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Abstract

Resting-state connectivity measures the temporal coherence of the spontaneous neural activity of 

spatially distinct regions, and is commonly measured using BOLD-fMRI. The BOLD response 

follows neuronal activity, when changes in the relative concentration of oxygenated and 

deoxygenated haemoglobin cause fluctuations in the MRI T2* signal. Since the BOLD signal 

detects changes in relative concentrations of oxy/deoxy-haemoglobin, individual differences in 

haemoglobin levels may influence the BOLD signal-to-noise ratio in a manner independent of the 

degree of neural activity. In this study, we examined whether group differences in haemoglobin 

may confound measures of functional connectivity. We investigated whether relationships between 

measures of functional connectivity and cognitive performance could be influenced by individual 

variability in haemoglobin. Finally, we mapped the neuroanatomical distribution of the influence 

of haemoglobin on functional connectivity to determine where group differences in functional 

connectivity are manifest.

In a cohort of 518 healthy elderly subjects (259 men), each sex group was median-split into two 

groups with high and low haemoglobin concentration. Significant differences were obtained in 

functional connectivity between the high and low haemoglobin groups for both men and women 

(Cohen’s d 0.17 and 0.03 for men and women respectively). The haemoglobin connectome in 
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males showed a widespread systematic increase in functional connectivity correlation values, 

whilst the female connectome showed predominantly parietal and subcortical increases and 

temporo-parietal decreases. Despite the haemoglobin groups having no differences in cognitive 

measures, significant differences in the linear relationships between cognitive performance and 

functional connectivity were obtained for all 5 cognitive tests in males, and 4 out of 5 tests in 

females.

Our findings confirm that individual variability in haemoglobin levels that give rise to group 

differences are an important confounding variable in BOLD-fMRI-based studies of functional 

connectivity. Controlling for haemoglobin variability as a potentially confounding variable is 

crucial to ensure the reproducibility of human brain connectome studies, especially in studies that 

compare groups of individuals, compare sexes, or examine connectivity-cognition relationships.
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1. Introduction

Functional connectivity refers to statistical dependencies between spatially distinct 

neurophysiological signals (Friston et al., 1994), and can be estimated in humans at a whole-

brain level using blood-oxygenation-level-dependent (BOLD) functional magnetic 

resonance imaging (fMRI). Many studies measure functional connectivity using task-free 

resting-state BOLD fMRI data (Biswal et al., 1995; Fox and Raichle, 2007), otherwise 

known as resting-state functional connectivity. Numerous studies have demonstrated that 

resting-state functional connectivity is associated with variability in cognition (Fox et al., 

2007; Jamadar et al., 2016), age (Andrews-Hanna et al., 2007), sex (Jamadar et al., 2018; 

Weiss et al., 2003), genetics (Fornito et al., 2011; Glahn et al., 2010), psychiatric conditions 

(Fornito and Bullmore, 2010; Garrity et al., 2007; McGrath et al., 2013), and 

neurodegeneration (e.g., Alzheimer’s disease, Greicius et al., 2004).

Measures of functional connectivity depend on temporal fluctuations in the BOLD signal. 

Changes to the relative concentrations of oxygenated and deoxygenated haemoglobin in a 

brain region cause fluctuations to the MRI T2* signal, giving rise to the BOLD effect 

(Ogawa et al., 1992). The BOLD signal therefore provides an indirect measure of brain 

function arising from the neurovascular coupling between neuronal activity and cerebral 

haemodynamics (Phillips et al., 2016). As described by Liu (Liu, 2017), the relative signal 

change in BOLD-fMRI is given as

ΔS(t)
S(0) ≈

ΔS0(t)
S0(0) − TE ⋅ ΔR2*(t) + Δn(t)

S(0)

where S(t) denotes the signal acquired at time t, R*2(t) is the apparent transverse relaxation 

rate, TE denotes the echo time, S0(t) is the magnetisation at TE = 0, and n(t) represents 

additive background noise. Thus, the relative change in signal is the sum of three terms: 
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(i),the relative change in transverse magnetisation at zero echo time TE ⋅ ΔR2*(t)
ΔS0(t)
S0(0) ; (ii), 

the change in relaxation rate TE ⋅ ΔR2*(t); and (iii) the background noise Δn(t)
S(0)  which is 

influenced by thermal noise, radiofrequency (RF) interference, etc. BOLD-fMRI 

experiments are typically designed to measure the relaxation term as an indirect index of 

functional brain activity.

There are several factors of non-neuronal origin that can influence the relative 

concentrations of oxygenated and deoxygenated haemoglobin in the cerebrovasculature, 

which can contribute to changes in the BOLD signal. These factors include heart-rate 

variability, respiration, and head movement (Birn, 2012; Chang et al., 2009; Friston et al., 

1996; Glover et al., 2000; Parkes et al., 2018; Power et al., 2018, 2017), all of which can 

cause temporal correlations of the fMRI signal between brain regions. The modelling and 

removal of these signals continues to be an active area of research (e.g., Liu, 2017).

In addition to respiratory, cardiac and head movement factors, there are other non-neuronal 

factors that directly influence the BOLD signal, including the maximum oxygen carrying 

capacity of the blood (Gustard et al., 2003; Levin et al., 2001). This capacity is related to the 

amount and the fractional volume of red blood cells in the blood. Haemoglobin is the 

metalloprotein in red blood cells that carries oxygen from the lungs to the tissue, and returns 

carbon dioxide from the tissue back to the lungs. Haematocrit is the volume proportion of 

red blood cells to whole blood volume and is usually expressed as a percentage. 

Haemoglobin and haematocrit are highly correlated (haematocrit is often defined as three 

times the value of haemoglobin), but are not identical. Haemoglobin measures are more 

stable to plasma volume changes, such as in dehydration (Quinto et al., 2006). Haemoglobin 

and haematocrit levels vary considerably between individuals; and systematically between 

the sexes, with men generally showing haematocrit levels of 42–49%, and women 39–46% 

(e.g., Stack and Berger, 2009). Whilst haemoglobin and haematocrit levels within subjects 

are not thought to vary within an MRI scan session (unlike head motion or breathing rate), 

they are still able to influence the BOLD signal-to-noise (SNR) ratio of the acquired data. 

This source of variability in BOLD signal (and SNR) across subjects has the potential to 

influence measures of functional connectivity, particularly for analyses that examine 

individual variability in connectivity and differences between groups of individuals. In fact, 

inter-subject variation in haematocrit has been found to correlate with the degree of 

centrality of fMRI networks (Yang et al., 2015), to mediate the magnitude of the BOLD 

response in the visual cortex (Levin et al., 2001; Xu et al., 2018), and to mediate the BOLD 

signal intensity in other forms of oxygenation-sensitive imaging, including the cardiac 

BOLD response (Guensch et al., 2016).

Dependence of the BOLD signal on haematocrit level is particularly important for studies 

where haemoglobin and/or haematocrit may differ between study groups. Several factors 

have been found to correlate with haemoglobin differences, including sex (Rushton and 

Barth, 2010), age (Zauber and Zauber, 1987), race (Dutton, 1979), hydration level (Guensch 

et al., 2016), stress levels (Jern et al., 1989; Muldoon et al., 1995; Patterson et al., 1995), 

body temperature (Thirup, 2003), sleep apnoea (Choi et al., 2006), cardiovascular health (Jin 
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et al., 2015), and testosterone administration (Drinka, 2013). These factors influence 

haemoglobin, and so may also indirectly influence fMRI functional connectivity analyses 

between groups and confound the results and interpretation of the findings.

In this study, we examined the potential for haemoglobin to be a confounding variable in 

functional connectivity analyses in a group of healthy elderly individuals. Ageing is 

associated with a number of physiological changes that may impact the BOLD signal 

(Aanerud et al., 2012), and inter-individual variability in haemoglobin levels increases 

across the lifespan (Hawkins et al., 1954). We specifically aimed to test whether between-

group haemoglobin differences could systematically bias between-group differences in 

functional connectomes, and whether individual variation in haemoglobin could impact the 

relationships between functional connectivity and measures of cognition in group studies. 

We predicted that groups selected by haemoglobin levels would exhibit differences in both 

functional connectivity and connectivity-cognition relationships.

Given the significant known differences in haemoglobin between the sexes (Rushton and 

Barth, 2010), analyses were performed separately for men and women. The cohort was 

additionally split into two groups, divided into the lower 50% and upper 50% of individuals 

based upon haemoglobin values. We tested for differences in cognitive performance between 

the two groups to ensure functional connectivity differences were not due to differences in 

cognitive performance. We compared the functional connectivity matrices between the 

groups to identify whether there were effects of haemoglobin on the strength of global or 

regional functional connectivity measures. We examined whether the effect was global, and 

therefore an intrinsic property of the BOLD signal, or anatomically localized to specific 

brain networks, especially those networks with relatively high venous cerebrovascular vessel 

density. Finally, we examined the effect of haemoglobin variability on connectivity-

cognition relationships, by correlating functional connectivity with cognitive performance 

and testing whether the correlations differed between the two haemoglobin groups. We 

hypothesised that significant differences would be observed between functional connectivity 

of the upper and lower haemoglobin groups, that these differences would persist in 

connectivity-cognition analyses, and could produce potentially spurious findings between 

the connectivity matrices of two otherwise comparable groups of healthy people.

2. Methods

This data was acquired by the ASPREE Investigator Group, under the ASPREE-Neuro sub-

study. We refer the reader to the ASPREE-Neuro clinical trial protocol paper (Ward et al., 

2017) for full study parameters. The data that support the findings of this study are available 

from ASPREE International Investigator Group, but restrictions apply to the availability of 

these data, which were used under license for the current study, and so are not publicly 

available. Data are however available from the authors upon reasonable request and with 

permission of ASPREE International Investigator Group (https://aspree.org).

All methods for the ASPREE-Neuro clinical trial were reviewed by the Monash University 

Human Research Ethics Committee, in accordance with the Australian National Statement 

on Ethical Conduct in Human Research (2007).
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2.1. Participants

Data formed part of the baseline (i.e., premedication) cohort of the ASPREE trial, a 

multicentre, randomised double-blind placebo-controlled trial of daily 100 mg aspirin in 

19,000 healthy community dwelling older adults in Australia and the United States. 

Inclusion and exclusion criteria for the ASPREE trial have been published previously 

(ASPREE Investigator Group, 2013). Participants were eligible in Australia if aged 70-years 

and over, no past history of occlusive vascular disease, atrial fibrillation, cognitive 

impairment or disability, were not taking antithrombotic therapy, and did not have anaemia 

or diagnosis of a conditions likely to cause death in the following five years. Baseline 

characteristics of the full ASPREE sample have been reported previously (McNeil et al., 

2017). The current study used data from 518 participants (age = 73.8 ± 3.5, 248 females) 

from the ASPREE-Neuro sub-study (Ward et al., 2017). At study entry, ASPREE-Neuro 

participants had a Modified Mini Mental Status Examination (3MS) (Teng and Chui, 1987) 

score of at least 78/100. All MRIs used in this study were acquired before study medication 

was taken.

2.2. Procedure

Full protocol details are available in the ASPREE-Neuro sub-study protocol (Ward et al., 

2017). Here, we include haemoglobin, cognitive and MRI data from the baseline time-point, 

prior to the administration of study medication.

2.2.1. Haemoglobin—Fasting blood was collected at a lifestyle profile and screening 

assessment and sent to a pathology laboratory for testing. Haemoglobin was measured in 

g/dL. To comply with the ASPREE trial inclusion criteria (ASPREE Investigator ASPREE 

Investigator Group, 2013), individuals were screened from study entry if their haemoglobin 

was below 11 g/dL for females or 12 g/dL for males.

The cohort was separated into low-haemoglobin (‘low-Hb’) and high haemoglobin (‘high-

Hb’) groups using a median split (lower and upper 50%) separated by sex. This resulted in 

four groups: low-Hb female, low-Hb male, high-Hb female, and high-Hb male. For females, 

the median was 13.8, and for males the median was 14.9. Histograms of haemoglobin 

distribution in this sample are shown in Supplementary Figure 1.

2.2.2. Cognitive tests—The five cognitive tests used were: (i) single-letter controlled 

oral word association test (COWAT) (Ruff et al., 1996); (ii) colour trails test (D’Elia, 1996); 

(iii) predicted score derived from the modified mini-mental state examination (3MS); (iv) 

symbol digit modalities test (SDMT) (Smith, 1982); and (v) the Victoria Stroop test (Troyer 

et al., 2006). Performance on each test was normalised (z-scored) separately for females and 

males.

2.2.3. Imaging—MRI data were acquired using a 3T Skyra MRI scanner equipped with a 

32-channel head and neck coil (Siemens, Erlangen, Germany). In this study, we used 

resting-state BOLD-fMRI and T1-weighted structural MRI data. The fMRI protocol was an 

eyes-open resting-state multi-band EPI sequence (multiband factor=3, TE=21 ms, TR=754 

ms, voxel=3.0 mm isotropic, matrix 64 × 64, slices=42). A T1-weighted MPRAGE scan was 
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acquired for registration (TE=2.13 ms, TR=2300 ms, TI=900 ms, voxel=1.0 mm isotropic, 

matrix=240 × 256 × 192, flip angle=9°). fMR images were corrected for geometry 

distortions (FUGUE) and brain extracted (BET) (Smith, 2002). Intra-scan movements were 

corrected using 3dvolreg; both high frequencies (above 0.1 Hz) and the temporal mean (and 

first- and second-order polynomials) were removed from each voxel’s time series using 

3dTproject (AFNI) (Cox, 1996). Filtered images were entered into a first-level independent 

component analysis (ICA) with automatic estimation of the number of components using 

MELODIC (Beckmann et al., 2005). All the extracted ICA maps were then automatically 

labelled by FSL-FIX (Salimi-Khorshidi et al., 2014), which was previously manually trained 

on 25 random subjects. Temporal trends from noise-labelled ICA components were linearly 

regressed out of the 4D MR images using ordinary least squares (OLS) regression as 

implemented in FSL FIX. The cleaned images were then normalized to the MNI template (2 

mm isotropic resolution); the first volume of the EPI time series was registered to the T1-

weighted image using linear registration (with 6 degrees of freedom). Each T1 was then 

non-linearly registered to the MNI template using the symmetric normalization algorithm in 

ANTs (Avants et al., 2008). The brain was parcellated into 82 regions using the Desikan-

Killiany atlas (Desikan et al., 2006; Fischl et al., 2002). The last step was to apply all the 

transformations from the previous two points to the 4D cleaned file. Finally, the normalized 

cleaned file was smoothed with a 5 mm FWHM Gaussian kernel.

2.2.4. Calculation of functional connectivity matrix—fMRI timeseries were 

extracted from each of the 82 Desikan-Killiany regions for each individual. An individual 

functional connectivity matrix was calculated as an 82 × 82 correlation matrix, formed by 

calculating temporal correlations (Pearson) between each pair of regions. A single entry in 

the correlation matrix is referred to as an edge in the connectivity matrix; each region 

denotes a node. The correlation between a region and itself is always unity, and thus the 

diagonals values of the matrix are not included in statistical tests. Once symmetry (a factor 

of 2) and the diagonals are removed, 3321 edges remained. Group-level connectivity 

matrices were computed by averaging edges across subjects within groups.

2.2.5. Group-level assessment of haemoglobin on the functional connectivity 
matrix—All analyses were performed separately for males and females to mitigate the 

confounding effects of haemoglobin differences associated with sex (Rushton and Barth, 

2010). The effect size of functional connectivity differences between two subgroups for each 

sex (median split on haemoglobin values) was quantified by calculating Cohen’s d (Cohen, 

2013) for each edge in the 82 × 82 correlation matrix. Two subgroup connectivity matrices 

for each sex were calculated taking the mean edge-weight across individuals in the low-Hb 

and high-Hb sub-groups (divided by the median haemoglobin value) and the subgroup-level 

matrices were compared using Cohen’s D-statistic

2.2.6. Origins of the haemoglobin influence—Further analysis was performed to 

assess whether the effect of haemoglobin on the functional connectivity matrix was due to 

neurovascular effects, and potentially biased towards the neuroanatomical location of the 

draining blood vessels. A general linear model for each edge in the matrix was fit to infer a 

relationship between haemoglobin (Hb) and functional connectivity (FC), covarying for age.
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FC = B1 * Hb + B2 *  age  + e

Haemoglobin values were normalised (z-scored) using a separate mean and standard-

deviation for females and males to avoid previously reported biases (Rushton and Barth, 

2010) prior to fitting the linear models. This model was fit using the whole cohort, i.e., not 

split into high and low haemoglobin groups.

The distribution of the t-scores for the linear coefficients (B1) and explained variance of the 

entire model (R-squared) were compared to a null model where the Hb, FC and age data 

were randomly permuted, and the models refit at each edge. The distribution for the null 

model was the composite of t-scores and explained variance from 500 permutations. We 

calculated an edge-wise p-value from the number of permutations with higher t-score values.

To determine whether the proximity of brain regions to cerebrovenous vasculature 

influenced the relationship between haemoglobin and functional connectivity, the location of 

the strongest associations were compared to an atlas of the cerebral veins (Ward et al., 

2018). For each sex, a ‘haemoglobin connectome’ was constructed with edges to represent 

the top 10% of linear coefficients (t-values). The number of edges connecting each node was 

then calculated (network degree) to determine which regions of the brain gave rise to the 

strongest haemoglobin-functional connectivity associations. These highly connected regions 

were then spatially compared to the probabilistic map of the location of the cerebral veins 

(Ward et al., 2018).

2.2.7. Impact of haemoglobin on connectivity-cognition analyses—To 

investigate how group-differences in haemoglobin may influence brain connectivity-

cognition relationships, the relationships between cognitive performance and functional 

connectivity were compared between the two subgroups (low-Hb and high-Hb) for each sex. 

Thus, in the comparison of low-Hb versus high-Hb groups within each sex, the mean 

haemoglobin values are the only between-group difference. The two haemoglobin subgroups 

for each sex had no differences in cognitive performance for either the male or female 

groups (see Results).

A linear model was calculated between functional connectivity (FC) and task performance 

(Cog), covarying for age, for each of the five tasks, for each edge in the connectivity matrix.

Cog = B1 * FC + B2 *  age  + e

The linear coefficients (B1) of the lower-Hb and upper-Hb subgroups were compared to 

measure the effect of subgrouping on haemoglobin using a Cohen’s d statistic. To assess the 

effect of haemoglobin, the results were compared with linear coefficients estimated from the 

entire cohort (low-Hb and high-Hb combined). The likelihood of observing a similar or 

larger effect by chance (p-value) was calculated by permuting the low-Hb/high-Hb group 

membership 1000 times and comparing the observed effect size to this distribution of effect 

sizes.
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Functional connectivity and cognitive performance were normalised (z-scored) prior to 

fitting the models. All normalisation and statistical analyses were performed separately for 

females and males.

3. Results

3.1. Group-level assessment of haemoglobin on the functional connectivity matrix

Group-level functional connectivity matrices differed significantly between the low-Hb and 

high-Hb sub-groups for both men and women (t-test p<10−10). The size of this effect at a 

global level was small (Cohen’s d men=0.17 women=0.03). In males, the edge-weights of 

the functional connectivity matrix in the high-Hb subgroup were consistently higher than in 

low-Hb subgroup (Fig. 1 B) with effect sizes as high as 0.4. For men, 88% of the edge-

weights were higher in high-Hb compared to low-Hb subjects, with 12% having higher 

edge-weights in the low-Hb compared to the high-Hb subjects. In females, there was less 

systematic bias between the subgroup matrix edge weights with 59% higher in the high-Hb 

compared to the low-Hb subgroup, with 41% higher in the low-Hb subgroup than high-Hb 

subgroup. The strength of the global haemoglobin effect between sex subgroups was less in 

females compared to males (Fig. 1 A).

3.2. Origins of the haemoglobin influence

Linear coefficients between haemoglobin and edge-weights in the functional connectivity 

matrix were calculated and compared to a null distribution of randomly permuted 

haemoglobin, functional connectivity and age data. In men, the linear coefficients (Fig. 2 

B.i.) and explained variance (Fig. 2 B.ii.) were linearly biased relative to the randomly 

permuted dataset. The likelihood of this bias is depicted in Fig. 2 B.ii and compared to the 

expectation of a null model. Relative to the null model, the haemoglobin model had a 

horizontal shift in linear coefficient, and strongly non-uniform p-value distribution. 

Collectively, these observations demonstrate that the haemoglobin results are unlikely to be 

false-positives. The bias in the linear coefficient results from an increase in the explained 

variance, as evident by the increase of the explained variance in the haemoglobin model in 

Fig. 2Bii. This was not the case in the female group, where the distribution of the linear 

coefficients between haemoglobin and functional connectivity edge-weights overlapped the 

null distribution (Fig. 2 A).

To determine if the haemoglobin influence on functional connectivity values was related to 

the proximity to cerebral veins, a map of the highest haemoglobin functional connectivity 

associations was compared with an atlas of the cerebral veins (Ward et al., 2018). Fig. 3 

shows the spatial map of the top 10% t coefficients, and the probabilistic location of the 

major draining veins (Ward et al., 2018). The strongest correlations between haemoglobin 

and functional connectivity were not found in close proximity to cerebral veins. Note that 

spatial maps at different thresholds are shown in Supplementary Figure 2 and are consistent 

with these results, indicating that this result is robust to different thresholds. Visual 

inspection of Fig. 3 suggests there was a trend towards higher associations in the right 

hemisphere in both males and females, most pronounced in the sub-cortical regions.
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3.3. Impact of haemoglobin on connectivity-cognition analyses

There were no significant differences in cognitive performance between the low-Hb and 

high-Hb subgroups (t-test p>0.36 for all tests and both sexes). Supplementary Figure 3 

shows box-plots for low-Hb and high-Hb groups for each sex.

Linear coefficients of cognitive test performance and edge-weights in the functional 

connectivity matrix were compared between the low-Hb and high-Hb subgroups (Table 1). 

In females, the coefficients were significantly different (p<0.001) in three out of the four 

cognitive tests examined. In males, the coefficients were significantly different (p<0.001) in 

all four cognitive tests.

Linear coefficients between functional connectivity and cognitive performance were 

consistently lower in the low-Hb subgroup compared to the high-Hb subgroup (Fig. 4). The 

effect was present in both males and females. Matrix edges that showed no significant 

correlation between cognitive performance and functional connectivity (where the black line 

approached the zero line) still demonstrated a haemoglobin-related bias.

4. Discussion

The BOLD signal originates in the blood, so it is therefore not surprising that group and 

individual differences in haemoglobin levels are an important confounding variable in 

BOLD-fMRI-based studies of functional connectivity. The results of this study demonstrate 

that the confounding effect of variability in haemoglobin values is widespread across brain 

regions, differs substantially between the sexes, and strongly influences functional 

connectivity-cognition relationships. The effect of haemoglobin on functional connectivity 

measures was widespread across brain regions in males without particular neuroanatomical 

specificity. In females, the effect was weaker than that in the males: it varied across the 

brain, with subcortical regions in particular showing higher functional connectivity in the 

high-Hb subgroup compared to the low-Hb subgroup. Females also showed regionally 

specific higher functional connectivity in the low-Hb compared to the high-Hb subgroup, 

particularly in parietal and temporal regions. Elevated associations between haemoglobin 

and functional connectivity evident in the orbitofrontal cortex are difficult to interpret due to 

their proximity to known susceptibility-related distortions (Cordes et al., 2000) and 

lateralization. These results demonstrate that BOLD-fMRI functional connectivity analyses 

are confounded by haemoglobin differences, especially in studies aiming to compare groups 

of individuals, or between sexes.

In addition to the significant effect of haemoglobin on functional connectivity, we also found 

that cognition-connectivity relationships were substantially impacted by haemoglobin levels. 

These results showed that there are systematically higher correlations of cognitive measures 

with resting-state connectivity for individuals with higher haemoglobin levels, and that this 

effect is spatially-non-specific, and occurs across the brain. Thus, the influence of 

haemoglobin variability is not confined to any one individual cognitive measure, or any 

single brain region (e.g., close to cerebral veins). These results suggest that care should be 

taken when interpreting connectivity-cognition relationships calculated at the group level, 

that do not account for individual variability in haemoglobin levels.
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The BOLD-fMRI signal relies upon the magnetic properties of haemoglobin, which itself is 

closely related to haematocrit: the proportion of red blood cells in the blood. When neuronal 

activity within a brain region increases, the additional neuronal metabolic activity results in 

an increased local energy requirement, which is reflected as an increase in the regional 

cerebral metabolic rate of oxygen consumption (CMRO2) (Buxton and Frank, 1997; Glover, 

2011). The consumption of oxygen results in an early elevation of deoxygenated 

haemoglobin in the region. Following neuronal activity, the increased metabolic requirement 

results in an increase in cerebral blood flow (CBF) to the region to restore the local O2 

levels. However, the CBF to the region increases by a larger proportion than required to 

satisfy the increased CMRO2 requirement. Consequently, the local concentration of 

deoxyhaemoglobin decreases, leading to an increase in the MR T2* signal. In sum, 

combined changes in CBF, cerebral blood volume (CBV) and CMRO2 are reflected in 

changes in local deoxygenated haemoglobin. The fMRI acquisition sequence is tuned to 

detect changes in the apparent transverse relaxation rate (T2*), which is sensitive to the 

amount of deoxygenated haemoglobin in the blood (Buxton et al., 2004; Liu, 2017). 

Therefore, individual differences in the proportion of haemoglobin and red blood cells are 

evident as individual differences in BOLD SNR. Our results complement the previous 

studies showing that BOLD signal intensity is mediated by individual haemoglobin levels 

(Levin et al., 2001; Guensch et al., 2016; Xu et al., 2018).

In the majority of BOLD-fMRI experiments, the measurement of interest is the relative 

change in the BOLD signal across time (during rest, in response to a task, etc.). In other 

words, the change in relaxation rate TE ⋅ ΔR2*(t) is interpreted as an indirect index of 

functional brain activity (Liu, 2017). As the relaxation rate in BOLD-fMRI depends on the 

total amount of deoxygenated haemoglobin in the blood, individual differences in 

haemoglobin/haematocrit will specifically influence the relaxation term TE ⋅ ΔR2*(t). In other 

words, the very signal of interest in BOLD-fMRI experiments is influenced by an 

individual’s haemoglobin level. Notably, an individual’s haematocrit level also influences 

the viscosity of the blood, with higher haematocrit levels significantly slowing the rate of 

blood flow throughout the body (Stack and Berger, 2009). Differences in CBF influences the 

number of spins that flow into a voxel (Gao and Liu, 2012), which affects the magnetisation 

term 
ΔS0(t)
S0(0)  of the BOLD signal. Individual differences in haemoglobin may therefore also 

indirectly influence the magnetisation term of the BOLD signal. Previous studies that have 

aimed at minimising the effect of noise and confounds on the BOLD signal have focused on 

factors that vary across time, including cardiac noise, respiratory noise, motion, and low 

frequency drifts and fluctuations (Liu, 2017). Individual differences in haemoglobin/

haematocrit have not been considered as an important confound, possibly because this value 

does not vary for an individual during a typical scan duration. This appears to be especially 

so for studies of functional connectivity, which by definition examine relationships between 

signals that vary across time.

The relationship between BOLD-fMRI and individual differences in haematocrit has been 

investigated in a number of small cohort studies. Yang et al. (2015) found only a modest 

relationship between haematocrit variability and summary measures of functional 
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connectivity in a sample of 45 healthy younger (mean age 29yrs; s.d. 10.8) adults. Degree of 

centrality, fractional ALFF (amplitude of low frequency fluctuations) and voxel-mirrored 

homotopic connectivity showed discrete clusters of significant association with haematocrit, 

in non-overlapping regions. Resting-state networks estimated with dual regression showed 

more widespread relationship with between-subject variation in haematocrit. They 

concluded that the impact of haematocrit variation in BOLD signal is modest and regionally-

specific. In another sample of 13 healthy middle-aged (mean age 35yrs; s.d. 7) adults, Xu et 

al. (2018) found that 22% (i.e., R2=0.22) of the inter-subject variability of the BOLD 

response in the visual cortex to flickering checkerboard stimulus was associated with 

haematocrit, consistent with previous studies of haematocrit and the BOLD signal (R2=0.23; 

Gustard et al., 2003; R2=0.28, Levin et al., 2001). When the BOLD response was normalised 

by the haematocrit, the BOLD signal coefficient of variation reduced by 16% leading Xu et 

al. (2018) to conclude that normalisation of the BOLD signal by individual haematocrit 

levels is an important step for enhancing the detection power of BOLD-fMRI studies.

The current sample is substantially larger than the previous studies of the influence of 

haemoglobin on BOLD-fMRI measures (Yang et al., 2015; Xu et al., 2018), with a sample 

size of 518 subjects. Like Xu et al. (2018), our results suggest that individual differences in 

haemoglobin have a substantial influence on BOLD-fMRI measures of functional 

connectivity and functional connectivity-cognition relationships. Notably, Xu et al. (2018) 

used a task-based (stimulus-evoked) paradigm, suggesting that the influence of haemoglobin 

on fMRI measures are not limited to resting-state paradigms alone. In contrast to Yang et al. 

(2015), we found that haemoglobin effects were widespread, spatially non-specific in men; 

and widespread and spatially-variable in women. Unlike the previous studies, our sample 

were older adults within a very narrow age range (73.8 ± 3.5yrs), with no major health 

problems and who passed stringent criteria for inclusion in a clinical trial (Ward et al., 

2017).

Ageing is associated with a number of physiological changes that may impact the BOLD 

signal, including changes in oxygen extraction fraction, CMRO2, and CBF (Aanerud et al., 

2012). Haemoglobin declines with age in men, and increases with age in women (Bäckman 

et al., 2016; Cruickshank, 1970), such that the values for men and women become more 

similar in older age, but still significantly different (note however this finding is not 

ubiquitous, with findings of declines in haemoglobin levels for both sexes (Salive et al., 

1992)). Haematocrit does not seem to change post-menopause compared to pre-menopause 

(Amin et al., 2004; Koons et al., 2019), however CMRO2 has been found to change which 

may pose additional challenges for fMRI studies in older females (Peng et al., 2014). 

Although we do not have data on the menopausal status of the women in this study, it is 

notable that all participants were aged over 70-years, and the mean age of menopause in 

Australia is 51.3-years (Davis et al., 2015). As such, the majority of the women in this 

sample are likely to be post-menopausal. An important direction for future research is to 

examine how menopause influences BOLD physiology.

Haemoglobin variations are known to coincide with cerebral blood flow changes (van der 

Veen et al., 2015). It is possible that the correlations observed in this work are not a direct 

consequence of haemoglobin but a composite effect of blood flow, blood volume, and 
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vascular reactivity, all of which may be related to haemoglobin levels. Similarly, the 

relationship between haemoglobin variability and frequency-based metrics (e.g., fALFF) 

could also be related to either BOLD signal-to-noise ratio or haemodynamic physiology. The 

timescale of resting-state fMRI fluctuations has been found to relate to region degree, i.e. 

that more strongly connected regions (‘hubs’) have slower rsfMRI BOLD fluctuations 

(Fallon et al., 2019). Hub locations have been found to correlate with cerebral perfusion 

(Liang et al., 2013), and may reflect the variations required in the oxygen-carrying capacity 

of the blood (Hayashi et al., 2003) to support hub metabolic demands (Tomasi et al., 2013). 

Therefore, the discrete clusters of the fALFF metric related to haemoglobin, as reported by 

Yang et al., may indicate haemodynamic responses to hub metabolism. Differences in 

frequency-based fluctuations between haemoglobin groups may reflect either an influence 

on BOLD signal-to-noise ratio, or alternatively an anatomical overlap of timescale patterns 

and perfusion responses to haemoglobin variation. In summary, it remains unclear whether 

the relationship between haemoglobin and resting-state functional connectivity is 

mechanistically explained by BOLD signal intensity, blood physiology, or both. Future 

studies should aim to disentangle these effects.

Taken together, our results provide evidence that individual differences in haemoglobin/

haematocrit are an important confounding variable in functional connectivity and functional 

connectivity-cognition analyses. The striking difference in the effect of haemoglobin 

between the sexes is strong evidence for the importance of co-varying individual differences 

in haemoglobin when undertaking connectivity analyses. It is well-known that haemoglobin 

variance differs between the sexes (e.g., Rushton and Barth, 2010). Our results suggest that 

it is possible that previous studies of sex differences in functional connectivity and 

connectivity-cognition relationships that did not control for haemoglobin may be 

confounded, at least in ageing (e.g., Jamadar et al., 2018). In addition, our results are 

consistent with some (Xu et al., 2018; Guensch et al., 2016), but not other (Yang et al., 

2015) results in healthy younger adults. Given the differences in haemoglobin concentration 

over the lifespan (Bäckman et al., 2016; Cruickshank, 1970; Salive et al., 1992), the effect of 

haemoglobin on the BOLD-fMRI signal is also likely to vary with age. We therefore argue 

that future BOLD-fMRI studies using connectivity and connectivity-cognition between 

group analytical approaches should consider statistically testing for differences in the shapes 

of the haemoglobin distributions. Where shape differences are observed it would be prudent 

to re-sample the population to determine whether the results are robust to removal of the 

haemoglobin effects. While it is perhaps not surprising that haemoglobin-connectivity 

relationships differ between the sexes, our findings do not explain the directionality (positive 

and negative effect sizes) or why the regional spatial patterns differ between the sexes. 

Future studies are needed to disentangle the regional effects of haemoglobin on the BOLD 

signal and connectivity patterns, investigate the underlying mechanisms that may contribute 

to these sex differences, and further examine the influence of haemoglobin variability on 

connectivity and connectivity-cognition relationships.

A number of approaches exist for obtaining measures of haemoglobin for inclusion in 

BOLD-fMRI analyses. One approach, as used in this study, involved drawing venous blood 

and laboratory measurement of full blood parameters. However, smaller devices that provide 

point-of-care metrics of haemoglobin and haematocrit are now available (Nkrumah et al., 
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2011; Avcioglu et al., 2018; Singh et al., 2015). These devices require finger-prick samples 

of capillary blood, are quick, easy to obtain, and relatively non-invasive. Comparisons of 

point-of-care devices for measuring haemoglobin have been performed (Avcioglu et al., 

2018; Singh et al., 2015). Avcioglu et al. showed that the point-of-care measurement of 

haemoglobin was correlated with venous haemoglobin measures analysed with gold-

standard cell analysers, with R2=0.825. Alternative approaches include image-derived 

estimates of haematocrit using the dependence of the T1 relaxation rate in venous blood (Li 

et al., 2017), which takes around two minutes to acquire, and requires additional positioning 

of the subject to image the chest for complete inversion of the inflowing arterial blood (Li et 

al., 2017). Image-derived estimates of haematocrit were found to correlate strongly 

(R2=0.91) with laboratory based measures of complete blood count (Xu et al., 2018). In 

sum, the ease and cost of devices for acquiring haemoglobin or haematocrit metrics should 

not be a barrier for most groups acquiring BOLD-fMRI data.

One limitation of the current study is the known regional variation of haematocrit throughout 

the brain. Calamante et al. showed that local measures of capillary haematocrit can be 

obtained by combining multiple MRI sequences, namely arterial spin labelling and dynamic 

susceptibility contrast (Calamante et al., 2015). This approach could be used in future 

studies to compare the influence of haematocrit variation on regional BOLD fMRI signal 

characteristics, to potentially provide a neuroanatomical map of the degree of haematocrit 

influence on the estimation of functional connectivity metrics. Given the known variation in 

haematocrit values across the body (Mchedlishvili and Varazashvili, 1987), brain image-

derived metrics of haematocrit may be ultimately be the best method to control for 

haemoglobin effects in BOLD-fMRI analyses. It is also important to note that resting-state 

functional connectivity is sensitive to differences in pre-processing pipelines (e.g. Parkes et 

al., 2018) and resting-state condition (e.g., eyes open, eyes closed, fixation; Patriat et al., 

2013). Future studies should confirm the influence of haemoglobin on estimates of 

functional connectivity under different conditions and analysis pipelines. Finally, the 

demographic characteristics of the current sample should be noted when interpreting these 

results. The observed differences between females and males may have been partially driven 

by the differences in haemoglobin distribution for the two groups. Particularly the non-

symmetric nature of the haemoglobin values for females. In addition to controlling for 

between-group biases in haemoglobin, researchers may find the shape of the distributions 

important for accurate analyses. To comply with the inclusion criteria for the ASPREE 

clinical trial (during which this data was acquired), the lower limit of haemoglobin values 

was restricted to above 11 g/dL for females and 12 g/dL for males. This restricted range may 

have led to us underestimating the effect of haemoglobin variability on functional 

connectivity (Goodwin and Leech, 2006). The ASPREE clinical trial is also predominantly 

white (91%; McNeil et al., 2017), and mean haemoglobin values are known to differ by race 

(e.g., Dong et al., 2008). As such, future work in this area should consider samples with less 

restricted and more representative range of haemoglobin values.

In conclusion, this study in a large sample of healthy older adults demonstrated that 

individual variability in haemoglobin has a substantial influence on functional connectivity 

and functional connectivity-cognition relationships. The effect of haemoglobin was 

widespread, differed substantially between the sexes, and strongly influenced functional 
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connectivity-cognition relationships. In males the effect of haemoglobin on functional 

connectivity measures was widespread across brain regions whereas in females the effect 

varied across the brain including in subcortical regions. Acquisition of haemoglobin/

haematocrit measures are readily available and future BOLD-fMRI functional connectivity 

and connectome studies should control for haemoglobin as a confounding variable, 

especially in studies aiming to compare groups of individuals, compare sexes, or examine 

connectivity-cognition relationships.
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Fig. 1. 
The effect of haemoglobin on resting-state functional connectivity for (A) females and (B) 

males. Values are Cohen’s d effect sizes of the difference between high-haemoglobin and 

low-haemoglobin groups. Abbreviation: Hb, haemoglobin.
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Fig. 2. 
Correlation between resting-state functional connectivity and haemoglobin values in (A) 

Females and (B) Males. Upper plots (i.) show distribution of linear coefficients (t-values). 

Middle plots (ii.) show distribution of explained variance, and lower panel (iii.) shows 

distribution of p-values. Each panel compares the distribution of obtained values to a null 

distribution, calculated by randomly permuting haemoglobin values between subjects and 

refitting the identical model.
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Fig. 3. 
Spatial representation of regions strongly influenced by haemoglobin in resting-state 

functional connectivity (region degree, blue-green colour bar), and the probabilistic location 

of the major draining veins (see Ward et al., 2018; red-yellow colour bar), for (A) females 

and (B) males. Degree is defined by the number of edges connected to a region with 

correlation in the 90th percentile. Supplementary Figure 2 show results at different 

thresholds and standardised to a t-distribution.
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Fig. 4. 
Correlation between resting-state functional connectivity and cognitive test performance (y-

axis) in five domains, (top-bottom) 3MS, Stroop, SDMT, COWAT. Each dot denotes an edge 

in the functional connectivity matrix correlated with the cognitive test score. The black line 

shows the relationship between the cognitive score and functional connectivity calculated for 

the entire cohort. The order of the edges (x-axis) is denoted by the coefficients on the entire 

cohort. The blue points show the relationship between the cognitive score and functional 

connectivity for the low haemoglobin group. The red points show the relationship between 

the cognitive score and functional connectivity for the high haemoglobin group. 
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Abbreviations: 3MS, modified mini-mental state exam; SDMT, symbol-digit modalities test; 

COWAT, controlled word association test; Hb, haemoglobin.

Ward et al. Page 24

Neuroimage. Author manuscript; available in PMC 2021 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ward et al. Page 25

Ta
b

le
 1

T
he

 s
iz

e 
of

 th
e 

ef
fe

ct
 (

C
oh

en
’s

 d
) 

be
tw

ee
n 

ha
em

og
lo

bi
n 

su
b-

gr
ou

ps
 o

n 
co

gn
iti

on
-c

on
ne

ct
iv

ity
 r

el
at

io
ns

hi
ps

. P
er

m
ut

at
io

n-
de

ri
ve

d 
p-

va
lu

es
 in

 b
ra

ck
et

s.

C
og

ni
ti

ve
 T

es
t

F
em

al
es

M
al

es

M
od

if
ie

d 
M

in
i M

en
ta

l S
ta

te
 E

xa
m

 (
3M

S)
0.

94
 (

p<
0.

00
1)

0.
99

 (
p<

0.
00

1)

St
ro

op
 T

es
t

−
0.

18
 (

p<
0.

00
1)

1.
13

 (
p<

0.
00

1)

Sy
m

bo
l-

D
ig

it 
M

od
al

ity
 T

es
t (

SD
M

T
)

0.
94

 (
p<

0.
00

1)
0.

95
 (

p<
0.

00
1)

C
on

tr
ol

le
d 

O
ra

l W
or

d 
A

ss
oc

ia
tio

n 
Te

st
 (

C
O

W
A

T
)

−
0.

06
 (

p 
=

 0
.0

22
)

1.
07

 (
p<

0.
00

1)

Neuroimage. Author manuscript; available in PMC 2021 March 25.


	Abstract
	Introduction
	Methods
	Participants
	Procedure
	Haemoglobin
	Cognitive tests
	Imaging
	Calculation of functional connectivity matrix
	Group-level assessment of haemoglobin on the functional connectivity matrix
	Origins of the haemoglobin influence
	Impact of haemoglobin on connectivity-cognition analyses


	Results
	Group-level assessment of haemoglobin on the functional connectivity matrix
	Origins of the haemoglobin influence
	Impact of haemoglobin on connectivity-cognition analyses

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1

