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ABSTRACT Increasingly, researchers are interested in estimating the heritability of traits for nonmodel organ- ~ KEYWORDS
isms. However, estimating the heritability of these traits presents both experimental and statistical challenges,  heritability
which typically arise from logistical difficulties associated with rearing large numbers of families independently ~ nonmodel
in the field, a lack of known pedigree, the need to account for group or batch effects, etc. Here we develop organisms

common garden

binary variable
traits

coral settlement

both an empirical and computational methodology for estimating the narrow-sense heritability of traits for
highly fecund species. Our experimental approach controls for undesirable culturing effects while minimizing
culture numbers, increasing feasibility in the field. Our statistical approach accounts for known issues with
model-selection by using a permutation test to calculate significance values and includes both fitting and
power calculation methods. We further demonstrate that even with moderately high sample-sizes, the p-values
derived from asymptotic properties of the likelihood ratio test are overly conservative, thus reducing statistical
power. We illustrate our methodology by estimating the narrow-sense heritability for larval settlement, a key
life-history trait, in the reef-building coral Orbicella faveolata. The experimental, statistical, and computational
methods, along with all of the data from this study, are available in the R package multiDimBio.

Organisms with high fecundity, small propagule size, and limited
parental investment, also referred to as r-selected species, often exhibit
higher levels of nucleotide diversity and/or standing genetic variation
compared with k-selected species (Romiguier et al. 2014). Many marine
species, including fish and invertebrates, exhibit these r-selected life
history characteristics (Doherty and Fowler 1994) and indeed have
been shown to exhibit high levels of genetic diversity (Bay et al. 2004;
Davies et al. 2015). However, this high genetic diversity does little to
predict how a population will respond to environmental perturbations,
such as those caused by climate change. Instead, the key question is not
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how much variation is present, but what is the heritability of the traits
under selection after the perturbation. Quantifying narrow-sense her-
itability, the proportion of phenotypic variance attributable to additive
genetic effects (Lynch and Walsh 1998), for nonmodel organisms pre-
sents both experimental and statistical challenges. Most experiments
aiming to quantify narrow-sense heritability involve multigenerational
breeding programs and large numbers of crosses with many culture
replicates to account for “jar effects,” both of which are rarely feasible in
nonmodel species.

Here we present a quantitative genetic methodology for estimating
the narrow-sense heritability of traits in highly fecund species. The
method does not require the onerous sampling schemes usually required
for these types of experiments. Instead, our approach leverages high
fecundity by completing independent fertilizations with large quantities
of eggs equally divided among sires to account for sperm competition
(Figure 1). These cultures are then mixed into a single bulk culture
(common garden) and divided into three replicate tanks per dam. Bulk
larvae are then sorted according to the trait of interest, which in this
study is a binary trait (whether or not the larvae underwent metamor-
phosis in response to settlement cue). Single larvae that “succeeded”
and “failed” are then individually genotyped and their sire assignments
are compared with the predicted distribution of sire assignments in
the original design. This experimental design allows for all sires to be
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cultured in “common garden” conditions, which greatly reduces the
number of cultures compared with a standard approach, where each
family would be cultured individually, resulting in a culture number of
3% the number of sires. The narrow-sense heritability of these data can
be estimated using a generalized linear mixed model with a binomial
error distribution. However, as we discuss herein, appropriately deter-
mining statistical significance is nontrivial. This method of quantifying
heritability of binary traits is broadly applicable to many traits of in-
terest including—but not limited to—stress tolerance, dispersal poten-
tial, and disease susceptibility. Furthermore, the framework we have
developed—including the statistical methods—can be readily adapted to
traits with different distributions, e.g., normally distributed phenotypes.

To demonstrate this methodology, we estimated the heritability of
dispersal potential in reef-building coral larvae. The majority of corals—
like many other marine invertebrates—release gametes into the water
annually. These gametes develop into planktonic larvae that are dis-
persed by ocean currents, representing each coral’s only dispersal op-
portunity (Baird et al. 2009). The now pelagic larvae can travel great
distances before settling on a reef, but once the larva settles, it will
remain there for the duration of its life. Therefore, selection for dis-
persal potential is limited to optimizing larval traits, which can be in-
vestigated through classical quantitative genetics, e.g., Meyer et al.
(2009). Specifically, we determined how much variation in the early
larval responsiveness to settlement cue depends on the genetic back-
ground of larvae. The experiments were performed on larvae of the
hermaphroditic mountainous star coral, Orbicella faveolata, which is an
important but endangered Caribbean reef-building coral. To analyze
these data, and estimate the narrow-sense heritability of this binary
trait, we developed a Monte Carlo method for performing model se-
lection and calculating statistical power with generalized linear mixed
models. The code and data are available in the R package multiDimBio
(Scarpino et al. 2014).

MATERIALS AND METHODS

Experimental framework

Our experimental framework, which is summarized in Figure 1, pro-
ceeds in four steps. First, we perform crosses between the desired num-
ber of parents. Second, all offspring from a single dam are reared in the
same environment (“common garden”). Third, offspring are pheno-
typed for the trait of interest and genotyped to determine paternity.
Fourth, these data are analyzed by the use of random-effects models
and a permutation test to determine statistical significance. What fol-
lows is a detailed description of how to estimate the narrow-sense
heritability of coral settlement using this framework.

Application of the experimental framework to
coral settlement

Crossing design and larval rearing: One day before the annual coral
spawn on August 7, 2012, 10 independent O. faveolata colony fragments
(10 cm X 10 cm) were collected from the East Flower Garden Banks
National Marine Sanctuary, Gulf of Mexico. Colonies were maintained
in flow through conditions aboard the vessel and were shaded from di-
rect sunlight. Colonies were at least 10 m apart to avoid sampling clones,
as clones within reefs have been detected in this genus (Severance
and Karl 2006; Baums et al., 2010). However, intracolony variation
(chimerism) in scleractinian corals is very rare (Puill-Stephan et al,
2009), so each sire was assumed to only produce sperm of a single
genotype. Before spawning, at 20:00 Central Daylight Time (CDT)
on August 8, 2012, colonies were isolated in individual bins filled with
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Figure 1 Diagram representing the design of the common garden exper-
iment. First, independent fertilizations are completed for each sire and dam
(in this case only one dam and nine sires are used). Second, equal quantities
of fertilized embryos are pooled into one single common garden tank. This
common garden is the split into three replicate tanks (N = 400 larvae per
tank). Settlement slides are added to each experimental tank and after
4 days the settled larvae are collected and individually preserved. Larvae
were then left for an additional 10 days and settled larvae were removed
every few days. N = 50 larvae that remained swimming after 14 days were
collected and individually preserved for genotyping, to compare their
parentage to the parentage of the early-settling larvae.

1 pL of filtered seawater and were shaded completely. Nine colonies
spawned at approximately 23:30 CDT. From these spawning colonies,
we collected gamete bundles and separated eggs and sperm with nylon
mesh. Each colony was used as an independent sire, with no additional
sperm/sires included in this study. Samples from each sire were pre-
served in ethanol for genotyping.

Divers collected gamete bundles directly from three colonies
during spawning and eggs were separated to serve as maternal material
(N = 3 dams). Eggs were divided equally among fertilization bins
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Table 1 Summary of the six microsatellite loci from Davies et al.
(2013) used in paternity assignment

Locus Observed, bp N, Fluorescence
M_fav4 375-391 5 FAM
maMS2-5 280-328 20 FAM
maMS8 197-203 3 FAM
M_favé 387-429 11 HEX
M_fav7 453-498 9 HEX
maMS2-8 187-205 10 NED

N, is the number of alleles. FAM, HEX, and NED are fluorescent dyes used for
labeling the markers so that they can be multiplexed.

(N =9 per dam) and sperm from each sire was added at 02:00 CDT on
August 9, 2012, for a total of 27 fertilization bins. Control self-cross trials
verified that self-fertilization was not detectable in our samples. After fer-
tilization, at 08:00 CDT, excess sperm was removed by rinsing with ny-
lon mesh, and embryos for each dam across all sires were pooled in one
common culture. Densities were determined and larvae were stocked
into three replicate culture vessels at one larva per 2 mL for a total of nine
culture containers (N = 3 per dam). Larvae were transferred to the University
of Texas at Austin on August 10, 2012. After spawning, colony frag-
ments were returned to the reef. All work was completed under the Flower
garden Banks National Marine Sanctuary permit #FGBNMS-2012-002.

Common garden settlement assay: On August 14, 2012, 6-d-old,
precompetent larvae from the three replicate bins for a single dam were
divided across three settlement assays. Four hundred healthy larvae per
culture replicate were added to a sterile 800-mL container with five
conditioned glass slides and finely ground, locally collected crustose
coralline algae, a known settlement inducer for this coral genus (Davies
et al. 2014). Cultures were maintained for 3 d, after which each slide was
removed and recruits were individually preserved in 96% ethanol, rep-
resenting larvae exhibiting “early” responsiveness to settlement cue.
Culture water was changed, new slides were added with additional
crustose coralline algae, and larvae were maintained until they reached
14 d of age. All settled larvae on slides were discarded, and 50 larvae per
culture were individually preserved in 96% ethanol. Larvae from the other
two dams were not used in these assays due to high culture mortality.

Larval DNA extraction: Larval DNA extraction followed a standard
phenol-chloroform iso-amyl alcohol extraction protocol, see Davies
et al. (2013), with modifications to accommodate for the single larva
instead of bulk adult tissue.

Parental genotyping: Sire genotyping was completed with the use of

nine loci from Davies et al. (2014) and four loci from Severance et al.
(2004) following published protocols. Amplicons were resolved on

Table 2 Summary of paternity assignment results

agarose gel to verify amplification and molecular weights were analyzed
using the ABI 3130XL capillary sequencer. GeneMarker V2.4.0 (Soft
Genetics) assessed genotypes and loci representing the highest allelic
diversities among the sires were chosen as larval parentage markers. To
ensure that each sire was a unique multilocus genotype (MLG) and that
the relatedness between sires was negligible, we compared the allelic
composition of each sire across six microsatellite loci (MLG) and cal-
culated the Probability of Identity at each locus in GENALEX v6.5 from
Peakall and Smouse (2006).

Larval parentage: To compensate for the low larval DNA concentra-
tions, 3 L of each single extracted larva (unknown concentration) was
amplified in a multiplex reaction with six loci from Davies et al. (2013)
with the following modifications: 1M of each fluorescent primer pair
(N = 6) and 20-pL reaction volumes (Table 1). Alleles were called in
GeneMarker V2.4.0 and offspring parentage was assigned based on
presence/absence of sire alleles. Data were formatted into a dataframe
consisting of the number of early settlers and swimming larvae that
were assigned to each sire (A-J) from each of three replicate bins (1—3).

Statistical methods

Estimating narrow-sense heritability from binary data: In principle,
estimating narrow-sense heritability for a binomially distributed trait,
such as coral settlement, is straightforward, see Gilmour et al. (1985);
Foulley et al. (1987); Vazquez et al. (2009); Biscarini et al. (2014, 2015).
The desired quantity is the among-sire variance, denoted as 72, which
can be estimated with a generalized linear mixed model with a binomial
error distribution. Although this a departure from the standard thresh-
old approach for estimating the heritability of binomial traits, it is now
fairly common in the quantitative genetics literature, see Foulley et al.
(1987) and Vazquez et al. (2009).

Suppose we have binary observations y; € {0, 1} where i index
units (sires) and j indexes observations within units. The model is
simple Bernoulli sampling, parameterized by log odds:

o) o

Uren( ) v

We will assume that the log odds have a sire-level random effect:

szij:a+Bi7 BiNN(OaTZ)'

Thus we have a simple binary logit model with a single random effect.
A standard result on logit models is that we can represent the outcomes
;i as thresholded versions of a latent continuous quantity z; (Holmes
et al. 2006):

Locus 1 Locus 2 Locus 3 Locus 4 Locus 5 Locus 6
Sire MaMS8 MaMS8.1 Sev5 Sev5.1 Mfav4 Mfav4.‘| Mfavé Mfav6.1 Mfav7 Mfav7.1 Sev8 Sev8.1

A 200 200 280 322 379 379 391 391 453 465 190 196
B 200 203 292 322 379 379 389 391 471 486 187 190
C 200 200 283 313 375 375 419 429 453 471 190 193
D 197 200 301 322 375 379 423 423 465 486 190 196
E 200 200 283 316 375 391 389 389 453 474 190 193
F 197 197 307 313 375 375 391 391 462 471 190 202
G 197 200 301 328 379 379 391 391 474 474 193 205
H 197 200 280 307 383 383 389 389 453 453 190 193
J 197 200 280 313 379 379 389 389 477 498 193 193
Values are the microsatellite lengths for each of six loci from Davies et al. (2014)
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where ¢;; follows a standard logistic distribution. Note this nonstan-
dard form of latent-threshold model, wherein the errors &jjare logistic
rather than normally distributed. Upon integrating out the z;; values
(which are often referred to as latent or data-augmentation variables),
we recover exactly the logistic regression model of Equation (1) with a
sire-level random effect.

Inlight of this, we can interpret narrow-sense heritability in terms
of the ratio of predictable to total variation in our logistic random-effects
model. This is often referred to as the Bayesian R?, by analogy with the
classical coefficient of determination in a regression model:

R — var(B;) _ var(B;) _ 7
var(zy)  var(By) +var(ey) T +72/3]

exploiting the facts that the 8;and ¢;; are independent and that the variance
of the standard logistic distribution is 7%/3. The aforementioned equation
for the Bayesian R is the narrow-sense heritability for the animal model.
Therefore, the among-sire variance can be transformed into an approxi-
mation of narrow-sense heritability under the sire model by multiplying
the Bayesian R? by four, see Foulley et al. (1987) and Vazquez et al. (2009)
for a more detailed derivation and Lynch and Walsh (1998) for a discus-
sion of the assumptions this approximation relies on.

However, under this model, determining whether statistical
support exists for an among-sire variance greater than zero remains a
challenge. Traditionally, an approach to the problem would be to fit two
models, one wherer?, the among-sire variance, is a free parameter and
one where it is constrained to zero. These models can then be com-
pared, and model selection performed, with a likelihood ratio test, or in
this case the difference in each model’s deviance, which is equivalent to
a likelihood ratio test for nested models. Although, critically, this is a
special kind of likelihood ratio test because the null hypothesis resides
on the edge of the parameter space. The large sample reference distri-
bution for this type of test is usually considered to be a 50% mixture of a
point of mass at zero and a x2 (1) (Self and Liang 1987). However there
is still substantial debate in the literature about what mixture should be
used—e.g., Crainiceanu et al. (2003)—and it is not clear whether any of
these mixtures are valid null distributions for finite sample sizes.
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Figure 3 The cumulative distribution function for the actual (black
solid), permutation (gray dashed), and theoretical (red dashed) nulls
are compared. The permutation null is a closer match to the actual null
and is less conservative than the asymptotic approximation. This
suggests that asymptotic approximation to the true null distribution is
inappropriate for our data set.

Instead, our approach is to construct a permutation-based method
for calculating a p value for the likelihood ratio test and performing model
selection. This test is simple to implement, because it only involves
randomly shuffling the identity of each offspring’s sire a large number of
times (say, 500) and refitting the random-effects model to each shuffled
data set. This avoids making assumptions about the asymptotic distri-
bution of the test statistic that may fail to hold for finite sample sizes.

Monte Carlo simulation for the likelihood ratio test: Our simulations
assume a fixed probability of settlement, psee» to be equal across all
sires, in this case pyug. = 0.285 (the global mean), and simulate 1000
data sets where the number of offspring for each sire in each of three
bins is drawn from a negative binomial distribution with p = 4.63 and
size = p2/(1/12.63 — ), again these are the empirically observed val-
ues across sires. The resulting 1000 data sets have the same structure as
the observed data, but the only among sire variability comes from
sampling, the true 72 = 0. For each simulated data set, we calculated
the likelihood-ratio test statistic. This provides a Monte Carlo approxi-
mation to the true sampling distribution of the test statistic under the null.

Power analysis: With any novel experimental design, it is desirable to
construct a method for estimating its statistical power. Using the Monte
Carlo approach designed to calculate p-values for likelihood ratio tests,
we can simulate data sets with an arbitrary number of sires, number and
variance in offspring, among-sires variance, and number of bins. By
repeatedly simulating data sets with fixed combinations of these pa-
rameters, the statistical power is simply the fraction of times we correctly
reject the null hypothesis. Similarly, the false-positive rate is the fraction
of times we falsely reject the null hypothesis.

Data availability

All code and data developed for this study are available in the R package
multiDimBio (Scarpino et al. 2014). The statistical models were fit using
the R packages stats in R version 3.2.1 (R Core Team 2015) and lme4
version 1.1-8 (Bates et al. 2015).

RESULTS

Sire independence
Each sire was determined to be a unique MLG across the six micro-
satellite loci indicating that no clones were collected (Table 2). To ensure
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Figure 4 Power analysis for a varying number of sires.
The offspring number was fixed, at p. = 4.63 and size =
w?/(V/12.63 — u) respectively, and the number of sires
was varied between 9 and 20. In (A), the power to reject
the null hypothesis of h? = 0 is plotted as a function of
narrow-sense heritability (h?), where the true value of
h? > 0. (B) The power to fail-to-reject the null hypoth-
esis when the true value of h? was equal to zero is
plotted for varying numbers of sires.

Number of Sires

that each sire could be considered independent, we calculated the Prob-
ability of Identity at each locus and found that these probabilities
ranged from 3.2E-01 for a single locus down to 2.0E-06 when all six
loci are considered and therefore each sire was considered independent.

Parentage

Larvae that amplified at >2 loci were considered successful amplifica-
tions. A total number of 55 recruits (binary successes) were collected
and of these 47 were amplified and 37 were assigned parentage. A total
number of 129 swimming larvae (binary failures) were extracted and of
these 112 amplified successfully and 81 were assigned parentage (Figure 2).

Monte Carlo simulation for the likelihood ratio test

To test whether the procedure proposed in this study provided any
benefits over the traditional approach to performing a likelihood ratio
test, we first simulated the true sampling distribution of the likelihood
ratio statistic under the null hypothesis. This was accomplished by
repeatedly simulating data from a model where the true among-sire
variance (72) was zero. The cumulative distribution function of this
random variable is shown as a black curve (actual null) in Figure 3.
We then calculated two approximations to this sampling distribution;
these cumulative distribution functions are also plotted in Figure 3.
First, the red curve (theoretical null) shows a mixture distribution of
a point mass at 0 (with probability 0.5) and x? (1) random variable
(with probability 0.5). This is the asymptotic approximation to the true
null used in the traditional likelihood-ratio test of a variance compo-
nent in a mixed-effects model. Second, the dotted gray curve (permu-
tation null) shows the estimated null distribution obtained by running
the permutation test on a single simulated data set. The permutation
null is clearly a better approximation to the actual null than is the
theoretical null, whose distribution is shifted to the right. This fact
suggests that—at least for data sets similar to ours—the asymptotic
approximation is too conservative, and will therefore lead to reduced
power at a specified false-positive rate.

Statistics

Using the described experimental design and statistical methods, we
were unable to detect a significant random effect of sire, although there
wasatrend in overall variation in early settlement amongires (Figure 2).
However, by bootstrapping the data, we were able to obtain an esti-
mated 72 of approximately 0.176 (0.42 standard deviation), cor-
responding to a narrow-sense heritability of around 0.2 (95%
confidence interval 0.0—1.0). Considering the number of sires used
and offspring sampled in our study, the true narrow-sense heritability
would have to be well above 0.6 to achieve 80% power (Figure 4A).
Nevertheless, this experimental set up should be sufficiently powered to
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correctly fail to reject the null hypothesis if in fact the true among sire
variance was zero (Figure 4B).

Power analysis

Power analysis results suggest that increasing the number of sires is the
most effective mechanism to increase statistical power. Unfortunately,
for heritabilities less than 0.4, very large numbers of sires will be required.
The intuition is that substantial amounts of variability between sires is
expected just due to sampling alone, and therefore statistical support for
a nonzero heritability requires large sample sizes. Despite the lack of
statistical power, this approach does have the desirable property of low
false-positive rates. For example, even with nine sires, we expect tohave a
nearly 90% chance of failing to reject the null hypothesis on data sets
simulated with an among-sire variance equal to zero (Figure 4B). Lastly,
if sequencing additional offspring is an option, statistical power can be
improved (Figure 5).

DISCUSSION

In this paper, we present an experimental and statistical methodology for
estimating the heritability of traits in nonmodel, highly fecund organ-
isms. We applied this approach to determine whether settlement is a
heritable trait in the reef-building coral O. faveolata. Although we did
not find statistical support for a nonzero, heritability in this trait, a
power analysis suggests we lacked a sufficient number of individuals.
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Figure 5 Power analysis for a varying number of offspring. The mean
number of offspring genotyped per sire, u, was varied between 4 and
20, whereas the size parameter for the negative binomial distribution
was u?/(\/u(12.63/4.63) — ). The number of sires was fixed at 9.
The power to reject the null hypothesis of h? = 0 is plotted as a func-
tion of narrow-sense heritability (h?), where the true value of h? > 0.
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Our computational method includes code for fitting model parameters,
performing model selection using a permutation test, and calculating
the expected statistical power for proposed or completed studies. The
power calculation method is especially important for studies requiring
animal care and use approval and/or those with complex or expensive
collection demands.

Previous work suggests that heritable varjation exists for a variety of
traits across many marine organisms (Foo et al. 2012; Johnson et al.
2010; Kelly et al. 2013; Lobon et al. 2011; McKenzie et al. 2011; Parsons
1997), including corals (Kenkel et al. 2011; Meyer et al. 2009). These
studies have found significant heritability for nearly every trait mea-
sured in corals (Carlon et al. 2011; Kenkel et al. 2011; Meyer et al. 2009,
2011), but see Csaszar et al (2010). In fact, one study specifically
quantified the additive genetic variance in settlement rates of the Pacific
reef-building coral Acropora millepora and found h? = 0.49; however no
variance around this mean was estimated (Meyer et al. 2009). It would
not be surprising from an evolutionary standpoint if an ecologically
important life-history trait such as larval settlement was heritable in
other coral species, such as O. faveoalta. However, in this study we were
unable to detect heritable variation, likely due to insufficient numbers
of individuals.

There is a rich quantitative genetics literature on estimating the
heritability of binomial traits dating back to Wright (1917) and Fisher
(1918); however, the first use of generalized linear models fit to ob-
served presence/absence data are from Gilmour et al. (1985), with key
future contributions from Foulley et al. (1987) and Vazquez et al.
(2009). These methods originally were developed for agricultural
breeders, where fewer constraints exist on the number of families used
to estimate the heritability, for example, the viability of poultry
(Robertson and Lerner 1949), common genetic disorders of Holstein
cows (Uribe et al. 1995), and root vigor in sugar beets (Biscarini et al.
2014, 2015). Uribe et al. (1995) estimated sire and residual variance
components by using restricted maximum likelihood, or REML, mod-
eling of 7416 paternal half-sib cows and found that heritability of com-
mon diseases in cows ranged from 0 to 0.28. These sorts of numbers are
unreasonable to sample in natural populations of corals because par-
entage is rarely known unless controlled crosses are completed and
then the costs associated with genotyping thousands of individuals
are prohibitive.

A pair of recent papers by Biscarini et al. (2014, 2015) developed a
cross-validation —based algorithm for selecting single-nucleotide poly-
morphisms that maximally classified sugar beets into high and low root
vigor. Therefore, our principle contribution is in terms of model selec-
tion, in the form of a permutation test to determine whether statistical
support exists for a nonzero narrow-sense heritability, and the methods
application to nonmodel organisms. In such organisms, where breed-
ing, collection, and/or budgetary constraints may exist, such a model-
selection procedure is essential.

Our approach has three important caveats. First, as stated in
Materials and Methods, one cannot disentangle additive variation due
to sire from dam-specific sire effects under the sire model (see Lynch
and Walsh (1998), for a detailed explanation). Therefore, conserva-
tively, heritability estimates using our approach should be considered
estimates of broad-sense heritability. Second, our methods are some-
what lacking in statistical power. For heritabilities thought to be typical
of studies in nonmodel organisms, well more than 50 individuals may
need to be typed across nine sires, see Figure 4A and Figure 5. However,
our methods perform very well with respect to minimizing the type-I
error rate, see Figure 4B. Lastly, as stated in the methods, the accepted
approach—based on mixtures of x? distributions—has even less sta-
tistical power and was a poor approximation to our observed null
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distribution. Future work should focus on adapting existing methods
and developing new methods to allow for smaller sample sizes. This
effort is meant to be a project that will grow and develop organically;
therefore, we welcome suggestions and contributions and plan regular
updates to the statistical methods.
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