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In December 2019, an outbreak of an unknown viral pneumonia 
severely affected Wuhan, China. The virus was quickly identi-
fied and named severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2)1–3 by the World Health Organization, and the 
resulting viral pneumonia is referred to as coronavirus disease 2019 
(COVID-19) pneumonia4–8. By the end of March, 2020, nearly 200 
countries and regions had been affected, with more than 500,000 
confirmed cases, and the number of cases is still increasing. This 
severe situation underscores the urgency for developing effective 
measures to control the pandemic.

Early diagnosis of patients with COVID-19 pneumonia for 
timely treatment is critical for containing outbreaks, especially in 
epidemic regions2,9–12. However, this remains a challenging task. 
Limited medical resources and the large number of patients across 
many regions affected by COVID-19 commonly result in long 
waiting times for diagnosis and medical decisions such as quaran-
tine or hospitalization, which potentially increase the chances of 
cross-infection and lead to poor prognosis. Although confirmation 
of a COVID-19 diagnosis relies on detection of SARS-CoV-2 RNA 
by quantitative PCR with reverse transcription (RT–PCR), this test 

has been found to show a high specificity9 (Sp) but a low sensitivity 
(Sn), with a reported positive rate13 of 38–57%.

In addition to aetiological laboratory confirmation, other key 
diagnostic elements that facilitate identification of COVID-19 pneu-
monia include clinical features (CFs) and chest computed tomog-
raphy (CT) imaging14,15. Consistent with the importance of these 
diagnostic elements, the Guidance for COVID-19 (6th edition)16 
released by the National Health Commission of China uses some of 
these diagnostic elements to define mild, regular, severe and criti-
cally ill forms of confirmed and suspected cases of COVID-19 pneu-
monia16–19. Despite far from complete understanding, studies have 
begun to reveal relevant CFs, including symptoms of COVID-19 such 
as fever, dry cough, myalgia and shortness of breath7,10,11. Other CFs, 
such as lymphopenia, elevated levels of inflammatory cytokines and 
reduction in T cell subsets, are also frequently found11,12. Moreover, 
chest CT imaging characteristics of infected lungs reportedly include 
ground-glass opacity (GGO) and severity-correlated consolidation20. 
Although the picture remains incomplete, comprehensively pool-
ing the features of the aforementioned diagnostic elements might  
collectively improve the accuracy and efficacy of diagnosis.
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Data from patients with coronavirus disease 2019 (COVID-19) are essential for guiding clinical decision making, for furthering 
the understanding of this viral disease, and for diagnostic modelling. Here, we describe an open resource containing data from 
1,521 patients with pneumonia (including COVID-19 pneumonia) consisting of chest computed tomography (CT) images, 130 
clinical features (from a range of biochemical and cellular analyses of blood and urine samples) and laboratory-confirmed severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clinical status. We show the utility of the database for prediction of 
COVID-19 morbidity and mortality outcomes using a deep learning algorithm trained with data from 1,170 patients and 19,685 
manually labelled CT slices. In an independent validation cohort of 351 patients, the algorithm discriminated between negative, 
mild and severe cases with areas under the receiver operating characteristic curve of 0.944, 0.860 and 0.884, respectively.  
The open database may have further uses in the diagnosis and management of patients with COVID-19.
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During the ongoing COVID-19 pandemic, the availability of 
first-hand CT and clinical datasets will be essential and impor-
tant to help guide clinical decision making, to supply information 
to deepen understanding of this viral infection, and to provide a 
basis for systemic modelling that may facilitate early diagnosis for 
timely medical intervention. One way to achieve this goal is to cre-
ate an open-access and comprehensive resource containing chest 
CT images and CFs of individual patients, to facilitate international 
joint efforts to combat COVID-19 pneumonia.

From the accumulated data in our hospitals, we prepared two 
cohorts that include a total of 1,170 and 351 individuals, respec-
tively, comprising patients with laboratory-confirmed COVID-19, 
COVID-19-negative (control) individuals and individuals with 
suspected COVID-19, and collected their corresponding chest CT 
images, CFs and SARS-CoV-2 laboratory test results if available. 
Then, we developed a patient-centric resource, which we named 
integrative CT images and CFs for COVID-19 (iCTCF) to archive 
and share the rich data. Using cohort 1, we integrated the highly 
heterogeneous CT and CF datasets, and built an engineering frame-
work of hybrid learning for unbiased prediction of COVID-19 
patients (HUST-19) to predict clinical outcomes, including morbid-
ity outcomes (defined as mild or regular form (type I) and severe 
or critically ill form (type II)) and mortality outcomes. For morbid-
ity outcomes, the area under the curve (AUC) values of HUST-19 
are 0.978, 0.921 and 0.931 for predicting negative cases (control), 
mild or regular (type I) and severe or critically ill (type II) patients, 
respectively. We used cohort 2 as a validation dataset to evaluate 
HUST-19, with consistently promising accuracy. For mortality out-
comes, we merged the two cohorts and achieved an AUC value of 
0.856 for predicting deceased cases. Using HUST-19, we conducted 
a retrospective analysis of 299 suspected cases in cohort 1, and pre-
dicted 207 potential type I cases and 71 potential type II cases. In 
conclusion, this resource can be useful for retrospective analysis 
purposes and for improving the diagnosis and treatment of patients 
with COVID-19. We have made HUST-19 and iCTCF freely avail-
able for academic research at http://ictcf.biocuckoo.cn.

Results
A summary of collected datasets. To populate cohorts 1 and 2, we 
enrolled 1,521 individuals, including 1,126 from Union Hospital 
(HUST-UH) and 395 from Liyuan hospital (HUST-LH). The data 
characteristics of cohorts 1 and 2 are shown in Table 1. All patients 
subjects had CF data, and 1,342 subjects had both CT and CF data. 
The clinical morbidity outcomes of the 1,521 individuals were clas-
sified as (1) 894 patients with confirmed COVID-19 and pneumo-
nia severity ranging from mild (24 cases, 2.7%), regular (596 cases, 
66.7%), severe (202 cases, 22.6%), to critically ill (72 cases, 8.1%) 
forms, (2) 328 COVID-19-negative cases (treated as the control 
group), and (3) 299 suspected COVID-19 cases, on the basis of the 
Guidance16 (Fig. 1a). Due to the limited data on mild and critically 
ill forms, we defined mild and regular forms as type I, and severe 
and critically ill forms as type II. The mortality outcomes of those 
with confirmed COVID-19 were also counted, including 662 cured 
cases, 57 deceased cases and 175 cases with unknown outcome 
(patients transferred to other hospitals) (Fig. 1b).

From the original CT images in DICOM format, 364,357 CT 
slices in JPEG format were exported from 1,342 subjects with chest 
CT data, including 82,239 slices (22.6%) from 313 control subjects, 
3,704 slices (1.0%) from 21 patients with the mild form, 137,512 
slices (37.7%) from 543 patients with the regular form, 56,132 slices 
(15.4%) from 170 patients with the severe form and 8,911 slices 
(2.4%) from 35 patients with the critically ill form of COVID-19, 
and 75,859 slices (20.8%) from 260 patients with suspected COVID-
19 (Fig. 1c). A total of 164,998 CT slices were obtained from the 
cured cases and 4,935 CT slices were obtained from the deceased 
(Fig. 1c).

The CF data were classified into 130 types from 9 categories, 
including basic information, routine blood test, inflammation 
test, blood coagulation test, biochemical test, immune cell typ-
ing, cytokine profile test, autoimmune test and routine urine test 
(Supplementary Data 1). The information regarding underly-
ing diseases (Udis) and morbidity outcomes of patients from the 
two hospitals is presented in Supplementary Data 2. For statisti-
cal comparisons of different groups of patients, we first analysed 
each of the 125 numerical CFs, with the exception of morbidity 
outcome, mortality outcome, SARS-CoV-2 RNA test, gender and 
Udis (Supplementary Data 1). In addition to carrying out full sta-
tistical tests (Supplementary Data 3), the most significantly differ-
ent results were visualized (Supplementary Fig. 1). Compared with 
the controls, 4 types of CFs were significantly higher in patients 
with COVID-19, including body temperature (average 37.9 °C 
versus 37.1 °C in controls), GLB, HSCRP and age (average 56.6 yr 
versus 51.1 yr in controls) (Fig. 1d, Supplementary Fig. 1a and 
Supplementary Data 3). In patients with COVID-19, 14 CFs were 
significantly decreased, such as coefficient variation of RDWCV, 
PCT and ALP (Fig. 1d, Supplementary Fig. 1b and Supplementary 
Data 3). We also compared type I and II patients. Compared with 
type I patients, 24 CFs were markedly increased and 14 CFs were 
markedly decreased in type II patients (Fig. 1d, Supplementary 
Fig. 1c,d and Supplementary Data 3). Thus, the number of CFs 
that differed between type II and type I patients was higher than 
between COVID-19 and control cases, indicating that CF data 
might be informative for classification of type II and type I patients. 
Compared with type I patients, age (average 63.6 yr in type II versus 
53.1 yr in type I) was significantly higher in type II patients (Fig. 1d 
and Supplementary Data 3), suggesting an association between age 
and illness severity, consistent with recent reports21,22.

In addition, we compared deceased and cured cases, and observed 
16 CFs that were significantly increased and 8 CFs that were signifi-
cantly decreased (Fig. 1d, Supplementary Fig. 1e,f and Supplementary 
Data 3), indicating that CFs were informative for predicting mor-
tality outcomes. Further analysis demonstrated that the propor-
tions of patients with Udis were similar among control subjects 
and patients with COVID-19 (type I and type II) (Supplementary 
Data 3), suggesting a general susceptibility. Of note, type II cases 
had a higher proportion of patients with Udis than type I cases, 
and patients with Udis were also enriched among deceased indi-
viduals compared with cured individuals (Supplementary Data 3),  
revealing a link of Udis with COVID-19 disease severity, consistent 
with a previous study23.

Table 1 | The data characteristics of cohort 1 and cohort 2

Type Cohort 1 Cohort 2

No. of 
patients

No. of CT 
slices

No. of 
patients

No. of CT 
slices

Morbidity outcome

 Control 222 54,853 106 27,386

 Mild 23 3,246 1 458

 Regular 415 92,485 181 45,027

 Severe 146 38,583 56 17,549

 Critically ill 65 7,901 7 1,010

 Suspected 299 75,859 0 0

Mortality outcome

 Deceased 53 4,935 4 0

 Cured 450 105,636 212 59,362

 Unknown 146 31,644 29 4,682
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An integrative resource of COVID-19 pneumonia. Using the 
two cohorts, we developed iCTCF to maintain and share the cor-
responding CT images (in both DICOM and JPEG formats), CFs 
and SARS-CoV-2 laboratory test results. On the resource page 
(http://ictcf.biocuckoo.cn/Resource.php), multiple options can be 
selected to search the database, including hospital (HUST-UH and/
or HUST-LH), age (<40 yr, 40–60 yr and/or >60 yr), gender (female 
or male), laboratory-confirmed SARS-CoV-2 status (positive and/
or negative), CT evidence (positive, negative and/or not available), 
and form of COVID-19 (critically ill, severe, regular, mild, sus-
pected and/or control) (Supplementary Fig. 2a). Desired selections 

can be customized. Clicking the ‘Submit’ button, causes the results 
to be displayed in a tabular list with information from 20 patients 
per page (Supplementary Fig. 2a).

For convenience, we also provide an ‘example’ button that can 
be clicked to automatically load pre-configured selections, fol-
lowed by the representation of several typical cases (Supplementary 
Fig. 2b). In this example, we select ‘Patient 4’ to show the annota-
tions in iCTCF. Patient 4 had intermittent fever (a maximum of 
38.5 °C), fatigue, shortness of breath and myalgia for 10 d before 
admission. He coughed occasionally with sputum. On 3 February 
2020, the RT–PCR test for SAS-CoV-2 RNA on his throat swab 
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Fig. 1 | Statistics of the study data. a, Numbers of control subjects, subjects with suspected COVID-19, and patients with confirmed mild, regular, severe 
and critically ill forms of COVID-19 in cohorts 1 and 2. b, Numbers of patients that are cured, deceased and with unknown outcome in the two cohorts. c, 
Numbers of chest CT slices of patients with or without COVID-19 pneumonia and cured and deceased cases in the two cohorts. d, Statistical comparisons 
of CFs between subjects with COVID-19 (type I and type II) and controls (P < 10−5), between type II and type I cases (P < 10−9), and between deceased and 
cured cases (P < 10−5). Two-sided unpaired t-test was performed for data following a normal distribution; otherwise a Mann–Whitney U test was used. 
ALG, albumin/globulin ratio; ALB, albumin; ALP, alkaline phosphatase; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; 
BUN, urea nitrogen; CA, calcium; CRP, C-reactive protein; DBIL, direct bilirubin; DD, D-dimer; EO, eosinophil count; EOP, eosinophil percentage; GGT, 
γ-glutamyltransferase; GLB, globulin; GLU, glucose; HSCRP, high-sensitivity C-reactive protein; IL-6, interleukin-6; INR, international normalization ratio; LDH, 
lactate dehydrogenase; LY, lymphocyte count; LYP, lymphocyte percentage; MOP, monocyte percentage; NE, neutrophil count; NEP, neutrophil percentage; 
PCT, procalcitonin; PT, prothrombin time; RDWCV, red cell volume distribution width; RDWSD, standard deviation of red cell volume distribution width; TBIL, 
total bilirubin; and WBC, white blood cell. The full list and details of the CFs are presented in Supplementary Data 1. Further details on the statistical analyses 
are presented in Supplementary Data 3.
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specimens was positive. He was admitted to hospital on 4 February 
2020 with finger blood oxygen saturation of 90% in ambient air. 
This increased to 98% with face mask oxygen support (3 l min−1). 
According to the China Guidance16, this patient was diagnosed 
with a severe form of COVID-19 and regarded as a type II case in 
iCTCF (Supplementary Fig. 2c).

Clicking on ‘Patient 4’ brings up a display of detailed information 
on the anonymous patient (Supplementary Fig. 2c). The patient page 
shows a brief summary of the patient, with five representative CT 
images (Supplementary Fig. 2c,d). All numerical CFs are provided 
in a tabular list, and the laboratory-confirmed SARS-CoV-2 status 
is also shown (Supplementary Fig. 2c,e). Consistent with the brief 
clinical summary described above, the age of the patient (73 yr), 
gender (male), body temperature (38.5 °C), positive SARS-CoV-2 
infection status, and Udis (aorta calcification) are presented. The 
patient’s CT examination suggests possible bilateral viral pneumo-
nia. The patient’s tabular list contains 82 numerical CFs, includ-
ing but not limited to the decrease of EO, LY, EOP and LYP, and 
increased levels of neutrophil percentage (NEP), erythrocyte sedi-
mentation rate (ESR) and CRP (Supplementary Fig. 2e).

Development of HUST-19 for predicting clinical outcomes of 
COVID-19 patients. To exemplify the usefulness of iCTCF, we 
developed HUST-19, which integrates the CT slice and CF datas-
ets to predict clinical outcomes (both morbidity and mortality out-
comes) of patients with COVID-19 pneumonia. HUST-19 comprises 
four steps, including classification of individual CT slices, CT-based 
prediction of clinical outcomes, CF-based prediction of clinical out-
comes, and integration of CT- and CF-based predictions (Fig. 2).

First, we classified individual CT slices into three types: (1) 
non-informative CT (NiCT) images, in which lung parenchyma 
was not captured for any judgement; (2) positive CT (pCT) images, 

in which imaging features associated with COVID-19 pneumonia 
could be unambiguously discerned; and (3) negative CT (nCT) 
images, in which imaging features in both lungs were irrelevant to 
COVID-19 pneumonia. To enable slice-based prediction, we imple-
mented a deep learning framework based on the architecture of 
VGG-16, a classic convolutional neural network (CNN) framework 
for image recognition24. The original VGG-16 contained 16 weight 
layers including 13 convolutional and 3 fully connected (dense) 
layers, but too many parameters needed fine tuning. To reduce the 
model complexity and enable faster training, we retained only 6 
convolutional and 2 dense layers. The simplified CNNs contained 
13 layers, including one input layer, 3 sets of dual convolutional and 
pooling layers (3 × 3), 2 dense layers, and one output layer (Fig. 2). 
The 13-layer CNNs were used to classify individual CT slices into 
three types: NiCT, pCT and nCT. Second, an additional framework 
of 13-layer CNNs was implemented to transform the individual CT 
slice-based prediction into the patient-based prediction (Fig. 2). For 
each patient, the ten most probable pCT images were retained as 
representative images, which were input into the secondary 13-layer 
CNNs to predict clinical outcomes. Third, the CF-based prediction 
of patients was implemented in a framework of seven-layer deep 
neural networks (DNNs), including one input layer, five dense lay-
ers, and one output layer (Fig. 2). In contrast to CNNs, DNNs did 
not have convolutional and pooling layers. Finally, the predictions 
using CT slices or CFs were integrated through the penalized logistic 
regression (PLR) algorithm to output final predictions on morbidity 
or mortality outcomes of patients. All pre-configured parameters in 
CNN and DNN frameworks are shown in Supplementary Data 4.

The prediction accuracy of HUST-19. Details on the performance 
evaluation of HUST-19 are presented in Tables 2 and 3. First, using 
19,685 manually labelled CT slices, tenfold cross-validations were 
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Integration

Input layer
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13-layer CNNs 7-layer DNNs

Lung parenchyma
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Patient 2 b1 b2
… … …
… … …
… … …
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Fig. 2 | The hybrid learning architecture of HUST-19. HUST-19 includes a 13-layer CNN framework for predicting individual CT slices, a second 13-layer 
CNN framework to transform individual slice-based prediction into patient-based prediction of clinical outcomes, a 7-layer DNN framework to predict 
clinical outcomes of patients with COVID-19 from CFs, and the PLR algorithm used for integration of CT- and CF-based results to predict morbidity or 
mortality outcomes.
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conducted to evaluate the performance of the slice-based predic-
tion. From the receiver operating characteristic (ROC) curve, 
HUST-19 achieved an AUC value of 0.994 in distinguishing pCT 
and nCT images from NiCT images, and an AUC value of 0.991 
in predicting pCT images (Fig. 3a and Table 2). To train models 
to predict morbidity outcomes, we used 197,068 CT slices and 127 
types of CF data from 222 controls, 438 type I patients and 211 type 
II patients in cohort 1. The integration of CT and CF data achieved 
AUC values of 0.978, 0.921 and 0.931 in predicting controls, type 
I and type II patients, respectively (Fig. 3b and Table 2). We also 
used the cohort 2 as a validation dataset to test HUST-19, which 
still exhibited promising accuracy (Fig. 3c and Table 3). In cohort 2, 
there were 91,430 CT slices and CF data from 106 controls, 182 type 
I patients and 63 type II patients. To train models to predict mortal-
ity outcomes, cohorts 1 and 2 were merged with 169,933 CT slices 
and CF data from 662 cured and 57 deceased cases, due to data  
limitation. From the results, we observed that the mortality out-
comes could be accurately predicted, with an AUC value of 0.856 
(Fig. 3d and Table 2).

In HUST-19, we selected a sensitive threshold to maximize the 
ability to correctly predict the clinical outcomes of true COVID-
19 patients. Under this threshold, confusion matrices were gener-
ated to visualize the agreement between actual and predicted results  
(Fig. 3e–h). For the CT slice-based prediction, it was found that NiCT, 
pCT and nCT slices could be correctly recognized with high accu-
racy (Fig. 3e). For predicting morbidity outcomes, different types 
of cases could be clearly distinguished for both cohort 1 (Fig. 3f)  
and cohort 2 (Fig. 3g). The deceased and cured cases could also be 
accurately separated (Fig. 3h). In addition, ROC curves and confu-
sion matrices were plotted for exclusively using CT or CF data to 
predict morbidity or mortality outcomes (Supplementary Fig. 3). 
The results supported the proposed combining of CT and CF data 
to achieve a higher accuracy for predicting the clinical outcomes 
(Tables 2, 3 and Supplementary Fig. 3).

Computational annotations of suspected cases. In iCTCF, there 
were 299 suspected cases without definitive laboratory confirma-
tion of SARS-CoV-2 at the time of enrolment. We used HUST-19 

Table 2 | Details on the performance evaluation of HUST-19 for the prediction of individual CT slices, morbidity outcomes, and 
mortality outcomes

Prediction Type AUC Sn (%) Sp (%) Ac (%) PPV (%) NPV (%) MCC

Prediction of 
individual CT slices

NiCT 0.994 98.40% 99.64% 99.42% 99.12% 99.55% 0.9861

pCT 0.996 97.00% 90.68% 91.97% 72.74% 99.16% 0.7940

nCT 0.991 85.47% 99.12% 92.38% 99.00% 87.25% 0.8557

Prediction of morbidity outcomes

 CT based Control 0.919 51.99% 98.01% 84.66% 91.46% 83.32% 0.6115

Type I 0.804 94.70% 39.17% 67.76% 62.29% 87.45% 0.4105

Type II 0.838 19.98% 98.33% 83.05% 74.39% 83.53% 0.3257

 CF based Control 0.882 49.95% 96.75% 84.55% 84.43% 84.57% 0.5677

Type I 0.856 92.58% 47.56% 68.92% 61.82% 86.68% 0.4385

Type II 0.879 44.96% 98.04% 84.27% 88.94% 83.56% 0.5583

 HUST-19 Control 0.978 85.01% 99.80% 95.31% 99.46% 93.86% 0.8897

Type I 0.921 87.82% 79.20% 83.34% 79.55% 87.59% 0.6708

Type II 0.931 70.86% 92.67% 87.94% 72.79% 91.99% 0.6415

Prediction of mortality outcomes

 CT based 0.808 76.47% 76.40% 76.41% 13.40% 98.55% 0.5000

 CF based 0.822 81.13% 70.32% 71.49% 24.86% 96.86% 0.4994

 HUST-19 0.856 88.24% 78.26% 78.73% 16.67% 99.26% 0.5236

The Sn, Sp, accuracy (Ac), positive predictive value (PPV), negative predictive value (NPV) and Matthews correlation coefficient (MCC) were calculated from the tenfold cross-validations.

Table 3 | Details on the performance evaluation of HUST-19 for the prediction of morbidity outcomes using data from cohort 2

Prediction Type AUC Sn (%) Sp (%) Ac (%) PPV (%) NPV (%) MCC

CT based Control 0.895 53.57% 94.47% 83.70% 77.59% 85.06% 0.5486

Type I 0.775 86.67% 50.36% 70.85% 69.33% 74.47% 0.4027

Type II 0.832 32.73% 95.08% 84.33% 58.06% 87.15% 0.3546

CF based Control 0.888 54.72% 99.59% 86.04% 98.31% 83.56% 0.6668

Type I 0.834 72.53% 78.70% 75.50% 78.57% 72.68% 0.5124

Type II 0.845 71.63% 78.82% 77.49% 42.45% 92.65% 0.4200

HUST-19 Control 0.944 51.19% 98.30% 85.89% 91.49% 84.93% 0.6150

Type I 0.860 80.56% 76.26% 78.68% 81.46% 75.18% 0.5673

Type II 0.884 80.00% 78.41% 78.68% 43.56% 94.95% 0.4743

The Sn, Sp, Ac, PPV, NPV and MCC values were directly calculated.
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to predict 21 of these to be COVID-19 negative, 207 to be type I 
cases and 71 to be type II cases (Fig. 4a). Among the predictions, 
51 suspected cases were since confirmed as COVID-19-positive 
cases during this study. For each patient, the six intermediate scores 
generated from CT image-based and CF-based predictions were 
retrieved and analysed using t-distributed stochastic neighbour 
embedding (t-SNE) in a 2D plot. The t-SNE results demonstrated 
that the suspected cases were dispersed among the three types, and 
the predicted type I and II cases were closely grouped with con-
firmed COVID-19-positive cases (Fig. 4b). For example, patients 
324 and 610 were predicted to correspond to type I and II cases, 
respectively (Fig. 4b).

Patient 324 (female, 34 yr old) was admitted to HUST-UH on 9 
February 2020, because of “fever for seven days” and ground-glass 
opacity in the left lower lung suggested by CT imaging (Fig. 4c). Her 
maximum recorded body temperature was 38.3 °C, and was accom-
panied by mild cough, diarrhea and fatigue. On 10 February 2020 
(day 1 after admission), blood biochemical examination showed 
eosinopenia, lymphopenia, elevated HSCRP and increased IL-6 
concentration. However, the results of three laboratory tests for 
SARS-CoV-2 RNA, on 3 February (at the clinic), 11 February (day 2 
after admission) and 13 February (day 4 after admission), were nega-
tive. Since she was afebrile from 12 February (day 3 after admission) 
and CT indicated a substantial improvement in lung lesions on 17 
February (day 8 after admission), this patient was discharged with 
the diagnosis of “suspected COVID-19 regular form” on 20 February 
(day 11 after admission). On the basis of the CT and CF data, the 
HUST-19 model predicted this patient to be a type I case of COVID-
19. Her COVID-19 infection was subsequently verified by positive 
tests for COVID-19 serum immunoglobulin M (IgM) and immuno-
globulin G (IgG) when she returned to the hospital for a follow-up 
examination on 6 March (day 15 after discharge). Thus, her diagnosis 
was eventually corrected to be “COVID-19 regular form” (Fig. 4c).

Another example was patient 610 (female, 73 yr old) (Fig. 4c), 
who was admitted to HUST-UH on 6 February 2020 because of 
“fever, headache, and dizziness for a week” and multiple GGO 
lesions in CT images of both lungs. Her body temperature was 
38.4 °C, accompanied by shortness of breath, coughing and phlegm. 
She had hypertension that was under control. On admission, her 
laboratory tests showed eosinopenia, an elevated level of DD and 
an increased ESR. During hospitalization, the patient had dys-
pnea with finger blood oxygen saturation below 93% in ambient 
conditions, which was corrected with face mask oxygen support 
(10 min l−1, 86%). However, the results of four laboratory tests for 
SARS-CoV-2 RNA, on 5 February (day 1 before admission), 7 
February (day 1 after admission), 23 February (day 17 after admis-
sion) and 25 February (day 19 after admission), were negative. She 
was eventually confirmed to have COVID-19 by positive results for 
serum SARS-CoV-2 IgM and IgG on 2 March (day 25 after admis-
sion). Thus, she was diagnosis with a severe case of COVID-19  
(Fig. 4c). On the basis of her CT and CF data, HUST-19 also accu-
rately classified this case as a type II COVID-19 case, without 
knowledge of her SARS-CoV-2 infection status (Fig. 4b). In sum, 
our annotation of suspected cases suggests that HUST-19 can be 
a helpful tool for identifying patients with COVID-19, and can 
quickly provide useful information towards further diagnosis and 
treatment of the disease.

Discussion
Over the last few months, the outbreak of COVID-19 pneumonia 
has affected nearly 200 countries and regions, and endangered mil-
lions of lives. Since the early stage of the outbreak, the local hospitals 
in Wuhan have been accepting patients with COVID-19 and have 
accumulated substantial amounts of first-hand COVID-19-related 
CT and clinical data. We believe that timely and consistent curation 
of CT imaging, clinical and laboratory information on COVID-19 is 
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important to help understand the scope of disease impact, the spec-
trum of pathophysiological features, and the risk factors for pro-
gressive worsening, and to provide a reliable resource for diagnostic 
modelling and retrospective analysis that can inform screening, 
triage and diagnosis, and facilitate risk management and treatment 
efforts to effectively combat this disease. Further, detailed informa-
tion provided at large scale in real time can be critical for reveal-
ing robust clinical findings, deciding where to prioritize research 
or therapeutic efforts, and for building consensus among clinicians.

It is rare for large datasets to be freely available for sharing dur-
ing disease outbreaks. Several published papers and preprints have 
reported the use of cutting-edge artificial intelligence for predict-
ing COVID-19 diagnosis on the basis of CT imaging and relevant 
clinical information25–35. Although these studies have highlighted 
the potential value of machine learning in diagnosis of COVID-19, 
the datasets used to build their algorithms were relatively small and 
lacked free public access. In a recent study, a deep learning-based 
method was developed to diagnose patients with or without 
COVID-19 pneumonia, using mainly CT imaging data25. The mor-
tality outcomes could not be predicted, and the original DICOM 
files of the dataset used in the study were not provided. Only seg-
mented slices of lung parenchyma in JPEG format were presented. 
By contrast, our iCTCF database has an open, publicly accessible 
computational infrastructure. It systemically integrates CT images 
and CFs from patients with or without COVID-19 pneumonia. 
iCTCF is a comprehensive repository for COVID-19 pneumonia, 

and is, to our knowledge, the largest CT imaging and CF character-
istics database of COVID-19 to date.

Given the rapid surge in the number of cases of COVID-19 glob-
ally, patients has been overloading local medical systems in many 
regions. A key to control this epidemic is to diagnose COVID-19 
as early as possible, in order to apply timely medical interventions, 
such as isolation or treatment, with a goal of reducing cross-infection 
and blocking illness progression in individual patients. To facilitate 
COVID-19 diagnosis and demonstrate the usefulness of iCTCF, we 
developed an engineering framework of HUST-19 using CT slices 
and CF data, and achieved AUC values of 0.921, 0.931 and 0.856 in 
predicting type I, type II and deceased cases, respectively (Fig. 3). In 
addition, we found that HUST-19 achieved a much higher accuracy 
than using either CT data or CF data (Supplementary Fig. 3).

In addition to HUST-19, we also implemented two additional 
open-source CNN frameworks using our CT data, Inception Net 
V336 and ChexNet37, for predicting morbidity and mortality out-
comes, respectively. The original architecture of Inception Net 
V3 contains 11 inception modules, which were truncated to only 
3 inception modules and a grid-size reduction module to accu-
rately predict COVID-19 using chest X-ray images38. ChexNet 
was developed based on a 121-layer dense convolutional network 
(DenseNet-121)39 to predict 14 types of thoracic diseases, includ-
ing pneumonia from chest X-ray images37. For predicting morbidity 
outcomes, we re-trained the Inception Net V3 and ChexNet models 
using cohort 1; their performance values on cohort 1 and cohort 2 
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are presented in Supplementary Fig. 4a–d). The same dataset used 
in HUST-19 was adopted to train the Inception Net V3 and ChexNet 
models for predicting mortality outcomes. Tenfold cross-validations 
were performed to evaluate their accuracy (Supplementary Fig. 4e,f).  
The results indicated that the Inception Net V3 and ChexNet mod-
els achieved similar accuracies to HUST-19 for predicting morbidity 
and mortality outcomes (Supplementary Figs. 3a,c,e and 4). These 
results demonstrated that CNN-based models could accurately  
predict COVID-19 using CT data.

Outlook. We hope to continuously archive relevant COVID-19 
information into the iCTCF system for sharing. We compared the 
China Guidance16 and the US Guidelines40 for COVID-19, and 
found that the definitions of mild, regular, severe and critically ill 
forms of COVID-19 patients in the China Guidance16 are consistent 
with the ‘mild illness’, ‘moderate illness’, ‘severe illness’, and ‘criti-
cal illness’ forms defined in the US Guidelines40, respectively. Thus, 
iCTCF and HUST-19 should be applicable beyond China. With 
abundant and reliable information, the iCTCF database can be a 
valuable resource for improving the diagnosis and clinical manage-
ment of COVID-19.

Methods
COVID-19 case definitions and clinical classifications. Patients were diagnosed 
as suspected cases of COVID-19 or confirmed cases with mild, regular, severe and 
critically ill forms as described16. Due to limited data regarding mild forms (24 
cases) and critically ill forms (72 cases) in cohorts 1 and 2, morbidity outcomes 
were defined as mild or regular (type I) and severe or critically ill (type II) forms, 
depending on the severity of the disease.

Specifically, suspected cases were defined if they met the criteria: any of the 
following epidemiological history plus any two of following clinical manifestations, 
or all the three clinical manifestations without clear epidemiological history. The 
epidemiological history included: (1) recent travel history in and around Wuhan, 
or other communities with reported cases within 14 d prior to the disease onset; 
(2) contact history with COVID-19-infected case(s) (positive RNA test) within 
14 d prior to the disease onset; (3) contact history with patient(s) having fever or 
respiratory symptoms from Wuhan or surrounding areas, or reported communities 
within 14 d prior to the disease onset; (4) a cluster of the disease onset. The 
clinical manifestations included: (1) fever and/or respiratory symptoms; (2) chest 
CT imaging evidence showing signs of COVID-19 pneumonia, including the 
appearance of multiple small patchy GGOs, interstitial changes and peripheral lung 
abnormality at the early stage, rapid progression to multiple focal or diffuse bilateral 
GGOs, and consolidations in severe cases; (3) laboratory findings of normal or 
decreased number of leukocytes or lymphopenia at the early stage of disease onset.

If suspected cases had definitive positive evidence of SARS-CoV-2 RNA 
(RT–PCR positive for specimens such as throat swabs), they were diagnosed as 
confirmed COVID-19. According to the Guidance16, the morbidity outcomes of 
the confirmed COVID-19 cases were clinically classified as the following four 
forms on the basis of illness severity: (1) mild form: mild clinical symptoms 
without chest CT imaging signs of viral pneumonia; (2) regular form: fever 
and respiratory symptoms with chest CT imaging signs of viral pneumonia; (3) 
severe form: should meet any of the following criteria, (i) anhelation (respiratory 
rate ≥ 30 breaths per min) or (ii) finger blood oxygen saturation ≤ 93% in ambient 
condition, (iii) arterial partial pressure of oxygen (PaO2)/fraction of inspiration 
oxygen (FiO2) ≤ 300 mmHg (1 mmHg = 0.133 kPa); adjusted in high-altitude areas 
(>1,000 m above sea level) using a formula PaO2/FiO2 × barometric pressure 
(mmHg)/760, and (iv) more than 50% lesions in chest CT imaging are clearly 
developed within 24 to 48 h; (4) critically ill form: should meet any of the following 
criteria: (i) respiratory failure requiring mechanical ventilation, (ii) shock, and (iii) 
concurrently having other organ failure that needs intensive care unit treatment.

According to the COVID-19 Treatment Guidelines released by the US 
National Institutes of Health (updated on 30 July 2020)40, COVID-19 patients are 
categorized into five forms, including asymptomatic or presymptomatic infection, 
mild illness, moderate illness, severe illness, and critical illness. Except for the 
suspected form in China and the asymptomatic or presymptomatic infection form 
in the United States, the definitions of mild, regular, severe and critically ill forms 
in the China Guidance are highly similar to mild illness, moderate illness, severe 
illness, and critical illness forms, respectively, in the US Guidelines.

Data collection and preparation. The collection, use, and retrospective analysis 
of chest CT images, CFs and SARS-CoV-2 RT–PCR results from patients were 
approved by the institutional ethics committees of HUST-UH (IRB ID: [2020] 
IEC (A001)) and HUST-LH (IRB ID: [2020] IEC (A001)). Informed patient 
consent was waived by the ethics committees due to the COVID-19 emergency. 

For all enrolled patients, the first sets of CT and CF data after admission were 
collected. The daily medical records of cases from HUST-UH and HUST-LH 
were manually checked and confirmed by three attending physicians (J. Zhang, 
a senior respiratory physician with more than 10 yr experience; Q. You, a senior 
physician with more than 10 yr experience in infectious disease; and J. Wang, a 
senior physician with more than 10 yr experience in infectious disease), and the 
medical records of HUST-LH were checked and confirmed by two attending 
physicians (Y.Z., a senior respiratory and critical care physician with more than 
30 yr experience, and H. Peng, a senior respiratory and critical care physician with 
more than 20 yr experience). Clinical classifications (that is, morbidity outcomes) 
of COVID-19 for each patient were determined and confirmed by these same 
physicians according to the Guidance16. Any ambiguous or inconsistent records 
were resolved by discussion with these attending physicians.

In cohort 1, the data were from (1) patients receiving PCR testing who 
were hospitalized between 25 January and 20 February 2020 at HUST-UH and 
HUST-LH; (2) patients admitted to HUST-UH between 14 November and 30 
November 2019, who were diagnosed with community-acquired pneumonia; (3) 
healthy individuals having a routine physical check-up. The 1,170 patients included 
775 patients from HUST-UH and 395 patients from HUST-LH. There were 222 
control cases comprising 112 patients with community-acquired pneumonia, 14 
healthy individuals and 96 patients who tested negative for SARS-CoV-2 RNA 
and for whom CT imaging showed no signs of COVID-19 infection. The 649 
laboratory-confirmed COVID-19 patients comprised 23 mild, 415 regular, 146 
severe and 65 critically ill cases. The remaining 299 subjects were suspected cases. 
Among these 1,170 individuals, 1,000 had CT images (a total of 272,927 CT 
slices). Among the confirmed cases, there were 450 cured cases and 146 cases with 
unknown outcome (patients transferred to other hospitals during hospitalization). 
The remaining 53 deceased subjects included 39 who had the critically ill form and 
14 who had the severe form. Because of their severe illness, only 17 of the deceased 
cases had CT examinations.

To further evaluate the accuracy of HUST-19, we prepared cohort 2 from (1) 
patients who given RT–PCR tests and were admitted between 14 February and 
29 February 2020 to HUST-UH; (2) patients admitted to HUST-UH between 
20 August and 30 November 2019 and diagnosed with community-acquired 
pneumonia. These 351 patients included 245 patients with laboratory-confirmed 
COVID-19 and 106 control cases. Among the morbidity outcomes were 1 mild, 
181 regular, 56 severe and 7 critically ill cases among the confirmed cases. Among 
the mortality outcomes, there were 212 cured cases and 29 case with unknown 
outcome. The remaining 4 deceased cases included 3 from the critically ill form 
and 1 from the severe form. The data in cohort 2 was from the same hospitals as 
the data from cohort 1. Thus, cohort 2 was not a fully independent dataset. Cohort 
2 was taken as a validation dataset and not used for model training.

Clinical examinations procedure. Patients received nine classes of clinical 
examinations, including basic information, routine blood tests, inflammation tests, 
blood coagulation tests, biochemical tests, immune cell typing, cytokine profile 
tests, autoimmune tests and routine urine tests. These tests were performed in the 
clinical laboratory departments of HUST-UH and HUST-LH, and the results were 
collectively denoted as CFs. The basic information included morbidity outcomes, 
mortality outcomes, SARS-CoV-2 RNA tests, age, gender, body temperature (°C), 
and Udis, which were taken from patients’ medical records.

At HUST-UH, routine blood tests, such as haemoglobin (HGB), were 
carried out by a Sysmex XE-5000 automatic blood analyser (Sysmex). To test for 
inflammation, ESR was detected by a Monitor 100 (Vital Diagnostics) and CRP was 
tested by a BN II (Siemens). Blood coagulation tests were carried out by a STA-R 
Evolution (Stago). Biochemical tests were done by an AU5800 (Beckman Coulter). 
B-type brain natriuretic peptide precursor (BNP) was detected by an Architect 
i2000 (Abbott). Quantification and typing of immune cells was conducted using 
flow cytometry (Cytomics FC 500, Beckman Coulter). The cytokine profile 
tests, such as detection of IL-2, IL-4, IL-6, IL-8, IL-10, TNF and IFN-γ, were also 
quantitatively determined by a Cytomics FC 500 (Beckman Coulter). Autoimmune 
tests of complement proteins (C1q, C3 and C4) and immunoglobulins (IgA, 
IgM and IgG) were conducted in an IMMAGE 800 (Beckman Coulter), while 
anti-streptolysin O (ASO) and rheumatoid factor (RF) were tested in a BN II 
(Siemens). Routine urine tests were performed using a Sysmex UF-1000i (Sysmex).

At HUST-LH, routine blood tests were performed by a BC5390 automatic 
blood cell analyser (Mindray). To test for inflammation, CRP was tested by a 
BC5390 automatic blood cell analyser (Mindray). PCT was tested by a Pylon 
immunoassay (ET Healthcare). HSCRP was tested by an AU5800 (Beckman 
Coulter). Blood coagulation tests were carried out by a Sysmex CS5100 automatic 
blood coagulation analyser (Sysmex). For biochemical tests and autoimmune 
tests, an AU5800 (Beckman Coulter) was used. Fungal (1,3)-β-d-glucan (FDG) 
was tested with an LKM series dynamic test tube detector (Labkinetics). BNP 
was analysed using a Cobas e601 full-automatic electrochemical luminescence 
immunoassay system (Roche). Routine urine tests were performed by an FUS-2000 
fully automatic urine analysis workstation (DIRUI).

Chest CT image acquisitions. At HUST-UH, all patients underwent CT 
examinations in the supine position on one of the three CT systems: Somatom 
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Definition AS+ (Siemens Healthineers), Discovery 750HD (GE Medical Systems) 
or Toshiba Activion 16 (Toshiba). The scanning range was set from the thoracic 
inlet to the diaphragm. The scan parameters were 128 × 0.6 mm or 64 × 0.6 
collimation, 120 kV tube voltage and 350 × 350 mm field of view. All datasets were 
reconstructed with a slice thickness of 1.5–2 mm and an increment of 1.5–2 mm. 
Due to the excessively large number of patients during the outbreak, CT images 
were frequently reconstructed with 5 mm layer thickness and 5 mm layer spacing 
for a considerable proportion of patients to enable a faster examination.

At HUST-LH, patient chest CT scans were performed with a uCT510 spiral 
CT scanner (United Imaging). The scanning range was set from the thoracic inlet 
to the diaphragm. The scan parameters were 32 × 0.6 mm collimation, 120 kV tube 
voltage and 350 × 350 mm field of view. All patients were in the supine position, 
and the patients were trained to breathe before the scan. During scanning, patients 
were asked to hold their breath. The scan ranged from the tip of the lungs to the 
lower edge of the costal angle. The original data were reconstructed into an image 
with 1.5 mm layer thickness and 1.2 mm layer spacing.

From the two hospitals, original CT images in DICOM format were obtained 
for all enrolled cases. To ensure patients’ anonymity, a script was written in Python 
3.7 to remove personal information and CT examination date from DICOM files.

CT slice labelling and interpretation. For training individual slice-based models 
in HUST-19, we manually labelled 19,685 CT slices exported from DICOM images 
after removing personal information for 61 COVID-19 patients and 43 control 
cases. During labelling clinical or laboratory findings were not accessed. Individual 
CT slices in JPEG format from cases from HUST-UH were labelled and interpreted 
by two radiologists (H.S., a senior thoracic radiologist with more than 30 yr 
experience and Y.C., a radiologist with 5 yr experience in interpreting chest CT 
images). The CT slices from cases from HUST-LH were labelled and interpreted by 
two radiologists (H.Z., a senior radiologist with 15 yr experience and H. J. Zhang, a 
radiologist with 5 yr experience in interpreting chest CT images). The radiologists 
independently labelled CT slices, and resolved any disagreements through 
discussion to achieve consensus and interpretation of CT imaging features. In total, 
we obtained 5,705 NiCT, 4,001 pCT and 9,979 nCT slices.

Laboratory confirmation of COVID-19 pneumonia. The aetiological 
confirmation of SARS-CoV-2 infection was done by RT–PCR amplification of the 
ORF1ab and N genes of SARS-CoV-2 (BioGerm) from throat or nasopharyngeal 
swab specimens from patients. The primers for amplification and detection of  
the ORF1ab were: forward, 5′-CCCTGTGGGTTTTACACTTAA-3′; reverse,  
5′-ACGATTGTGCATCAGCTGA-3′; and fluorescent probe, 5′-FAM-CCGTCTG 
CGGTATGTGGAAAGGTTATGC-BHQ1-3′. The primers for amplification and 
detection of the N gene were: forward, 5′-GGGGAACTTCTCCTGCTAGAAT-3′; 
reverse, 5′-CAGACATTTTGCTCTCAAGCTG-3′; and fluorescence probe, 
5′-FAM-TTGCTGCTGCTTGACAGATT-TAMRA-3′. A cycle threshold value less 
than 35 (or between 35 and 38 twice) was defined as positive.

Performance evaluation. To evaluate the accuracy of HUST-19, true positive (TP), 
true negative (TN), false positive (FP) and false negative (FN) values were counted. 
Then, we calculated six measurements, Sn, Sp, Ac, PPV, NPV and MCC, as below:

Sn ¼ TP
TPþ FN

ð1Þ

Sp ¼ TN
TNþ FP

ð2Þ

Ac ¼ TPþ TN
TPþ FPþ TNþ FN

ð3Þ

PPV ¼ TP
TPþ FP

ð4Þ

NPV ¼ TN
TNþ FN

ð5Þ

MCC ¼
TP ´TNð Þ� FN ´ FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFNð Þ ´ TNþFPð Þ ´ TPþFPð Þ ´ TNþFNð Þ
p ð6Þ

For each method, the tenfold cross-validation was performed ten times, 
and average Sn, Sp, Ac, PPV, NPV and MCC values were calculated. The ROC 
curve was plotted based on final Sn and 1 − Sp scores, and the AUC value was 
computed. For the computational annotation of suspected cases, t-SNE analysis 
was implemented in Scikit-learn 0.21.2 (https://scikit-learn.org/stable/), a package 
for data mining and analysis.

Chest CT slice pre-processing. To extract the lung parenchyma from chest 
CT slices, we implemented an integrative pipeline for CT slice pre-processing. 

First, the adaptive threshold segmentation algorithm was applied to convert 
greyscale CT slices to binary CT slices. Then, we removed the noise of CT slices 
by only keeping the largest connected architecture, the human body profile. After 
this manipulation, the background of a CT slice was black, and the black lung 
parenchyma was surrounded by the white human body profile. To retain only 
the black lung parenchymal area, the flood fill algorithm was used to fill the CT 
slice background with white, starting from the border of the CT slices. Finally, 
the lung parenchyma in the original CT slice was extracted. For non-square CT 
slices, we cropped them into square slices before pre-processing. To rapidly process 
and analyse such a large dataset and unify the size of CT slices, we rescaled all 
CT slices to 200 × 200 pixels and effectively avoided distortion by using bilinear 
interpolation. The OpenCV 3.4.2 (https://opencv.org/) and Scikit-image 0.15.0 
(https://scikit-image.org/) computer vision libraries were adopted for CT slice 
pre-processing41.

The 13-layer CNNs. We used 2 sets of 13-layer CNNs for CT slice-based and 
patient-based predictions, respectively. In each CNN framework, there was one 
input layer, three sets of dual convolutional and pooling layers, two dense layers 
and one output layer. In the 11 hidden layers, neurons were the basic computation 
units, and both internal feature coding and computational outcome were 
connected and propagated by neurons inside each layer. The convolutional layers 
were used for feature extraction and presentation, and a widely used rectified linear 
unit (ReLU) function was adopted to activate the outcome of a neuron and defined 
as below:

ReLU xð Þ ¼ x; x≥0

0; x<0

�
ð7Þ

Where x was the weighted sum of a neuron.
In the pooling layers, feature selection and information filtering were 

performed by the max-pooling strategy. The last two hidden layers were dense 
layers for generating prediction outcomes. To prevent overfitting that frequently 
occurs in deep learning algorithms, we used a simple dropout method to randomly 
select a number of nodes from the two dense layers and set their corresponding 
scores to 0 if the average Ac value increased. In the output layer, three softmax 
nodes were set to separately calculate three scores for an input CT slice shown as 
below:

Score yið Þ ¼ eyi
Pk

i¼1 e
yi

ð8Þ

Where yi was the input of ith softmax node derived from the dense layer and k was 
the number of softmax nodes. In the CNN model for the slice-based prediction, 
the Score(yi) was a value in the range 0–1 representing the probability of a CT 
slice classified as a NiCT, pCT or nCT slice. For the patient-based prediction of 
morbidity outcomes, the Score(yi) was a value in the range 0–1 to reflecting the 
probability of a patient being a control case, a type I patient, or a type II patient. For 
predicting mortality outcomes, one softmax node was adopted in the output layer, 
which produced a value between 0 and 1 to denote the mortality probability.

Normalization of CF data and the seven-layer DNNs. For each patient, each CF 
was given a diagnosed value f, which was normalized as below:

F ¼ f �Min
Max�Min

ð9Þ

Where F was the normalized value of f, and the normal range of the CF was Min to 
Max. If f was an unavailable value, we set F to 0.5. For the two CFs gender and Udis, 
we used 0 or 1 to encode males or females, respectively, and adopted 0 and 1 to 
encode patients with and without Udis, respectively.

To enable the prediction of clinical outcomes of patients based on normalized 
CFs, we used seven-layer DNNs, including one input layer, five dense layers and 
one output layer. Again, to avoid overfitting, the dropout method was used by 
randomly dropping nodes from the five hidden layers if the average Ac value 
increased. In the first step, the input layer received numerical values of CFs for 
each patient. The five hidden layers were mainly adopted for feature extraction and 
representation. The ReLU activation function was used to transform data for each 
node. For predicting morbidity outcomes, the output layer contained three softmax 
neurons to separately calculate 3 values ranging from 0 to 1 for each patient. 
For predicting mortality outcomes, one softmax node was used to calculate the 
mortality probability.

The PLR algorithm. The integration of predictions from CT slices and CFs 
were performed by the PLR algorithm, which was implemented in Python 3.7 
with Scikit-learn 0.21.2. For each patient, CNN models and DNN models were 
individually used to calculate three scores for morbidity outcomes and one 
score for mortality outcomes. Then, the 6 or 2 intermediate values were taken as 
secondary features, and the weight score of each value was initially set to 1. The 
ridge regression (L2 regularization) penalty was adopted to optimize the weight 
scores if the average Ac value increased. Finally, the PLR model calculated three 
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scores for predicting morbidity outcomes and one score for predicting  
mortality outcomes.

Model training and parameter optimization. To train the 13-layer CNN models 
for individual CT slice-based prediction, we randomly generated a training dataset 
and a testing dataset with a size ratio of approximately 9:1, in which the labelled 
NiCT, pCT and nCT slices were proportionally distributed. We further randomly 
split the training dataset into ten parts, of which nine were used for model training. 
Then, we used the remaining part to calculate the average Ac value for predicting 
the three types of CT images, and the process of parameter optimization was 
stopped when the Ac value was no longer increased. The randomization and 
parameter optimization on the training dataset was performed ten times, and the 
model with the highest Ac value was retained. Using the determined parameters, 
the final model was trained on the full training dataset. The testing dataset was 
not used for training, and was only used to count TP, TN, FP and FN values and 
calculate the performance measurements. A similar tenfold cross-validation was 
also adopted for the CT-based prediction of morbidity or mortality outcomes, the 
CF-based prediction of morbidity or mortality outcomes, and the integration of 
predictions from CT images and CFs.

For model training, we used a computer with an Intel Core i7-6700K 4.00 GHz 
central processing unit, 32 GB of RAM and a NVIDIA GeForce GTX 1070 core. 
Keras v.2.2.4 (http://github.com/fchollet/keras), a neural networks API written in 
Python and developed based on TensorFlow 1.13.1 (https://github.com/tensorflow), 
was adopted for parallel computing. CNN and DNN models were trained by 
minimizing cross-entropy loss between final predictions and ground-truth labels. 
During training, the Adam optimizer in Keras was adopted, and a decay factor d 
was used to control the learning rate at each epoch as shown by the equation

lri ¼ lr ´
1

1þ d ´ i
ð10Þ

Where lr was the initial learning rate and lri was the learning rate at ith epoch. 
Adjustable parameters, such as the dropout ratio, initial learning rate, decay 
and batch size were simultaneously optimized to improve the performance 
(Supplementary Data 4). In addition, the CNNs of Inception Net V336 and 
ChexNet37 were obtained directly from Keras. The Adam optimizer was used for 
model training, with an initial learning rate of 0.0001, a decay of 0.05, a batch size 
of 64 and epochs of 500. Cohort 2 was adopted as a validation dataset.

Statistical analysis. For each of the 125 types of numerical CF, the normality of the 
data distribution was evaluated by the Shapiro–Wilk test, a commonly used normality 
test, using the stats.shapiro() function in Python 3.7. A threshold of P < 0.05 was set 
for a CF with data not following the normal distribution (Supplementary Data 1). 
For the 11 CFs with numerical data following the normal distribution, a two-sided 
unpaired t-test was performed using the stats.ttest_ind() function in Python 3.7 
(Supplementary Data 3). For the remaining 114 types of numerical CFs with data 
not following the normal distribution, the two-sided Mann–Whitney U test, the 
nonparametric equivalent to the unpaired t-test, was performed using the stats.
mannwhitneyu() function in Python 3.7 (Supplementary Data 3). Mean value 
and s.d. were calculated, and P < 10-4 was considered as statistically significant. In 
statistics, mean and s.d. are measures of location and spread, respectively. When the 
data is sparse with extreme values, mean might not reflect the central location of 
data points, and s.d. may be high. Thus, mean and s.d. values calculated in this study 
could be regarded only as a reference. For multiple-hypothesis-testing correction, 
the adjusted P-value (<10−3) was calculated using the Benjamini–Hochberg method 
(Supplementary Data 3). For statistical comparisons of different types of patients 
with or without Udis, the two-sided chi-squared test was performed using the 2 × 2 
table. χ2 was calculated and the P-value (<0.05) was computed using the CHIDIST(χ2, 
degree_freedom) function in Excel. The degree_freedom was equal to 1 for each 2 × 2 
table (Supplementary Data 3).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the results in this study are available within the paper and 
its Supplementary Information. All source datasets, including chest CT images in 
both DICOM and JPEG formats, CFs and laboratory confirmations, are archived 
and maintained at http://ictcf.biocuckoo.cn. The 19,685 manually labelled CT 
slices in JPEG format, including 5,705 NiCT, 4,001 pCT and 9,979 nCT images, are 
downloadable from http://ictcf.biocuckoo.cn/HUST-19.php.

Code availability
All source codes and computational models of HUST-19, Inception Net V336 and 
ChexNet37 are available at http://ictcf.biocuckoo.cn/HUST-19.php.
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Software and code
Policy information about availability of computer code

Data collection No software was used.

Data analysis The iCTCF database was developed via PHP 7.0.33 (https://www.php.net/), HTML: XHTML 1.0 Transitional (https://www.w3.org/TR/
xhtml1/) and JavaScript (https://www.javascript.com/). The preprocessing of chest computed tomography (CT) images was performed by 
OpenCV 3.4.2 (https://opencv.org/) and Scikit-image 0.15.0 (https://scikit-image.org/). The Keras 2.2.4 (http://github.com/fchollet/keras) 
based on Tensorflow 1.13.1 (https://github.com/tensorflow) backend was adopted for the testing and training of the convolutional 
neural network (CNN) and deep neural network (DNN) models. Scikit-learn 0.21.2 (https://scikit-learn.org/stable/) was adopted for the 
training and testing of penalized logistic regression (PLR) models, and for t-distributed stochastic neighbor embedding (t-SNE) analysis.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data supporting the results in this study are available within the paper and its Supplementary Information. All source datasets, including chest CT images in both 
DICOM and JPEG formats, CFs and laboratory confirmations, are archived and maintained at http://ictcf.biocuckoo.cn. Manually labelled 19,685 CT slices in JPEG 
format, including 5705 NiCT, 4001 pCT and 9979 nCT images, are downloadable from http://ictcf.biocuckoo.cn/HUST-19.php.
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Sample size The study included 1,521 patients: 1,126 patients from HUST-UH and 395 from HUST-LH. The data were from (i) patients receiving RT-PCR 
nucleic acid testing and hospitalized between Jan. 25, 2020, and Feb. 29, 2020, at HUST-UH and HUST-LH; (ii) patients admitted to HUST-UH 
between Aug. 20, 2019, and Nov. 30, 2019, and diagnosed with community-acquired pneumonia; (iii) healthy cases from routine physical 
check-ups. All the cases in the dataset were independent and non-repeating. We used all samples that we could collect from the two 
hospitals. We deemed the sample size sufficient, as we achieved promising accuracies on both the training and validation cohorts.

Data exclusions No data were excluded.

Replication 10-fold cross-validations were performed to evaluate the prediction accuracy of HUST-19. We also used an independent validation dataset. 
The source code of HUST-19 is provided at http://ictcf.biocuckoo.cn/HUST-19.php. All primary data were checked by at least three 
researchers, and all results are reproducible.

Randomization Randomization was not applicable because the study was retrospective.

Blinding Blinding was not applicable, because the study was retrospective.
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Population characteristics We enrolled 1,521 patients: 1,126 patients from HUST-UH and 395 from HUST-LH. The dataset consisted of patients aged 1–97 
(mean ± standard deviation: 54.85 years ± 17.34 years), 756 males and 765 females. All patients had CF data, and 1,342 patients 
had both CT and CF data. On the basis of the China Guidance for COVID-19 (6th edition), the clinical morbidity outcomes of the 
1,521 patients were classified as (i) 894 COVID-19-confirmed patients with pneumonia severity classified as mild (24 cases, 
2.7%), regular (596 cases, 66.7%), severe (202 cases, 22.6%), and critically ill (72 cases, 8.1%); (ii) 328 COVID-19-negative cases 
(regarded as controls); and (iii) 299 COVID-19 suspected cases. For the COVID-19-confirmed patients, their mortality outcomes 
were also counted: 662 cured cases, 57 deceased cases and 175 cases with unknown outcomes (these patients transferred to 
other hospitals).

Recruitment No patient recruitment was performed, as the study was retrospective. The CT and CF data of the COVID-19 patients receiving 
RT-PCR nucleic acid testing and hospitalized between Jan. 25, 2020, and Feb. 29, 2020, were collected at HUST-UH and HUST-LH.

Ethics oversight The collection, use and retrospective analyses of chest CT images, CFs and SARS-CoV-2 nucleic acid PCR results of the patients 
were approved by the institutional ethical committees of HUST-UH (IRB ID: [2020] IEC (A001)) and HUST-LH (IRB ID: [2020] IEC 
(A001)).

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning

	Results

	A summary of collected datasets. 
	An integrative resource of COVID-19 pneumonia. 
	Development of HUST-19 for predicting clinical outcomes of COVID-19 patients. 
	The prediction accuracy of HUST-19. 
	Computational annotations of suspected cases. 

	Discussion

	Outlook. 

	Methods

	COVID-19 case definitions and clinical classifications
	Data collection and preparation
	Clinical examinations procedure
	Chest CT image acquisitions
	CT slice labelling and interpretation
	Laboratory confirmation of COVID-19 pneumonia
	Performance evaluation
	Chest CT slice pre-processing
	The 13-layer CNNs
	Normalization of CF data and the seven-layer DNNs
	The PLR algorithm
	Model training and parameter optimization
	Statistical analysis
	Reporting summary

	Acknowledgements

	Fig. 1 Statistics of the study data.
	Fig. 2 The hybrid learning architecture of HUST-19.
	Fig. 3 The performance evaluation of HUST-19 based on tenfold cross-validations.
	Fig. 4 Prediction of potential morbidity outcomes of 299 suspected cases without laboratory confirmation of SARS-CoV-2 status at the time of enrolment.
	Table 1 The data characteristics of cohort 1 and cohort 2.
	Table 2 Details on the performance evaluation of HUST-19 for the prediction of individual CT slices, morbidity outcomes, and mortality outcomes.
	Table 3 Details on the performance evaluation of HUST-19 for the prediction of morbidity outcomes using data from cohort 2.




