 3. Schematic of the relationship between gestational phthalate exposures, childhood outcomes, and long-term

health. Phthalate exposures during pregnancy have been associated with multiple biological responses in children that

may underlie risk for cardiometabolic diseases later in adulthood. The graph below highlights connections with

evidence from association studies including this study (thick arrows), other published studies (thin arrows), and

hypothesized relationships (dashed-line arrows). T1 phthalate exposures, before sexual dimorphism, may influence all

children; sex-specific associations with metabolomics were reported with exposures from T2 and T3. In summary, 1)

previous ELEMENT studies and the current study identified associations between prenatal phthalate exposures and

steroid hormone concentrations in peripuberty. 2) Previous studies reported sex-specific associations between prenatal

phthalate exposures and adiposity in children/adolescents. 3) In this study, we identified relationships between

prenatal phthalate exposures and metabolites including those involved in lipid metabolism and transport. 4) The

pubertal transition is a time of rapid change when hormone levels, adiposity, pubertal onset, and metabolism all

influence one another. 5) We hypothesize that these biological changes in childhood, including to the metabolome, are

on the path leading to cardiometabolic risk from early-life phthalate exposures.

https://doi.org/10.1371/journal.pone.0272794.g003

PLOS ONE Phthalate exposures and metabolomics in children

PLOS ONE | https://doi.org/10.1371/journal.pone.0272794 August 30, 2022 13 / 20

https://doi.org/10.1371/journal.pone.0272794.g003
https://doi.org/10.1371/journal.pone.0272794


Metabolomics in child samples

The metabolome was assessed via an untargeted platform in fasting serum samples collected

from ELEMENT children at the peri-pubertal study visit. Samples were immediately frozen

following collection, and stored at -80˚C until analysis. At the Michigan Regional Comprehen-

sive Metabolomics Resource Core, liquid chromatography mass spectrometry (LC-MS) was

used to detect 9,303 features in positive or negative mode [56]. Briefly, metabolites were

extracted using a solvent of 1:1:1 Methanol: Acetonitrile: Acetone with internal standards

using 100 ml extraction solvent and 4 ml internal standard mixture. The 1290 Infinity Binary

liquid chromatography system (Agilent Technologies, Inc., Santa Clara, CA) was used for

chromatographic separation together with Waters Acquity UPLC HSS T3 1.8 μm 2.1 x 100

mm column in connection with a Water Acquity UPLC HSS T3 1.8 μm VanGuard pre-col-

umn. Samples were reconstituted with solvent (Methanol: Water, 2: 98). The total run time

was 34 minutes with a flow rate of 0.45 mL/min and column temperature of 55 degrees C. The

6530 Accurate-Mass Q-TOF (Agilent Technologies, Inc., Santa Clara, CA) with a dual ASJ ESI

ion source was used as the mass detector. Mass spectrometry was run in positive and negative

ionization modes; the positive mode was run first, and six samples had missing negative mode

data due to lack of remaining sample.

Raw data processing identified chromatographic peaks representing metabolite features

using a modified version of existing commercial software (Agilent MassHunter Qualitative

Analysis). After the removal of redundant compounds or those missing in >70% of samples,

3,758 features remained [57]. Metabolites were annotated by matching MS/MS fragmentation

patterns, retention times, and ionization masses to metabolites within the laboratory’s com-

pound library, allowing for the annotation of 572 annotated compounds (denoted as ‘known’)

that were used for analysis hereafter. Lipids are reported with the nomenclature as X:Y, where

X is the length of the carbon chain and Y is the number of double bonds.

Data analysis: Preprocessing and missing data imputation

Prior to statistical analysis, metabolomics data were normalized, adjusted for batch effects,

and missing values were imputed within each model [37]. Within-batch peak intensities

were adjusted for batch drift using LOESS regression; the extent of batch drift was deter-

mined by pooled samples used as quality control in each batch. Across-batch peak intensi-

ties were adjusted for drift by a multiplicative factor of the ratio between the median

intensity of the batch-specific quality control samples and the median intensity of all qual-

ity control samples. Missing metabolite values were imputed using the K-nearest-neigh-

bour algorithm (K = 5) with the IMPUTE package in R from Bioconductor. Finally, each

metabolite was normalized (log transformed and then standardized to mean 0 and vari-

ance 1).

BPA and phthalates measures below the LOD were treated as LOD/sqrt(2). Since 4 of

the phthalate mono-esters stem from the same parent compound, we calculated the molar

sum of DEHP exposure (MECPP, MEHHP, MEHP, and MEOHP) at each trimester and

ran models with that in addition to individual mono-esters. All BPA and phthalate data

were adjusted for specific gravity, natural log-transformed, and standardized (mean 0,

variance 1) prior to statistical analysis. There were missing data in the trimester-specific

BPA and phthalate measures due to mothers missing one or more study visits. Thus, miss-

ing exposure data (n = 34, 34, and 10 for T1, T2, and T3, respectively) were imputed using

K-nearest-neighbor imputation with K = 5, borrowing information from mother’s age

during pregnancy, years of education, marital status, cohort, and observed exposure val-

ues from available trimesters of pregnancy.
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Covariates

Height and weight were assessed as previously described by trained personnel at the study

visit, and BMI were converted to age- and sex-specific z-scores according to WHO criteria

[58]. Child’s age was standardized to a similar scale (mean 0, standard deviation 1). Tanner

staging (scale of 1 to 5) of participants was assessed by a trained physician at the study visit

[59], and pubertal onset was defined as any pubic hair or genital/breast stage greater than one.

Statistical analysis

Multivariable linear regression models were used to assess the associations between individual

metabolites and individual trimester exposures, adjusting for children’s age, BMI z-score, sex

and pubertal onset. We expect both sex-dependent and–independent effects of phthalate expo-

sure, and as such we also conducted sex-stratified analyses. Multiple comparisons were

accounted for using the Benjamini-Hochberg procedure based on 572 models (for identified

metabolites) and a significance threshold of 10% (q<0.1, where q stands for the adjusted p-

value) [60]. Since BMI and puberty could be on the causal pathway (i.e. mediators) in the rela-

tionship between phthalates and metabolites, we also ran models excluding these variables and

compared the results with those of the statistically significant associations from the main

model. Effect estimates did not change substantially (<10%).

We performed additional analyses with phthalates that had the most significant associations

(q<0.1) with metabolites, e.g., T3 MIBP among boys and T3 MECPP, MEHHP, and MCPP

among girls. Since metabolites in similar biological pathways can be highly correlated with one

another, we assessed the relationship between exposure-associated metabolites with each

other. We ordered these metabolites by hierarchal clustering and produced a heatmap of their

Pearson correlations. In this analysis, we included the metabolomics features significantly

associated with exposure at q<0.1 and expanded the list to include features associated at an

uncorrected p-value<0.05. The purpose of this analysis was to identify exposure-associated

clusters of metabolites that were related to one another.

All statistical analyses were carried out using R (version > 3.2.0).

Supporting information

S1 Fig. Correlation among metabolites associated with maternal third trimester mehhp

concentrations in peripubertal girls. Metabolites were associated with T3 MEHHP exposure

among girls at an uncorrected p-value<0.05 are included in the heatmap below; an asterisk � is

next to the name of metabolites significant at q-value<0.1. The heatmap shows the Pearson

correlation between these metabolites with each other, and metabolites are ordered by hier-

archal clustering.

(TIF)

S2 Fig. Clustering of metabolites associated with maternal third trimester mibp concentra-

tions in boys. Metabolites that were associated with T3 MiBP exposure among boys at an

uncorrected p-value<0.05 are included in the heatmap below; an asterisk � is next to the name

of metabolites significant at q-value<0.1. The heatmap shows the Pearson correlation between

these metabolites with each other, and metabolites are ordered by hierarchal clustering.

(TIF)

S1 Table. Trimester-specific maternal urinary phthalate concentrations before and after

imputation.
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