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Abstract: Early-life gut microbiota plays a role in determining the health and risk of developing
diseases in later life. Various perinatal factors have been shown to contribute to the development
and establishment of infant gut microbiota. One of the important factors influencing the infant gut
microbial colonization and composition is the mode of infant feeding. While infant formula milk
has been designed to resemble human milk as much as possible, the gut microbiome of infants
who receive formula milk differs from that of infants who are fed human milk. A diverse microbial
population in human milk and the microbes seed the infant gut microbiome. Human milk contains
nutritional components that promote infant growth and bioactive components, such as human milk
oligosaccharides, lactoferrin, and immunoglobulins, which contribute to immunological development.
In an attempt to encourage the formation of a healthy gut microbiome comparable to that of a
breastfed infant, manufacturers often supplement infant formula with prebiotics or probiotics, which
are known to have a bifidogenic effect and can modulate the immune system. This review aims to
elucidate the roles of human milk and formula milk on infants’ gut and health.

Keywords: gut microbiota; infant; human milk; formula milk; immune system

1. Introduction

The gut microbiome composition in neonates is closely connected with events such
as how they are born (full-term or preterm), the mode of delivery (vagina delivery or
caesarean section), what neonates are fed (human or formula milk), and how neonates
are cared for (mother’s care or at neonatal intensive care unit (NICU)) [1]. The early
microbiome colonization in the infants’ gut plays a vital role in shaping and maintaining
future health outcomes [1–3]. Studies have suggested that early-life microbiota can predict
the risk of developing illnesses such as atopic diseases, obesity, and type 1 diabetes [4–6].
It was previously believed that the onset of microbial colonization of the baby’s gut is
at birth. However, recent evidence indicates the presence of microbial communities in
the placenta, amniotic fluid, umbilical cord, and meconium, challenging the traditional
view of the sterile in utero environment [7–10]. While still controversial, these findings
suggest that the infant’s onset of microbial transfer and gut colonization process may
begin prenatally [11,12].

The development of infants’ gut microbiota begins at birth and continues to be shaped
up until two–three years, reaching a relatively stable and typical adult microbial taxonomic
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makeup [13]. The neonates are first exposed to the maternal microbiome community.
The maternal microbiome reservoir colonizes the gut through vertical transmission and
microbial taxa obtained from the external surroundings [14,15]. After birth, the neona-
tal gut microbiome is briefly dominated by Staphylococcaceae or Enterobacteriaceae before
Bifidobacteria become predominant [16]. Bifidobacterium has long been known to confer
health benefits to the host. A higher level of Bifidobacterium in the infant’s gut is associ-
ated with a lower risk of childhood infections, atopic disorders, and obesity [17,18]. After
weaning, the infant gut microbiome transitions from a Bifidobacteriaceae-dominated micro-
biota to an adult-like composition. The key factor influencing these changes in microbiota
composition is breastfeeding cessation rather than the introduction of complementary
feeding [19,20]. By the age of three, a stable adult-type gut microbiota, which is clustered
into three enterotypes—Bacteroides, Prevotella, Ruminococcus—is acquired [21,22].

Soon after birth, the infants are fed with human milk or formula milk. It is widely
agreed that human milk is the best food for babies, with health effects driven by the com-
bined nutritional and bioactive components. The short-term and long-term health benefits
from breastfeeding based on the nutritional, physiological, and development perspectives
are well established. The World Health Organization (WHO) and the United Nations
Children’s Fund (UNICEF) strongly recommend breastfeeding babies within the first hour
of birth and continuing breastfeeding for the first six months, without any other solid food
or water [23,24]. Likewise, the American Academy of Pediatrics (AAP) also suggests breast-
feeding for 12 months or beyond while the infant is started on complementary food [25].
Human milk comprises beneficial bacterial species that contribute to establishing the baby’s
gut microbiome and play a part in infection prevention and immunomodulation [26]. Be-
sides containing all the essential nutrients to fulfil the nutritional requirements for optimal
growth of the infant, human milk also contains bioactive components—oligosaccharides,
immunoglobulins, hormones, growth factors, cytokines and chemokines—that play im-
portant roles in the microbiome and immune system development, as well as maintaining
the gut mucosal barrier function [27]. Given their implications for health and immune
development and their potential for therapeutic manipulation, the human milk microbiome
and bioactive compounds have become an area of interest for research [28]. Although
human milk is the best for babies, alternatives are sought when human milk is insufficient,
babies who cannot be fed with human milk, or should not receive milk from their mothers
(due to health reasons) [29]. In these circumstances, babies are fed with formula milk that
mimics the composition of human milk in terms of micronutrients and macronutrient
content. Hence, this narrative review aims to discuss the role of human milk and formula
milk on infants’ gut and health.

2. Factors Influencing Infants’ Gut
2.1. Mode of Delivery

Many perinatal variables have been shown to contribute to infant gut microbiota
development, such as mode of delivery, gestational age, infant diet, use of antibiotics,
and infant hospitalization. The initial microbes that colonize the infants’ gut come from
their mother and, if vaginally born, then the microbes are from the vaginal microbiome
of the mother. Dominguez-Bello and colleagues studied bacteria sampled from infants
right after birth and compared them with samples from different maternal body sites. They
revealed that all the babies shared similar microbiome composition. If vaginally born,
then the bacteria source is from the mother’s vagina [30]. However, Ferreti et al. reported
that neonates’ oral and gut microbiomes at one–three days postpartum do not resemble
the microbiome taxa from a specific mother’s body site. Some neonates had taxonomic
makeup that resembled the vaginal microbiome, while some had the same composition
as the mothers’ faecal microbiome. The early colonization is suggested to be influenced
by stochastic events [31]. Infants delivered by vaginal or caesarean are usually exposed to
different microbiome communities. In the first three weeks of life, vaginally born babies are
exposed to their own mothers’ vaginal microbiomes and are enriched with Bifidobacterium,
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Escherichia, Lactobacillus and Bacteroides species. Whereas caesarean-delivered babies are
exposed to microbiome species of the skin of parents and potentially colonized by species
from hospital environments. Caesarean-born babies have a gut that is commonly colonized
by Enterobacter, S. epidermidis, K. pneumoniae, E. coli and Klebsiella [32–34].

The effect of birth mode on gut microbial colonization and diversity is most significant
during the first six months of life, albeit decreasing with age [33,35]. Wampach et al. studied
the microbial taxa in 33 mother–infant pairs (MIPs) at an interval of the first, third, and
fifth days postpartum. They observed the vaginally born infants had a higher number
of vertically transmitted strains compared to those born via caesarean. The MIPs shared
23 taxa mostly Bacteroides and Bifidobacterium in vaginally delivered infants [36]. Similarly,
another study by Makino and colleagues found that the majority of vaginally born babies
share a Bifidobacterium strain profile with the maternal gut microbiome. The caesarean-born
babies did not exhibit any strain sharing profiles with the maternal gut [37]. A study
also found that at the early stage of vaginal delivery, the infant’s gut is enriched with
Lactobacillus, and then the Bacteroides will increase in the second week. These microbial
patterns are not observed in caesarean-born infants [30]. Based on these studies, delivery
mode does play a significant role in enriching the gut microbiota of infants.

2.2. Gestational Age and Administration of Antibiotics

The gestational age at birth is another crucial factor in the development of neonates’
gut microbiome. The intestines of preterm neonates born around 22 to 36 weeks of ges-
tation are more permeable than term neonates (37 to 42 weeks of gestation). A lower
abundance of Bifidobacterium and Bacteroidetes and a higher abundance of Enterobacteriaceae,
Enterococcaceae, and Lactobacillaceae were observed in preterm neonates compared to term
neonates [38]. Korpela et al. studied the faecal samples from 45 preterm neonates to
explore the gut microbiota properties and development in preterm neonates. The study
found that preterm neonates’ gut exhibited a lower number of predominant bacteria genera
such as Bifidobacterium, Enterobacter, Staphylococcus, or Enterococcus. They suggested that
breastfeeding may help preterm infants in the hospital acquire a normal gut microbiota
similar to that of infants who are born to term [39].

Perinatal antibiotic usage is also known to affect the gut microbial composition, as
indicated by a reduced gut microbiome diversity and stability [40,41]. A study compar-
ing the gut microbial colonization in infants exposed to perinatal antibiotics and infants
who had no antibiotics exposure reported the differences in gut microbiome between
the exposure groups and control group, which persist at six months of age and are not
prevented by consumption of probiotic Lactobacillus reuteri [42]. Studies have shown a
reduced Bifidobacterium abundance in term babies upon antibiotic treatment for Group
B Streptococcus. The other bacteria community (Lactobacillus sp., Bacteroides fragilis, and
Clostridium difficile) were not affected [43,44].

2.3. Feeding Mode

Another essential factor influencing the infant’s gut microbial colonization and com-
position is the mode of infant feeding. While infant formula milk has been designed to
resemble breast milk as much as possible, the gut microbiome composition in breastfed and
formula-fed infants remains distinct. Several studies have demonstrated the beneficial ef-
fects of human milk on the disrupted microbiome caused by other aforementioned perinatal
factors. For example, limited restoration of the disturbed gut microbiota was demonstrated
by Liu et al. in infants born through caesarean section by exclusive breastfeeding compared
to partial breastfeeding [45]. Cong et al. studied the influence of feeding on the early life gut
microbial composition of preterm babies and found that human milk enriched microbial
diversity and helped establish a balanced microbial community structure [46]. In breastfed
term infants, a higher abundance of Bifidobacterium was observed, whereas formula milk
fed infants had an increase in Enterobacteriaceae, Bacteroidaceae, and Clostridiaceae [19,47].
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3. Human Milk
3.1. Human Milk Composition

Human milk contains both nutritive and non-nutritive components, which promote
normal growth and contribute to immunological development. The nutritional compo-
nents are classified into macronutrients (carbohydrate, protein, and fat) and micronutrients
(minerals and vitamins) [48]. Human milk contains approximately 7.0% lactose, which
is a disaccharide. As the predominant carbohydrate in human milk, lactose contributes
to 40% of the milk’s gross energy [49]. In smaller amounts, other carbohydrates in milk
are monosaccharides, such as glucose and galactose; disaccharides, such as lactulose;
oligosaccharides and some polysaccharides [49]. While oligosaccharides in human milk
are non-nutritive and indigestible, they play an important role in infant gut microbiome de-
velopment [50,51]. The protein content in human milk is estimated to be 0.9%–1.2% [49,52].
Approximately 30% of the total protein is casein, and 70% is whey proteins primarily
constituted by lactoferrin, alpha-lactalbumin, and secretory IgA [49]. The mean fat concen-
tration in mature milk is approximately 3.8%, contributing to about half of the total energy
provided by human milk (Table 1) [49,53].

Table 1. The human milk constituents and concentrations [27,54,55].

Water 87–88%

Macronutrients

Protein 1% (8–10 g/L)
Carbohydrates 7% (60–70 g/L)

Fat 3.8% (35–40 g/L)

Micronutrients

Fat-Soluble Vitamins

Vitamin A 0.3–0.6 mg/L
Vitamin D 40 IU/L
Vitamin E 3–8 mg/L
Vitamin K 2–3 µg/L

Water-Soluble Vitamins

Ascorbic acid 100 mg/L
Vitamin B1 200 µg/L
Vitamin B2 0.35–0.39 mg/L

Niacin 1.8–6 mg/L
Vitamin B6 0.09–0.31 mg/L

Vitamin B12 0.5–1 µg/L
Folate 80–140 µg/L

Minerals

Colostrum Mature Milk
Calcium 250 mg/L 200–250 mg/L

Magnesium 30–35 mg/L 30–35 mg/L
Phosphorus 120–160 mg/L 120–140 mg/L

Sodium 300–400 mg/L 150–250 mg/L
Potassium 600–700 mg/L 400–550 mg/L

Iron 05–1.0 mg/L 0.3–0.7 mg/L
Chloride 600–800 mg/L 400–450 mg/L

Zinc 5–12 µg/L 1–3 µg/L

The composition of breast milk is dynamic and changes in response to the baby’s
needs. A study by Paulaviciene et al. showed that human milk exhibits marked circadian
fluctuations in the composition of macronutrients, particularly protein and fat, and the
diurnal variations are more evident in the breast milk of mothers of premature babies [56].
The human milk nutritional composition also changes within each feed; for example, there
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are more fat and energy contents in hindmilk compared to foremilk [57,58]. Human milk
has three stages, and its composition varies across the different lactation stages. The first
milk secreted immediately after delivery of a newborn is known as colostrum, which
differs from the milk produced later by containing higher concentrations of proteins and
immunological components such as lactoferrin, leukocytes, immunoglobulins, and growth
factors, as well as containing lower concentrations of carbohydrates and fats [59–62]. The
second stage lasts from day 6 to day 14 postpartum, and the milk produced is known
as transitional milk [63]. There is an increase in milk production, carbohydrate, and
lipid content in this stage, such that the infant’s nutritional requirements can be met for
rapid growth and development [27,64]. The milk is considered mature by day 15 to day
30 postpartum, and its composition fluctuations are relatively less [63]. Mature milk is
richer in lactose and fat, but its protein is at a lower concentration than colostrum [62].
Some studies have demonstrated higher carbohydrate, protein, fat, and energy contents in
preterm milk compared to term milk. However, some authors found higher protein levels
in preterm milk, whereas other macronutrient contents were not significantly influenced
by gestational age [57,61,65,66]. Two recent studies have reported that the macronutrient
composition is not affected by the degree of prematurity [67,68]. Feeding practices may
also be predictors of the nutrient composition as indicated by lower fat concentration,
lower total calorie content, and higher carbohydrate and protein contents in the milk of
mixed-feeding mothers compared to those who exclusively breastfed [69].

3.1.1. Oligosaccharides

Human milk oligosaccharides (HMOs), the third most abundant human milk compo-
nent, are present at approximately 0.8–1.4% [49]. The concentration of HMOs may vary with
the stage of lactation, as reflected by a higher level of most HMOs in colostrum, and reduces
as lactation progresses [70–73]. A higher level of HMOs is also found in the milk of mothers
of preterm babies than in mothers of term babies [74]. While they are indigestible by infants,
HMOs have prebiotic effects and are metabolized by certain gut bacteria, promoting their
growth and colonization within the infant’s gut [75]. De Leoz et al. demonstrated a shift
in the infant gut microbiota from non-HMO-utilizing bacteria to HMO-utilizing bacteria
after receiving breast milk for a few weeks. There was also a reduction in faecal HMOs
as the abundance of HMO-consumers increased, confirming the utilization of HMOs by
the gut bacteria [76]. Bifidobacteria and Bacteroides strains have a high capacity in metabo-
lizing HMOs and utilizing them as a source of energy. In contrast, other species such as
Enterococcus, Clostridium, Escherichia coli, Staphylococcus, and Streptococcus are inefficient in
HMOs metabolism [77,78]. By selectively encouraging the growth of beneficial bacteria
over potential pathogens, HMOs may help to prevent infections.

Furthermore, oligosaccharides fermentation by gut bacteria leads to the production of
short-chain fatty acids (SCFAs) such as acetate and organic acids such as lactate, generating
a lower pH environment that restrains the growth of enteric pathogens and promotes the
absorption of nutrients [79,80]. In addition, Bifidobacterium grown on HMOs is associated
with increased anti-inflammatory cytokine and decreased inflammatory gene expression,
indicating that HMO growth possesses anti-inflammatory properties [81,82]. The ability
of bacteria to adhere to the intestinal epithelium determines the microbial colonization
of the infant’s gut. HMOs have been shown to modulate and enhance the ability of
Bifidobacterium infantis to adhere to intestinal epithelium, which may enhance the bacteria’s
colonization ability [81–83]. In contrast, HMOs exert anti-adhesive properties against poten-
tial pathogens. Studies have demonstrated that some HMOs reduce the level of adhesion
of Campylobacter jejuni, Clostridium butyricum, Escherichia coli, Pseudomonas aeruginosa, and
Norovirus to epithelial cells [84–87].

3.1.2. Lactoferrin

Lactoferrin, an iron-binding protein, is one of the essential bioactive factors present in
human milk [88]. Its concentration changes throughout lactation, with the highest level,
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found in colostrum and reduces in the later milk until a relatively constant level is reached
in mature milk [89–91]. Mastromarino et al. established that human milk is the primary
source of lactoferrin in the infant’s gut as the level of faecal lactoferrin in breastfed infants
was significantly associated with the level of lactoferrin in human milk [92]. Woodman et al.
have shown that lactoferrin levels are higher in human milk than formula milk and human
lactoferrin showed greater effectiveness in preventing growth of pathogens [93]. Lactoferrin
has been shown to exhibit antimicrobial effects on both Gram-positive and Gram-negative
bacteria [94]. Tian et al. demonstrated the ability of lactoferrin to inhibit the growth of
pathogenic bacteria, such as Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica,
and Escherichia coli. In contrast, the development of probiotic bacteria such as Lactobacillus
was not affected [95].

Several mechanisms of the antimicrobial activity of lactoferrin have been described.
Mechanisms that have long been known include its iron-binding ability that results in
sequestrating and depriving bacteria of iron required for their growth, as well as its
ability to interact with lipopolysaccharide of Gram-negative bacteria thus impeding their
growth [96,97]. More recent studies have shown that lactoferrin can eliminate biofilms
formed by potential pathogens, preventing interactions between microbes and the gut
epithelium [98,99]. These characteristics of lactoferrin aid in the enrichment of a healthy
gut microbiota in infants.

3.1.3. Immunoglobulins

Immunoglobulins (Ig) are bioactive factors in human milk that offer passive immuno-
logical protection to neonates. IgG antibodies cross the human placenta and hence can
provide passive immunity to the foetus in utero and the infant postnatally. The IgA and
IgM are unable to cross the human placenta; therefore, human milk is an important source
of these antibodies, particularly secretory IgA as infants have very low levels of their own
IgA at birth and it only gradually rises in the first few months of life when the immune
system develops [100]. IgA is the main immunoglobulin in human milk, constituting more
than 90% of all milk antibodies, whereas IgM and IgG are present at significantly lower con-
centrations. The mean concentration of IgG, IgM, and secretory IgA in human milk during
the first year was 14.71 mg/L, 3.0 mg/L, and 2.12 g/L, respectively, to Czosnykowska-
Łukacka et al. [101]. The levels of IgA and IgM are highest in colostrum and reduce to a
relatively stable level in mature milk, whereas the concentration of IgG remains similar
throughout the first six months of lactation [102]. A study by Berdi et al. demonstrated
a positive correlation between prepregnancy excessive maternal weight and human milk
IgM concentration in the first few days of lactation, and smoking during pregnancy is
negatively correlated with IgM and IgG2 concentration [103]. Breastfeeding practices
may also have an effect on immunoglobulin levels in mother’s milk as evidenced by a
higher IgG concentration in the milk of mothers who exclusively breastfed compared to
mothers who did not exclusively breastfeed in a study by Abuidhail et al., supporting the
recommendation of the World Health Organization to exclusively breastfeed babies for
the first six months [104]. IgA and total protein concentrations in human milk have been
found to increase after the first year of lactation, indicating that breastfeeding even after
introducing food, offers nutritional and immunological benefits to the child. Therefore,
prolonged lactation should be encouraged in keeping with the preference of the mother
and child [101,105]. IgA helps establish a healthy gut microbiome by enhancing the ability
of Bacteroides and probiotic strains, such as Bifidobacterium and Lactobacillus, to adhere to
gut epithelium, thereby promoting their colonization [106,107]. Lack of secretory IgA from
human milk has been associated with an altered intestinal microbiome and gene expression
in the gut epithelium, which may result in greater susceptibility to gut inflammation at a
later age [108].
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3.2. Extracellular Vesicles

Extracellular vesicles (EVs) with their cargos can be detected in any tissue or biofluids,
including breast milk. They have been shown to shape the gut microbiome and influence
the gut immune response [109]. In vitro study demonstrated intestinal cell uptake of
human milk EVs, indicating that EVs are modes of transfer of immunomodulatory genetic
material from mother to child [110]. EVs carry a variety of biologically active compounds,
such as proteins, lipids, and RNAs [111,112]. Proteomic analysis by van Herwijnen et al.
discovered 1963 proteins in EVs from breast milk, and the proteins in EVs were involved in
inflammatory signalling pathways [113]. Breast milk was found to have the highest total
RNA concentration among other bodily fluids [114]. Human milk contains high levels
of immune-related microRNAs, as reported by Kosaka et al. The molecules were found
to be stable in very acidic environments, suggesting that miRNAs can endure the gut
environment of infants [115]. Zhou et al. also demonstrated that immune-related miRNAs
packaged within exosomes in human milk remain impervious to a certain extent when
subjected to extreme conditions. It is postulated that these miRNAs are passed to infants
from maternal milk through the gastrointestinal tract and are involved in immune system
modulation [116]. Alsaweed et al. found a limited number of mature human miRNAs
in cow’s milk and soy-based formula, which are expressed at lower levels than those in
human milk, indicating that human milk is a richer source of miRNAs for infant immunity
and development [117]. EVs in human milk may have therapeutic potential in preventing
necrotizing enterocolitis in premature infants. In a study using rat intestinal epithelial
cell culture models, there was a significant reduction in the occurrence and severity of
experimental necrotizing enterocolitis resulting from administration of EVs derived from
breast milk [118]. In addition, Wang et al. and Martin et al. showed that EVs derived
from human milk promote gut epithelial cell proliferation and protect intestinal cells from
oxidative stress, which may protect infants from necrotizing enterocolitis [119,120].

3.3. Human Milk Microbiota

A diverse microbial population is found in human milk, and its microbial composi-
tion varies considerably between mothers [121]. A recent study by Kim and Yi detected
392 genera in human milk [122]. Many studies have found Staphylococcus and Streptococcus
to be the predominant genera in human milk [122–127]. Pannaraj et al. demonstrated
that the divergence in human milk microbiota between mothers increases during the first
24 weeks postpartum and reduces after that when infants are no longer primarily breastfed.
The study also showed that in infants who are primarily breastfed (mother’s milk accounts
for at least 75% of daily milk intake) during the first month of life, about 40% of the gut
microbiota originates from mother’s milk and areolar skin, emphasizing the significance of
human milk as a source of bacteria and in determining the infant gut microbiome [128].

Some studies have suggested that factors such as birth mode, gestational age, stages
of lactation, and breastfeeding practices may play a role in determining the microbial
composition of breast milk. A lower microbiota diversity has been detected in breast
milk from women who delivered by caesarean section than those who gave birth by
vaginal delivery [123,129]. Gestational age has also been shown to affect the microbial
composition of human milk, as evidenced by a much lower abundance of Bifidobacteria in
preterm breast milk than in term milk [130]. However, a study by Urbaniak et al. found
no differences in the human milk microbial profiles attributable to the mode of delivery
or gestational age [131]. Regarding the mode of breastfeeding, indirect breastfeeding and
pump expression compared to direct breastfeeding and manual expression, respectively, are
associated with reduced milk microbiota diversity and richness, higher rates of colonization
by potential pathogens, and decreased abundance of Bifidobacteria [132]. Gonzalez et al.
compared the human milk microbiome in two lactation stages. They found that the
predominant species in the early stage were Streptococcus and Staphylococcus, whereas in
the late lactation stage Pseudomonas and Sphingobium were more abundant [133]. A few



Nutrients 2022, 14, 3554 8 of 25

studies have shown that microbial richness and diversity in human milk reduce over time
from colostrum to mature milk [134–136].

4. Infant Formula Milk
4.1. Types of Infant Formula

Different infant formula products are available, including cow’s milk, soy-based,
and specialized formulas such as hypoallergenic and lactose-free. Cow’s milk formula
is the most commonly consumed infant formula among other types [137]. Bovine milk
contains approximately 3.4% protein, which is significantly higher than human milk,
and has a different whey-to-casein ratio of 20:80. Compared to human milk, lactose and
lactoferrin levels are lower in bovine milk. Furthermore, human milk has a two-fold
higher concentration of alpha-lactalbumin. It does not contain beta-lactoglobulin, whereas
beta-lactoglobulin is the dominating protein in the whey fraction of bovine milk [138].
Thirteen oligosaccharides present in human milk were identified in bovine colostrum by
Aldredge et al., indicating that bovine milk could be a source of oligosaccharides with
bioactivities comparable to those in human milk [139]. However, the concentration and
diversity of oligosaccharides in bovine milk are lower than in human milk [140]. Therefore,
infant formula manufacturers modify or reformulate cow’s milk to reproduce a nutrient
profile similar to human milk [138].

Cow’s milk protein allergy is widely regarded as one of the most common food
allergies in the paediatric population [141]. As stated in the food allergy and anaphylaxis
guidelines by the European Academy of Allergy and Clinical Immunology, the culprit food
allergen should be eliminated from the diet of children with cow’s milk protein allergy.
Thus, a therapeutic formula is required. Soy-based formula, extensively hydrolysed formula
and amino acid-based formula are alternative infant formulas that can be used in place
of cow’s milk formula. While the extensively hydrolysed formula is commonly used
as a substitute for cow’s milk, the amino acid-based formula is nonallergenic and may
be a substitute when an extensively hydrolysed formula is ineffective [142]. Soy-based
formula should only be considered in infants over six months, and if they cannot tolerate
extensively hydrolysed formula, if parents cannot afford other specialized formulas, or if
the parents strongly prefer it due to veganism [143]. The presence of high concentrations
of isoflavones in soy formula has raised concerns about its potential estrogenic effect on
infants’ development. Andres et al. evaluated the developmental status of infants receiving
different types of milk and revealed that infants fed with soy formula had normal growth
and did not differ from cow’s milk formula. However, breastfed infants exhibited better
cognitive development than formula-fed infants [144].

4.2. Addition of Prebiotics and Probiotics to Infant Formula

To promote a gut microbiome formation comparable to that of a breastfed infant,
manufacturers often supplement infant formula with prebiotics and probiotics, which are
known to have a bifidogenic effect and can modulate the immune system [145]. Stud-
ies have demonstrated that adding prebiotic oligosaccharides to infant formula is well-
tolerated in healthy infants and results in softer stools compared to unsupplemented
formula [146–149]. Puccio et al. studied the outcome of supplementing infant formula with
two common HMOs—2′fucosyllactose and lacto-N-neotetraose—and reported that the
supplemented formula could support proper growth of the infants [150]. Adding these two
prebiotic oligosaccharides to infant formula has also been reported to promote the growth
of Bifidobacterium and produce gut microbial composition closer to breastfed infants [151].
Infant formula supplemented with galacto-oligosaccharides and fructo-oligosaccharides is
associated with lower faecal pH and greater abundance of Bifidobacteria compared to the
unsupplemented formula [152,153]. Castanet et al. revealed that infant formula containing
bovine milk-derived oligosaccharides exhibits a bifidogenic effect, helps to modulate the
infant gut microbiome, and enhances gut maturation [154].
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Probiotics are live microorganisms that provide health benefits to the host when ad-
ministered in sufficient and appropriate amounts [155]. Supplementing infant formula
with probiotic with Bifidobacterium sp. and/or lactic acid bacteria such as Lactobacillus
strains is safe and well-tolerated in healthy term infants [156–158]. The supplementation
of probiotics increases IgE level in cord blood and promotes TGF-β production. TGF-β is
closely related to IgA that is specific to food antigens; thus, elevated TGF-β plays a vital role
in atopy prevention in infant early life [159]. The addition of probiotics to infant formula
may have beneficial effects on the immunity of infants, as indicated by a decrease in the
incidence of the upper respiratory tract and gastrointestinal infections [160]. Infants receiv-
ing formula milk supplemented with Lactobacillus fermentum had a lower incidence rate of
gastrointestinal infections [156,160]. Chi et al. reported that infant formula supplemented
with probiotic Bifidobacterium lactis promotes enrichment of beneficial bacteria in the gut
microbiome of low birth weight infants [161]. In a study by Radke et al., infants receiving
formula supplemented with both prebiotics (bovine milk-derived oligosaccharides) and
probiotics (Bifidobacterium animalis sp. lactis) have higher levels of Bifidobacterium and
Lactobacilli, lower faecal pH, and higher faecal secretory IgA compared to infants receiving
unsupplemented formula. The Committee on Nutrition of the European Society for Paedi-
atric Gastroenterology and Nutrition (ESPGHAN) and the ESPGHAN Working Group for
Probiotics and Prebiotics recommends the use of L. rhamnosus GG (LGG) ATCC 53103 (at a
daily dose ranging from 1 × 109 CFU to 6 × 109 CFU) and the combination of B. infantis
Bb-02, B. lactis Bb-12, and Str. thermophilus TH-4 (at a daily dose of 3.0 to 3.5 × 108 CFU of
each strain) to reduce necrotizing enterocolitis (NEC) stage 2 or 3 in preterm infants [162].
These suggestions that adding prebiotics and probiotics to infant formula may bring the
gut microbiome closer to that of breastfed infants and positively influence the immune
system [163]. As the postbiotic effect dependents on the bacterial strain, thus, the safety,
suitability, and specificity of the bacteria strain in formula milk should be further studied.

4.3. Differences in the Gut Microbial Composition between Breastfed and Formula-Fed Infants

The gut microbiome of infants who receive human milk differs from that of infants fed
formula milk. Formula feeding in term infants has increased microbial diversity [164–166].
Studies have reported higher levels of Bifidobacteria—an essential inhabitant of a healthy
microbiota, in breastfed infants compared to formula-fed infants [166–169]. Consequently,
breastfed and formula-fed infants have different levels of faecal SCFAs, the main metabo-
lites of HMOs fermentation, with a higher level in breastfed infants [170]. However,
Wang et al. reported that although the overall microbiota in breastfed and formula-fed
infants are different, the levels of Bifidobacteria in both breastfeeding and formula-feeding
groups are similar, suggesting that some formula milk is capable of supporting the growth
of Bifidobacteria [171]. In an effort to create a gut microbiota profile that is comparable to
that in breastfed infants, advances have been made in the formulation and manufacturing
of infant formula milk, such as optimizing the whey-to-casein ratio and supplementing
the formula milk with prebiotics, which has been proven to increase the abundance of
Bifidobacterium in formula-fed babies [146,172].

5. Impact of the Early-Life Gut Microbiome on Health and Diseases
5.1. Necrotising Enterocolitis

Necrotising enterocolitis (NEC) is a serious inflammatory disease of the gastroin-
testinal tract predominantly affecting premature infants [173]. The earlier the gestational
age, the higher the mortality due to NEC [174]. Dysbiosis and delayed gut microbiota
maturation in preterm infants are associated with a higher risk of necrotising entero-
colitis [175–177]. Prematurity is an independent factor associated with an altered gut
microbiome [178]. Moreover, preterm infants are often treated with antibiotics and pro-
longed hospital care, which may directly influence the gut microbiota [179]. Cong et al.
investigated the stool samples of 29 stable/healthy preterm infants at the NICU. The study
found that the Proteobacteria was the most abundant phylum. There was an increasing pat-
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tern of Clostridium and Bacteroides, and decreasing Staphylococcus and Haemophilus observed
over time during early life (Table 2) [180].

Table 2. Summary of early-life gut microbiome on health and diseases.

Subjects
Baseline Gut Microbiome
Composition Compared to

Control Group
Intervention Key Findings of the Study Reference

Necrotising entercolitis (NEC)

Preterm infants Proteobacteria most
abundant phylum N.A.

There was a significant change observed in the gut
microflora. Increased Proteobacteria, Clostridium,

and Bacteroides, and decreasing Staphylococcus and
Haemophilus were observed over time

[180]

Full-term vaginal
delivered breast-fed

infants (FTVDBF)
and VLBW

preterm infants

Higher levels of Firmicutes and
Proteobacteria, and decreased

levels of Bacteroidetes and
Actinobacteria

N.A.
There was a significant change observed between
the full-term vaginal delivered breast-fed infants

(FTVDBF) and VLBW preterm infants
[181]

Preterm infants Lower level of Clostridia N.A.
There was a significant change observed and this is

associated with an increased risk and severity
of NEC

[182]

Infants diagnosed
with NEC withing
first 30 days of life

N.A. Human milk
Infants who received human milk for >7 days had
decreased risk of NEC compared to infants who

received human milk for less than 1 week
[183]

Preterm infants N.A.
Human milk Total SCFA concentrations were higher for human

milk-fed infants than those for preterm-formula
milk-fed infants. This is associated with reduced

risk of NEC

[184]
Preterm-formula

milk

Very low
birthweight infants

(VLBW)
N.A. Human milk

A lower concentration of disialyllacto-N-tetraose in
human milk samples received by VLBW infants
who developed NEC. Eight infants in the cohort

developed NEC (Bell stage 2 or 3)

[185]

Very low
birthweight infants

(VLBW)
N.A.

Human milk and
formula milk (for

full feeds)
supplemented with

probiotic

Bifidobacterium bifidum and Lactobacillus acidophilus
is associated with a reduction in the risk of NEC,

late-onset sepsis, and mortality irrespective
feeding mode

[186]

Preterm babies
<32 weeks and

VLBW
N.A.

Human milk or
formula milk

supplemented with
S.boulardii

Saccharomyces boulardii supplementation at a dose of
250 mg/day was not effective at reducing the
incidence of death or NEC in VLBW infants, it

improved feeding tolerance and reduced the risk of
clinical sepsis

[187]

Preterm infants N.A.

Human milk or
formula milk

supplemented with
probiotic

No difference in the incidence of NEC between
infants receiving human milk or formula milk
supplemented with Bifidobacterium bifidum and

Lactobacillus acidophilus and the group that did not
receive probiotics supplementation

[188]

Obesity

Termed infants Bacteroides fragilis N.A. Colonization with B. fragilis group was borderline
significantly associated with a higher BMI [189]

Infants Streptococcus N.A.
Colonization of Streptococcus was significantly
higher in the first months of life and has been

associated with higher adiposity and BMI
[190]
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Table 2. Cont.

Subjects
Baseline Gut Microbiome
Composition Compared to

Control Group
Intervention Key Findings of the Study Reference

Atopy

Newborns with a
single or double

heredity for atopy
Clostridia N.A. Clostridium colonization in neonates is associated

with an increased risk of atopic dermatitis [191]

10 children with
IgE-associated

eczema and
10 nonallergic

children

Ruminococcaceae N.A.

Relative abundance of Gram-positive
Ruminococcaceae was lower at one week of age in

infants developing IgE-associated eczema,
compared with controls

[192]

2–6 months infants
who are breastfed N.A. Human milk Shorter breastfeeding duration was associated with

an overall increased risk of eczema [193]

Healthy term
infants at risk

of atopy
N.A. Formula milk

Hydrolysed whey formula supplemented with
short-chain galacto-oligosaccharides and

long-chain fructo-oligosaccharides (9:1; 8 g/L)
significantly decreased the risk of atopic

[194]

Mother–infant pairs N.A.

Lactobacillus
rhamnosus LPR +
Bifidobacterium

longum BL999 or
Lactobacillus

paracasei ST11 +
Bifidobacterium

longum BL999 for
the maternal until

delivery. Then
babies are breast-fed

The risk of developing eczema during the first 24
months of life was significantly reduced in infants
of mothers receiving LPR + BL999 (odds ratio [OR],
0.17; 95% CI, 0.08–0.35; p < 0.001) and ST11+BL999

[195]

Infants N.A. Lactobacillus
rhamnosus HN001

Maternal supplementation from 35 weeks gestation
until 6 months of breastfeeding and infant

supplementation until two years with Lactobacillus
rhamnosus HN001 reduced the prevalence

of eczema

[196]

N.A.: Not applicable.

A similar bacteria phylum was observed in a study by Arboleya and colleagues.
The study compared faecal samples from full-term vaginal delivered breast-fed infants
(FTVDBF) and VLBW preterm infants. The preterm infants had higher levels of Firmicutes
and Proteobacteria, and decreased levels of Bacteroidetes and Actinobacteria when compared
with FTVDBF infants. The concentration of faecal SCFAs is also lower in premature infants,
suggesting an alteration in the functionality of the preterm infant gut microbiome besides
the composition [181]. McMurtry et al. reported that a reduced gut microbial diversity
and the absence or significantly low abundance of certain classes of bacteria, for instance,
Clostridia, are associated with an increased risk and severity of NEC. This suggests that
a diverse microbiota and specific taxa may reduce the inflammatory response leading to
the disease [182].

Human milk appears to protect against NEC as human milk (maternal or donor) is as-
sociated with decreased incidence of NEC compared to the preterm formula [183,197–199].
Kimak et al. recommended a longer term of exclusive human milk intake to decrease
the risk of developing necrotising enterocolitis as the occurrence of NEC was higher in
premature infants who received human milk for less than a week compared to those who
exclusively received breast milk for more than a week [200]. Pourcyrous et al. found
significant levels of total faecal SCFAs in preterm babies who received only expressed
human milk compared to those who received preterm formula and suggested that the
increased concentration of SCFAs in infants receiving human milk is associated with re-
duced risk of NEC [184]. Gopalakrishna et al. revealed that IgA from human milk plays a
vital role in developing infant gut microbiota in preterm infants and preventing NEC [201].
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Specific HMOs in human milk may also contribute to the protection against NEC, as
2′-fucosyllactose and disialyllacto-N-tetraose have been shown to lessen the severity of
the disease and improve survival in animal models [202,203]. In addition, a study by
Autran et al. found a significantly lower concentration of disialyllacto-N-tetraose in human
milk samples received by VLBW infants who developed NEC. The concentration of this
particular HMO could predict the risk of NEC occurrence [185].

Probiotics have been used to prevent necrotising enterocolitis in very low birth weight
preterm babies; however, there are contradicting results concerning their effectiveness,
which might be attributable to the modes of infant feeding and probiotic strains. For
example, Braga et al. and Chowdhury et al. reported that human milk supplemented
with probiotics (Bifidobacterium and Lactobacillus) decreased the incidence of necrotising
enterocolitis [204,205]. A recent study by Robertson et al. also showed that probiotics
supplementation with Bifidobacterium bifidum and Lactobacillus acidophilus is associated with
a reduction in risk of NEC and late-onset sepsis, irrespective of mode of feeding [186]. In
contrast, Demirel et al. found probiotic supplementation (Saccharomyces boulardii) in human
or formula milk ineffective in decreasing NEC incidence or death [187]. Saengtawesin et al.
found no difference in the incidence of NEC between infants receiving human milk or
formula milk supplemented with Bifidobacterium bifidum and Lactobacillus acidophilus and
the group that did not receive probiotics supplementation [188]. Dang et al. compared the
outcomes of preterm infants before and after commencing probiotics supplementation con-
sisting of Lactobacillus rhamnosus and Bifidobacterium infantis. It was reported that probiotics
resulted in better feeding tolerance and reduced extra-uterine growth restriction; however,
there was no significant difference in the occurrence of NEC [206]. The European Society for
Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) Committee on Nutri-
tion and the Working Group for Probiotics and Prebiotics reported that only a small number
of the investigated probiotic strains or combinations of strains were found to be efficacious
in decreasing morbidity and mortality. Although there is low certainty in evidence, the
ESPGHAN position paper conditionally recommended using Lactobacillus rhamnosus GG
ATCC53103 or the combination of Bifidobacterium infantis Bb-02, Bifidobacterium lactis Bb-12,
and Streptococcus thermophilus TH-4 in lowering the risk of necrotising enterocolitis [207].

5.2. Obesity

The increasing prevalence of infant and childhood obesity is of concern, as obesity can
harm health and quality of life. Moreover, children who are overweight or obese are more
prone to becoming obese adults and developing chronic diseases [208]. It has been found
that infant gut microbiota may predict the risk of excessive weight gain in childhood [190].
A large study by Scheepers et al. reported that early infancy gut microbial composition,
particularly the abundance of Bacteroides fragilis, is significantly correlated with weight
gain in children [189]. In addition, the levels of Streptococcus in infants have been found to
positively correlate with childhood body mass index (BMI), whereas the levels of Bifidobac-
terium are negatively correlated with the later BMI [190,209,210]. Factors influencing the gut
microbiome development in infancy, including mode of delivery and perinatal antibiotic
exposure, have associations with childhood adiposity [211,212]. Caesarean section and use
of antibiotics during the first six months of age are associated with higher body mass in later
years as reported by Blustein et al. and Trasande et al., respectively [213,214]. However,
Li et al. suggested that rather than antibiotic exposure, untreated infection—which can
also disrupt the gut microbiome—during infancy is correlated with excessive weight gain
in childhood [215].

Many studies have demonstrated that breastfeeding has a protective effect on child-
hood obesity, while some have provided contradictory results. Several studies have re-
ported that breastfed children for at least six months have a lower risk of overweight or
obesity in childhood compared to those who have never received breast milk [216–218].
Some studies revealed a dose-response relationship between the duration of breastfeeding
during infancy and child overweight or obesity risk [219–221]. In contrast, some studies
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found no association and dose-response effect between breastfeeding and obesity in later
years [222,223]. On the other hand, studies on formula-fed infants demonstrated that
different types of infant formula might also affect the pattern of weight gain due to the
energy balance mechanisms. A study by Weber et al. revealed that compared to infants
who received formula milk with higher protein content, those who received formula with
lower protein content had lower BMI and lowered risk of obesity at older age [224]. Early-
life consumption of higher protein content has been associated with more rapid weight
gain, resulting in higher adiposity [225]. In addition, a more significant proportion of
infants fed with cow’s milk formula were fast weight gainers compared to infants receiving
extensively hydrolysed formula [226]. There is an association between rapid weight gain
during infancy and high BMI later in life [227].

5.3. Atopy

Atopy is characterized by a tendency to develop hypersensitivity reactions in which
there is elevated immunoglobulin E (IgE) production in response to antigens or aller-
gens. Some common atopic conditions include allergic rhinitis, asthma, atopic dermati-
tis, and food allergy [228]. The development of atopic disorders may be influenced by
early-life gut microbiota. Studies have revealed that reduced gut microbial diversity in
early infancy is associated with an increased risk of developing atopic diseases [229–231].
Penders et al. showed that Clostridia colonization in 5 and 13-week-old infants was asso-
ciated with a higher risk of developing atopic dermatitis [191]. West et al. demonstrated
that infants with IgE-associated atopic dermatitis have lower Gram-positive Ruminococ-
caceae, which is associated with excessive TLR2 response, suggesting that the infant gut
microbial composition may be correlated with susceptibility to eczema through immune
signalling modulation [192]. Ta et al. revealed that infants with atopic dermatitis have
an altered developmental trajectory in their gut microbiome. There was an enrichment of
Enterobacteriaceae at three weeks of life and a delay in Bacteroidaceae colonization, leading to
an increase in Enterobacteriaceae/Bacteroidaceae ratio in infants with atopic dermatitis [232].
Arrieta et al. demonstrated a transient dysbiosis of the intestinal microbiota in children
at risk of asthma during their first few months. These children have a lower abundance
of Lachnospira, Veillonella, Rothia, and Faecalibacterium in their gut microbiome at three
months old. Furthermore, inoculation of germ-free mice with these four microbes have
been shown to reduce airway inflammation, suggesting that they may play a protective
role in asthma development [233].

Studies have shown that human milk confers protection against the development of
atopic diseases. A study involving 3296 children from the Canadian Healthy Infant Longi-
tudinal Development birth cohort reported that formula feeding and mixed feeding are
associated with a higher risk of asthma by three years of age compared to exclusive breast-
feeding during the first three months of life [234]. While the risk of developing childhood
asthma was higher in infants delivered by caesarean section without medical indication,
exclusive breastfeeding in the first six months of life may reduce this risk [235]. Elbert et al.
found a slight increase in the risk of developing atopic dermatitis in children who were
breastfed for a shorter duration and those who were nonexclusively breastfed [193]. A
recent clinical report from the American Academy of Paediatrics concluded that exclusively
breastfed infants during the first three to four months of life had a reduced risk of atopic
dermatitis up to two years of age. In addition, breastfeeding for a more extended period,
regardless of exclusivity, confers protection against asthma even beyond age five. There
was no evidence that exclusive breastfeeding for more than three to four months offers
any benefits in preventing atopic disorders [236]. There is conflicting evidence on the
preventive effect of partially hydrolysed whey formula, as supplement or substitute to
human milk, on atopic disorders in high-risk children [237–239].

Evidence on the efficacy of prebiotic supplementation in atopic disorders prevention is
inconsistent. Arslanoglu et al. revealed that extensively hydrolysed whey formula supple-
mented with short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides
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(9:1; 8 g/L) significantly decreased the risk of any atopic manifestations and atopic der-
matitis up to five years of age [194]. Wopereis et al. demonstrated that partially hydrol-
ysed formula supplemented with neutral short-chain galacto-oligosaccharides, long-chain
fructo-oligosaccharides (9:1; 0.68 g/100mL) and pectin-derived acidic oligosaccharide
(0.12 g/100mL) brought the gut microbiome of formula-fed infants closer to that of breast-
fed infants [240]. However, Boyle et al. reported that adding a specific prebiotic mixture
to partially hydrolysed whey formula was ineffective in preventing atopic dermatitis in
high-risk children in the first year of life [241].

The use of probiotic supplementation to prevent infants’ allergies remains contro-
versial. Rautava et al. evaluated the effect of maternal probiotic supplementation with
Lactobacillus rhamnosus LPR + Bifidobacterium longum BL999 or Lactobacillus paracasei ST11 +
Bifidobacterium longum BL999 during the last two months of pregnancy and the subsequent
two months during breastfeeding. The study reported that the risk of infants developing
atopic dermatitis in the first two years of life was significantly decreased [195]. Wickens
et al. showed that Lactobacillus rhamnosus HN001 protected infants against atopic dermatitis
if administered to mothers from 35 weeks to 6 months postpartum if breastfeeding and
to the infants during their first two years of life [196]. Conversely, Allen et al. found
that probiotics (Lactobacillus salivarius CUL61, Lactobacillus paracasei CUL08, Bifidobacterium
animalis subspecies lactis CUL34, and Bifidobacterium bifidum CUL20) given to mothers from
36 weeks of pregnancy until delivery and to infants until 6 months of age did not prevent
atopic dermatitis in the first two years of life [242]. Using different probiotic strains, Loo
et al. and Cabana et al. evaluated the effect of infant probiotic supplementation during the
first six months of life. They found that early probiotic supplementation did not prevent
atopic diseases at two and five years of age [243,244]. In short, it is still uncertain whether
prebiotics or probiotics supplementation helps prevent atopic diseases owing to the hetero-
geneity between studies, particularly concerning the types of prebiotics or probiotics used
and the duration of supplementation.

6. Conclusions

The infant gut microbiota is complex and can be modulated by many endogenous and
exogenous factors (Figure 1). The feeding mode during infancy has been demonstrated to
be one of the most important factors in determining the development and establishment of
gut microbial composition. Human milk is an excellent source of infant nutrition and has
been shown to provide many health benefits; thus, breastfeeding should be encouraged.
However, in some circumstances, mothers may not be able to breastfeed or decide to
formula feed their babies. Therefore, continuous advances and innovations in infant
formula development are important to produce the best alternative for infants who are
not breastfed.

Studies have suggested that supplementing prebiotics or probiotics in infant formula
brings the gut microbiome of formula-fed infants closer to that of breastfed infants. How-
ever, its clinical efficacy in preventing diseases, such as necrotising enterocolitis and atopic
disorders, should be further explored and studied. The contradictory results concerning
their effectiveness might be attributable to different oligosaccharides or probiotic strains in
various studies. Therefore, more evidence is needed to establish its clinical efficacy and
determine the best prebiotic or probiotic strains, their doses, and duration of supplementation.
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