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Ranking the invasions of cheaters in 
structured populations
Guoli Yang1,2,7, Matteo Cavaliere3,7, Cheng Zhu2 & Matjaž Perc4,5,6*

The identification of the most influential individuals in structured populations is an important research 
question, with many applications across the social and natural sciences. Here, we study this problem 
in evolutionary populations on static networks, where invading cheaters can lead to the collapse of 
cooperation. We propose six strategies to rank the invading cheaters and identify those which mostly 
facilitate the collapse of cooperation. We demonstrate that the type of successful rankings depend on 
the selection strength, the underlying game, and the network structure. We show that random ranking 
has generally little ability to successfully identify invading cheaters, especially for the stag-hunt game 
in scale-free networks and when the selection strength is strong. The ranking based on degree can 
successfully identify the most influential invaders when the selection strength is weak, while more 
structured rankings perform better at strong selection. Scale-free networks and strong selection 
are generally detrimental to the performance of the random ranking, but they are beneficial for the 
performance of structured rankings. Our research reveals how to identify the most influential invaders 
using statistical measures in structured communities, and it demonstrates how their success depends 
on population structure, selection strength, and on the underlying game dynamics.

In evolutionary structured populations, individuals usually adopt the behaviors held by their neighbours, leading 
to the propagation of states throughout the network. Models of evolutionary games on networks have been stud-
ied for a long time1–6, with the dynamics of competing strategies studied using evolutionary game theory where 
the fitness of an individual is dependent on the neighbourhood configuration and the game settings. A particular 
case of interest is the conflict between cooperative and cheating individuals6. In this case, few initial (cheating) 
players (just like the initial spreaders in propagation networks) in a cooperative community can spread and lead 
to a full cheater invasion and the consequent collapse of cooperation. In this paper we address the question on 
how to identify the most influential cheaters, i.e., those which most probably will lead to the collapse of coopera-
tion, in structured populations.

In order to find a set of initial spreaders which can achieve the most prevalent propagation collectively, pre-
vious works have tried to define some statistical measures to identify the influential spreaders. It is known that 
the influence of a node is highly dependent on the network structure and its location on the network, but how 
to calculate the actual relevance of a node is not trivial. Despite there are more than 30 methods to characterize 
the importance of a node, there is not an ubiquitous one which can be applied to different kinds of dynamical 
systems. Generally speaking, there are four types of ranking measurements focused on the identification of vital 
nodes7 which can be divided into rankings based on local information, rankings based on global information, 
rankings based on iterative refinement, and rankings based on node removal. In the family of rankings based 
on local information, degree centrality8 is the most popular one, but is not able to reflect details for the higher 
order neighbours. Possible extensions are the neighbourhood connectivity and clustering coefficient through 
LocalRank9 and ClusterRank10. To obtain the position of the nodes, one can decompose the network gradually to 
compute the coreness of the nodes11. As this k-shell decomposition is highly coarse-grained, i.e., nodes in same 
shell may be very different, mixed degree decomposition12 and VoteRank13 have been proposed to distinguish 
the links connecting to removed nodes and to remaining nodes. In the case of rankings based on global infor-
mation, the path from one node to another is also taken into account. Eccentricity14, closeness centrality15, Katz 
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centrality16 etc. are calculated to characterize the diameter of the network, the average shortest path distance and 
the overall influence of all paths. In particular, betweenness centrality17 has been extensively studied18–20 as it 
measures the role of bridges in the network controlling the flow of information. In the case of rankings based on 
iterative refinement, the importance of a node is determined by the mutual enhancement effect under the frame-
work of Markovian dynamics, where every node gets support from its in-neighbours and then gives support to 
the out-neighbours. Algorithms include eigenvector centrality21, Alpha centrality22, cumulative nomination23, 
PageRank24, HITs25 etc. As one of the most well-known methods to rank websites, PageRank evaluates the impor-
tance of a node by the quantity and quality of the pages linked to it. Considering that the dynamics of visiting 
nodes is triggered by random walk and a dangling node will always gain values and never give them out, random 
jumping-out and LeaderRank26,27 were explored to avoid such drawback. The last type of ranking methods is 
based on node removal28,29, whose main idea is that more influential nodes will highly affect the connectivity or 
distance of the network when they are removed. In this case, the typical measurements to evaluate the changes of 
function and structure of the networks are the shortest path distance30, the number of spanning trees31, and the 
contraction of network32. All these types of ranking methodologies are generally applied to spreading models that 
are based on the stochastic triggering of interactions from one state to another between connecting individuals, 
including independent cascade model, linear threshold model, epidemic model (such as SI, SIS, SIR), and voter 
models33. However, when the spreading dynamics is coupled to evolutionary dynamics under the framework 
of evolutionary game theory (EGT), things may dramatically change as the underlying competition can lead to 
complicated dynamics in the identification of influential nodes which obtain a fitness (driving their reproduction 
or disappearance) based on their own and their neighbours strategies. This paper, for the first time to our knowl-
edge, explores the possibility of using some of the previously investigated rankings to identify the most successful 
invaders in evolutionary graph theory34, exploring how the success of different rankings depend on the game 
dynamics, selection strength and network structure.

Evolutionary Graph Theory
In evolutionary graph theory34, the players (individuals) occupy the vertices of a graph (network), and the con-
nections between each other indicate the possible interactions. The graph (population structure) is fixed during 
the evolutionary dynamics, and the size of the population is constant. In our scenario, the players can use one of 
the two strategies: cooperation (C) and defection (D), that is also called cheating. In a population of N individuals 
consisting of cooperators and defectors, the total payoff of a player is the sum of the payoffs obtained by inter-
acting with each one of the neighbours. The payoff matrix which represents the payoff for each possible type of 
interaction is:

	 (1)

We use this payoff matrix to study the conflict between cooperators (C) and defectors (cheaters, D) in four differ-
ent types of games (by fixing R 1= , P 0= , and opportunely varying S and T we can obtain stag-hunt, snow-drift, 
harmony and prisoner-s dilemma game35).

The fitness of a player is given by a constant term - baseline fitness - plus the payoff obtained from the interac-
tions. Therefore, the fitness of a player is defined as:

f w w1 (2)i iπ= − +

where w is the intensity of selection.
Strategies that do well are more likely to be imitated by others. In this paper we use the standard ‘death-birth’ 

model34. At each update step, a random node i is selected for death and the neighbours compete to occupy the 
empty site with probability proportional to their fitness. The evolutionary dynamics can be defined by a discrete 
sequence of update steps as shown in Fig. 1.

Figure 1.  The evolutionary dynamics of a death-birth model. At each update step, each individual occupies the 
vertex of a graph and derives a payoff from the interactions with its neighbours (the payoff obtained for each 
interaction is given by the payoff matrix of the game). A random node is selected to die and the neighbours 
compete to occupy the empty site with probability proportional to their fitness.
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In this paper we use the above described model of evolutionary graph theory to explore the identification of 
the most influential cheating (defecting) nodes, i.e., those with higher chances of leading to a full cheaters inva-
sion and cooperation collapse.

Among the ones discussed in the Introduction, in this paper we focus on the following ranking strategies 
which establish different ways to select the top-n cheating nodes in a population of cooperators (i.e., the initial 
invaders). In general, two types of nodes are considered in the network, one is the type of seed nodes, selected 
into the top-n-list as initial defectors; and the other type is that of potential nodes, which is the types of the nodes 
not selected into the top-n-list.

The idea is to pick n nodes as defectors (the so-called top-n nodes), in an initial network of all cooperators, and 
see whether they will survive and spread in the population leading to a complete defectors invasion. The initial 
density of defectors is defined by ρ = n/N. Depending on the type of ranking, the initial n defectors are selected 
in different ways.

We investigate the following rankings which describe different ways to select the top-n nodes (see also the 
Methods section)

•	 random ranking: the top-n nodes are randomly chosen nodes in the network and selected to be defectors.
•	 degree ranking: the top-n nodes are selected to be defectors according to their degree (i.e., higher is the node 

degree, higher the chances that the node is selected).
•	 betweenness ranking: the top-n nodes are selected to be defectors according to their betweenness (i.e., higher 

is the betweenness of a node, higher is the chance that the node is selected).
•	 k-shell ranking: the top-n nodes are selected to be defectors based on their k-shell11 (higher the k-shell of a 

node, higher the chances that the node is selected).
•	 N-weighted degree ranking: the top-n nodes are selected to be defectors based on the negative weighted 

degree36.
•	 P-weighted degree ranking: the top-n nodes are selected to be defectors based on the positive weighted 

degree36.

In this paper we refer to all the rankings except the random one as structured rankings, as they imply the addi-
tion of invaders using some kind of strategic choice based on the population structure.

The Initial Position of Defectors Matters
To study the success of different rankings we simulate the dynamics of a population of cooperators where some 
nodes (the top-n nodes) are selected as defectors (cheaters) according to the chosen ranking strategy described in 
the previous Section. We use an initial density of cheaters ρ = 30% (i.e., 30% of the nodes in the population are 
initially selected as defectors). To provide an intuition on how the ranking affects the initial positions of the cheat-
ers we plot in Fig. 2 the initial network configurations obtained for the different ranking strategies in the case of 
an ER random network37 with =N 200 nodes and =E 400 edges. As we can see, the initial positions of the defec-
tors depend crucially on the chosen ranking. Defectors are more likely to get closer when the invaders are estab-
lished using a ranking based on degree, k-shell, P-weighted degree. However, when the invaders are established 
using a ranking based on random or N-weighted degree, the initial defectors tend to be more distant and avoid 
the overlap of their sphere of influence. To quantify this intuition, we show in Fig. 2 the distributions of coopera-
tors and cheaters using the degree (k), the number of cooperative neighbours (kC) and the number of cheating 
neighbours (kD). Interestingly, an evident distinction is present for the different ranking strategies. The degree 
distributions for cooperators and defectors are overlapping for the rankings based on random and N-weighted 
degree, while they are separated for the rankings based on betweenness, k-shell, degree, and P-weighted degree. 
Furthermore, we can see that the defectors have more cooperative neighbours than the cooperators for the rank-
ings based on N-weighted degree; on the contrary, the cooperators hold more defective neighbours than the 
defectors. However, for the rankings based on the degree, betweenness and P-weighted degree, the defectors have 
more defective and cooperative neighbours than the cooperators. As we can see, the defectors selected by using a 
ranking based on P-weighted degree or degree are more likely to get closer establishing many connections to 
cooperators.

The Efficacy of Random Ranking
The different positioning of the invading cheaters in the population structures (which we have intuitively dis-
cussed in Fig. 2) can affect the possibility of a cheaters invasion and cooperation collapse (in fact, mixed connec-
tions are generally detrimental for cooperators and advantageous for cheaters). However the actual chances of a 
cooperation collapse may depend on a complex interplay of the underlying game dynamics, network structure 
and selection strength. To investigate the effects of different games, we fix =R 1 and =P 0 and vary S from 
−[ 1, 1] and T from [0, 2]; in this way we can easily explore different types of games35, including stag-hunt game 

(S [ 1, 0]∈ −  and ∈T [0, 1]), prisoner’s dilemma (S [ 1, 0]∈ −  and ∈T [1, 2]), harmony game ( ∈S [0, 1] and 
∈T [0, 1]) and snowdrift game (S [0, 1]∈  and T [1, 2]∈ ).

We study how the probability of collapse of cooperation is affected by the values of S and T, by the selection 
strengths w, by the network structures and by the different rankings, i.e., the different ways to add the initial 
cheating invaders. The initial addition of cheaters can only lead to two possible outcomes - a cooperation collapse, 
i.e., the initial cheaters spread and fully invade the network; or a cooperation recovery, i.e., the initial cheaters 
do not spread and the network becomes composed of only cooperators. Here, we use the probability of collapse, 
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which is computed as the ratio between the number of cooperation collapses obtained after the addition of the 
initial cheaters and the total number of simulations.

In Fig. 3 we present the probability of (cooperation) collapse at weak selection (w 0 01= . ) and strong selection 
(w 0 1= . ) for an ER random network with N 200=  nodes and =E 400 edges. We consider S 0 4= − .  and 

Figure 2.  Rankings and initial positions of invading cheaters. We show how in an ER random network, the 
different rankings affect the initial positions of the cheaters. We plot the initial degree and neighbours 
distributions for cooperators and defectors. We use an initial density of cheaters ρ = 30% nodes, which are 
nodes to be selected as defectors according to the ranking strategies based on random, degree, betweenness, 
k-shell, N-weighted degree and P-weighted degree.
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S 0 4= . , with the values of T varying between 0 and 2; and = .T 0 6 and T 1 4= .  with the values of S varying 
between −1 and 1; in this way, we can evaluate the performance for different ranking strategies and for different 
games.

As we can see in Fig. 3, when the population is structured on an ER network, the different ways to add the 
initial defectors will lead to quite different outcomes. For fixed S, the probability of collapse is enhanced with the 
increase of T, i.e., the temptation to defect helps the propagation of defectors. On the contrary, for fixed T, the 
probability of collapse decreases with the increase of S (i.e., a decrease in S indicates a higher loss for a cooperator 
connected to a defector). It is important to notice that the random ranking does not have generally a good per-
formance (we indicate by performance of a ranking its ability to cause a cooperation collapse which also denotes 
its ability to identify/position successful invaders in the population). In particular, we can see in Fig. 3 that there 
are several regimes where the rankings based on the degree or the P-weighted degree can outperform the random 
ranking.

Most Successful Rankings
While in Fig. 3 we have focused our attention on random networks, the probability of cooperation collapse is 
highly dependent on the network structure. Depending on the different network structure of the population (we 
consider lattice, small-world38, random and scale-free networks39 in the following), the performance of certain 
rankings can dramatically change.

In order to shed light on the optimal ranking for different scenarios, we compare the above 6 rankings for the 
harmony game (using = .S 0 4, T 0 6= . ), the snowdrift game (using = .S 0 4, = .T 1 4), the stag-hunt game (using 
S 0 4= − . , = .T 0 6) and the prisoner’s dilemma (using = − .S 0 4, T 1 4= . ).

To study the consequences of network structures and selection strength on the rankings success, we illustrate 
the probability of collapse for the different rankings in Fig. 4. When the selection strength is weak, the difference 
between the performance of the different rankings is small, see Fig. 4(a), and the collapse of cooperation is mostly 
evident for the prisoner’s dilemma in scale-free networks due to the large payoff difference between cooperators 
and defectors. However, when selection strength is strong, the large payoff obtained by the defectors will be 
amplified and the difference of performance between the rankings is more evident, especially for the stag-hunt 
game (Fig. 4(b)).

Figure 4 stresses that the performance of the different rankings depends crucially on the network structures, 
selection strength and specific games. We can observe that scale-free networks facilitate the collapse of cooper-
ation, in particular when it is used a ranking which tend to select the “hubs” of the network as initial cheaters.

We can also observe that the influence of selection strength is also non-trivial. In fact, a strong selection 
strength promotes the collapse of cooperation in the prisoner’s dilemma, but is detrimental to the collapse of 
cooperation in the other regimes. Notably, we can observe that for the stag-hung game (with S 0 4= − .  and 

Figure 3.  The probability of collapse in random networks at weak and strong selection. The simulations are run 
with ρ = 30% nodes selected to be defectors according to the following ranking strategies: random, degree, 
betweenness, k-shell, N-weighted degree and P-weighted degree. In the upper panels, we use S as = − .S 0 4 and 

= .S 0 4, and the x-axis indicates ∈T [0, 2]. In the lower panels the game parameter T is fixed as T 0 6= .  and 
T 1 4= . , and the x-axis indicates the parameter ∈ −S [ 1, 1]. The strength of selection is = .w 0 01 (left panels) 
and w 0 1= .  (right panels). Simulations are done using ER random networks and the probability of collapse is 
obtained using 2000 independent simulations.
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= .T 0 6), the performance of the rankings for lattice, small-world networks and random networks is generally 
worse at strong selection than that at weak selection; however, for scale-free networks the scenario is opposite - at 
strong selection rankings can be more effective than in weak selection due to the advantage provided to defectors 
placed in “hubs” positions, and selected by the opportune ranking strategies.

If we analyze the performance of each individual ranking strategy, we can observe that the rankings based 
on P-weighted, degree, betweenness and k-shell generally outperform the ranking based on N-weighted and 
random, especially in the stag-hunt game. Interestingly, the selection strength can determine the most successful 
ranking: the ranking based on the degree can outperform the other rankings at weak selection, but the ranking of 
P-weighted degree works better at strong selection (Fig. 4).

In Fig. 5 we focus on the effects of selection on the efficacy of the rankings. In fact, we can observe that for very 
weak selection ( = . . .w 0 0001, 0 0005, 0 001) the difference between the efficacy of the rankings is small, especially 
in lattice and small-world networks. On the other hand, more structured rankings facilitate the collapse of coop-
eration in random and scale-free networks (Fig. 5). We can also observe that in the harmony game ( ∈S [0, 1] and 
T [0, 1]∈ ), snowdrift game (S [0, 1]∈  and ∈T [1, 2]) and stag-hunt game ( ∈ −S 1, 1] and T [0, 1]∈ ), the 
chances of cooperation collapse decrease as the selection strength gets stronger, while in the prisoner’s dilemma 
(S [ 1, 0]∈ −  and T [1, 2]∈ ) the chances of cooperation collapse increase with the increase of the selection 
strength. In particular, for the stag-hunt game in scale-free networks (Fig. 5(d)), we can observe two opposite 
interesting trends: (i) the chances of cooperation collapse decrease with the increase of selection strength for the 
rankings based on random and N-weighted degree; (ii) the chances of cooperation collapse increase with the 
increase of selection strength for the rankings based on degree, P-weighted degree, betweenness.

Furthermore, we also explore the influence of initial density on the collapse of cooperation. With the increase 
of the initial fraction of cheaters, namely ρ, we find that the ranking based on P-weighted degree performs 
increasingly better (Fig. 6), especially for the harmony games and snowdrift games in scale-free networks.

The Effects of Rankings in Scale-Free Networks
As we can see in Fig. 7 the chances of cooperation collapse are usually maximized when the population is organ-
ized as scale-free networks, when an appropriate ranking (which facilitates the selection of hubs as initial cheat-
ers) is used. However, as we can see in Fig. 7, the appropriate ranking which maximizes the chances of cooperation 
collapse in scale-free networks is not unique. In fact, for the prisoner’s dilemma (with = − .S 0 4 and = .T 1 4), 
random ranking or N-weighted degree ranking applied to scale-free networks perform worse (i.e., lower chances 
of cooperation collapse) than the same rankings in the other types of networks such as small-world networks 
(Fig. 7(a,c)); however the chances of cooperation collapse are maximized in scale-free networks when degree 
ranking or P-weighted degree ranking is used (Fig. 7(b,d)).

Figure 4.  Network structures and selection strength affect the success of the rankings. We use an initial density 
of cheaters 30%ρ = , and plot the probability of collapse obtained at weak selection (w 0 01= . , left panel) and 
strong selection ( = .w 0 1, right panel). For each subfigure, the x-axis indicates the type of network - lattice, 
small-world, random and scale-free, while the y-axis indicates the probability of collapse. We test the different 
rankings (random, degree, betweenness, k-shell, N-weighted and P-weighted) for four typical games.
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The Effects of Selection on Rankings
Because of the way we compute the fitness, a stronger selection strength will amplify payoffs differences, while a 
weaker selection will reduce such difference. As we can see in Fig. 8 the selection strength has also an important 
effect on the performance of the rankings. For some regimes of the harmony game (S [0, 1]∈  and ∈T [0, 1]), 
snowdrift game (S [0, 1]∈  and T [1, 2]∈ ) and stag-hunt game ( ∈ −S [ 1, 0] and ∈T [1, 2]) the chances of coop-
eration collapse are weakened at strong selection, which is essentially caused by the relative big payoff obtained by 
the the cooperators. On the other hand, for large part of the prisoner’s dilemma regime (S [ 1, 0]∈ −  and 

∈T [1, 2]), the payoff of defectors will be big, leading to higher chances of cooperation collapse when selection is 
strong.

Furthermore, we can also observe that the chances of cooperation collapse decreases when it is employed a 
random ranking or the N-weighted degree ranking in the case of stronger selection, but increases when an appro-
priate structured ranking is employed (e.g. the degree ranking or the N-weighted degree ranking), especially in 
scale-free networks (Fig. 8).

The stag-hunt game (with S 0 4= − .  and = .T 0 6) represents well this dual role of selection on rankings per-
formance. Increasing selection leads to a smaller probability of cooperation collapse when either the random 
ranking or the N-weighted degree ranking is employed (Fig. 8(a,c)), but, at the same time, increasing selection 
leads to higher chances of cooperation collapse when the degree and P-weighted degree rankings are used in 
scale-free networks (Fig. 8(b,d)).

Random Ranking vs Structured Rankings
The random ranking is the typical one used in literature - in many cases the resilience of cooperation is studied by 
adding invaders in randomly chosen positions. However, as we have seen, the chances of the collapse of cooper-
ation may be very different if more structured rankings are employed, i.e., invaders are not placed randomly but 
according to some strategic choice.

Figure 5.  The collapse of cooperation depends on the selection strength, rankings and network structures. We 
use an initial density of invading cheaters ρ = 30%, and the probability of collapse is obtained in a lattice, small-
world, random and scale-free networks. For each subfigure, the x-axis indicates the strength of selection w, and 
the y-axis indicates the probability of cooperation collapse. We consider the effects of the different rankings - 
random, degree, betweenness, k-shell, N-weighted and P-weighted ranking - for four typical games.
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As we can see in Fig. 9 the difference between the chances of cooperation collapse in the case of random rank-
ing and in the case of more structural ranking crucially depend on the population structure, the game and the 
strength of selection. We explore in details how the difference of performance (i.e. cooperation collapse) between 
the best ranking and the random ranking depends on the network structures (lattice, small-world networks, ran-
dom networks, scale-free networks) in the case of weak selection (w 0 01= . ) and strong selection (w 0 1= . ). As 
shown in Fig. 9 the difference in the performance is highly dependent on the structures of networks as well as the 
strength of selection.

At weak selection, the difference between the performance of the best ranking and the random ranking is only 
particularly large in the case of scale-free networks. However, at strong selection, the difference between the per-
formance of the random rankings and the others is more evident - such difference reaches the maximum when 

Figure 6.  The collapse of cooperation depends on the initial densities, rankings and network structures. We use 
a medium selection at w 0 05= . , and the probability of collapse is obtained in a lattice, small-world, random and 
scale-free networks. For each subfigure, the x-axis indicates the initial density ρ, and the y-axis indicates the 
probability of cooperation collapse. We consider the effects of the different rankings - random, degree, 
betweenness, k-shell, N-weighted and P-weighted ranking - for four typical games.

https://doi.org/10.1038/s41598-020-59020-4
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the network is scale-free, in the regime corresponding to S [0, 1]∈  and ∈ −T [ 1, 0] (stag-hunt game). The intu-
ition behind such big gap between the performance of the random ranking and the others is that when selection 
strength is strong, and there is large degree heterogeneity in the network, the large payoffs of high-degree defec-
tors will be enhanced in the competitions with cooperators by the strong selection, so that the rankings based on 
structured strategies (and which tend to select more connected nodes as initial cheaters) can outperform the 
random ones where initial cheaters are randomly chosen (independently of their position).

Figure 7.  The effects of population structures on cooperation collapse depend on the game, selection strength 
and rankings. We use an initial density of cheaters ρ = 30% and compute the probability of cooperation collapse 
in a lattice, small-world, random and scale-free networks at weak selection ( = .w 0 01), medium selection 
( = .w 0 05) and strong selection ( = .w 0 1). We consider the effects of four ranking strategies - random ranking, 
the degree ranking, the N-weighted degree ranking and the P-weighted degree ranking.

https://doi.org/10.1038/s41598-020-59020-4
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Discussion
In dynamically evolving structured populations, the competition between cooperation and defection determines 
the stability of the system. Introducing some defectors in a cooperative communities may trigger the collapse of 
cooperation. However, it is not known how to identify influential invaders. e.g., those defectors which can mostly 
lead to the collapse of cooperation. In this paper, we analyze for the first time to our knowledge, the methodol-
ogies (rankings) which can be used to identify influential invaders when the population is organized on static 
complex networks. We combine evolutionary graph theory with ranking methodologies (used in epidemics) to 
demonstrate that the there is no optimal ranking but this depends on the population structure, the underlying 
game and the strength of selection. We compare some well-known rankings and show that the random ranking 
(i.e., where invaders are placed randomly) performs worse than structured rankings (where invaders are placed 

Figure 8.  The effects of selection on cooperation collapse depends on the game, network structure and ranking. 
We fix an initial density of invading cheaters as 30%ρ =  and compute the probability of collapse in a lattice, 
small-world, random and scale-free networks at weak selection ( = .w 0 01), medium selection (w 0 05= . ) and 
strong selection ( = .w 0 1). We compare four ranking strategies - random ranking, the degree ranking, the 
N-weighted degree ranking and the P-weighted degree ranking.

https://doi.org/10.1038/s41598-020-59020-4
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according to some structural strategy). The ranking based on degree can successfully identify the most influ-
ential invaders when selection strength is weak, while the ranking based on P-weighted degree performs better 
when selection strength is strong. The efficacy of the rankings is also affected by the typology of network which 
structures the population. Scale-free networks and strong selection may be detrimental to the performance of 
the random ranking, but will be beneficial to the performance of certain structured rankings (such as degree 
ranking and the P-weighted degree ranking). The random ranking generally performs worse than the other rank-
ings, however the difference between its performance and structured rankings depend on the game, strength of 
selection and network structure. Such difference is the largest when the underlying game is the stag-hunt, popu-
lation is organized in a scale-free network and selection strength is strong. These results demonstrate that when 
studying the collapse of cooperation in structured populations is important to study in details the mechanisms 
by which cheating invaders can appear in the population - not only their number, but also their initial positions 
can crucially affect the ability of cooperation to resist the invasion. Different ways to rank the individuals suggest 
different methodologies to distinguish the most influential invaders - some rankings perform better than others; 
there is however not a general optimal way to rank the invaders but the performance of the rankings depend on 
the careful study of the way the population is structured, the strength of the competition and the underlying game 
dynamics. We have applied the idea of rankings to a well-known evolutionary model such as evolutionary graph 
theory but the proposed methodology can be naturally extended to different models of structured populations40 
leading to a novel promising research area.

Methods
While degree centrality only considers the number of nearest neighbours, the k-shell of a node is defined in11 as a 
way to measure the location of a node as well as its degree. In k-shell decomposition, all isolated nodes have core-
ness c 00 = , and then all nodes with degree 1 are removed, causing a reduction of the degree values for the 
remaining nodes. The main idea is to keep removing nodes with degree of 1 until the degree of the remaining 
nodes is bigger than 1. The coreness of the removed nodes at round 1 is defined to be c 11 = , while the coreness of 
the nodes removed at round t is defined to be =c tt . A larger coreness for a node means that the corresponding 
node is located in a more central position (i.e., it has a higher k-shell).

The weighted degree decomposition (WDD) is defined in36 as a way to compute the importance of nodes by 
considering the difference between the removed nodes and the remaining nodes. In general, two types of nodes 
will be in the network according to the weighted degree decomposition method, and they are defined to be seed 
nodes and potential nodes. These are defined in the following way:

•	 a seed node - a node selected into the top-n-set as one of the initial cheating invaders;

Figure 9.  Performance of random ranking vs structured rankings. We plot the difference in the chances of 
cooperation collapse between the random ranking and the highest performance obtained by the best structural 
ranking. The biggest difference is obtained in the stag-hunt game and at strong selection. We use an initial 
density of invading cheaters ρ = 30% and plot the difference between the best structured ranking and the 
random ranking for weak selection with = .w 0 01 (left panels) and strong selection with = .w 0 1 (right panels). 
We consider population organized on a lattice, small-world, random and scale-free networks. For each 
subfigure, the x-axis indicates the game parameter ∈T [0, 2] and the y-axis indicates the game parameter 

∈ −S [ 1, 1].
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•	 a potential node - a node that is not in the top-n-set.

We compute the weighted degree of a node as follows:

k v k v NS u( ) ( ) ( ( ) ) (3)p u NS v( ) α β= + Σ + | |∈
⁎

where k v( )p  is the number of potential nodes in the neighbourhood, and NS(v) is the set of neighbours who have 
been selected into the top-n-set as seed nodes. There are two weight coefficients α and β to allow a trade-off 
between exploitation and exploration. Depending on the values of α and β, we have the N-weighted degree rank-
ing or the P-weighted degree ranking.

For the N-weighted degree ranking, the seed neighbours as well as their seed neighbours will be under-rated 
(i.e., associated to negative coefficients in the calculation of the weighted degree decomposition). In order to 
avoid the overlap of sphere of influence, α and β will be set to be negative, and the neighbours’ degree of the 
seed nodes will be discounted; this will also lead to the selection of nodes which are far away from the crowd of 
selected nodes.

For the P-weighted degree ranking, however, its seed neighbours as well as their seed neighbours will be 
over-rated ((i.e., associated to positive coefficients in the calculation of the weighted degree decomposition). Both 
α and β will set to be positive; this will lead to the selection of nodes close to the cluster of high-degree seeds.

The selection of the n initial invaders by using weighted degree decomposition is generally implemented with 
the following procedure: (1) the node with the maximum weighted degree is selected and added into the top-n-set; 
(2) the states of nodes in the neighbourhood of the selected node are updated and the weighted degree for the 
remaining nodes is recomputed; (3) repeat the above steps until the size of top-n-set reaches n.
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