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Summary 
A number of recent studies have demonstrated that cellular responses to tumor necrosis factor 
(TNF) mediated by the p55 and the p75 TNF receptors are distinct. To evaluate the relative 
in vivo toxicities of wild-type TNFot (wtTNFc~) and a novel p55 TNF selective receptor agonist, 
healthy, anesthetized baboons (Papio sF) were infused with a near-lethal dose of either wtTNFc~ 
or a TNFc~ double mutant (dmTNFo 0 that binds specifically to the p55, but not to the p75, 
TNF receptor. Both wtTNFc~ and dmTNFcr produced comparable acute hypotension, tachycardia, 
increased plasma lactate, and organ dysfunction in Papio. However, administration of wt TNFo~ 
produced a marked granulocytosis and loss of granulocyte TNF receptors, whereas little if any 
changes in neutrophil number or cell surface TNF receptor density were seen after dmTNFcx 
mutant administration. Infusion of dmTNFcx resulted in a plasma endogenous TNFc~ response 
that peaked after 90-120 min. We conclude that selective p55 TNF receptor activation is associated 
with early hemodynamic changes and the autocrine release of endogenous TNFc~. Significant 
systemic toxicity results from p55 TNF receptor activation, but the role of the p75 TNF receptor 
in systemic TNF toxicity requires further study. 

T NFc~ is a pleiotropic cytokine with varying immuno- 
logic and inflammatory host defense activities. The in 

vitro actions of TNFc~ include cytotoxicity of some tumor 
cell lines, antiviral activity, fibroblast and lymphocytic cell 
proliferation, and endothelial cell activation (for a review see 
reference 1). In certain transplantable tumors in mice, TNFc~ 
causes hemorrhagic necrosis in vivo (2). Because of its potential 
as an antineoplastic agent, recombinant TNFo~ has been ad- 
ministered to patients with malignancies in several clinical 
trials. Whereas systemic administration of >200 #g/m 2 of 
TNFc~ has not produced the expected potent and general an- 
titumor activity (3), such infusions were found to produce 
unwelcome fever and hemodynamic changes (4). Similarly, 
when administered to experimental animals in relativdy greater 
quantities, TNFcr induced shock and mortality (5, 6). The 
continued interest in the antitumor activity of TNFot is sup- 
ported by the results obtained with high-dose, TNFc~ perfu- 
sions combined with a chemotherapeutic agent (7). 

Recent reports on cellular studies have suggested that 
binding of TNFoe to its two cellular receptors, p55 and p75, 
elicits distinct biological responses. For example, human um- 
bilical vein endothelial cells express both TNF receptor types, 
but TNFo~-induced cell adhesion and expression of intercel- 
lular adhesion molecule 1, E-selectin and vascular cell adhe- 
sion molecule 1 were found under exclusive p55 receptor con- 
trol (8). TNF binding to p55 TNF receptor also confers 
antiviral activity in hepatocytes and IFN-'y primed fibroblasts 
(9). Tartaglia et al. (10) reported that p55 mediated apoptosis 
in sensitive cell lines and induced manganese superoxide dis- 
mutase, whereas p75 activated thymocyte proliferation and 
generation of cytotoxic T cells. 

Controversy exists whether the shock responses to TNFo~ 
in vivo are mediated by binding to p55 or p75. Historically, 
the relatively low systemic toxicity of human TNFol in mice 
has been attributed to the fact that human TNFo~ only binds 
the mouse p55 TNF receptor (11, 12). The lethal dose of 
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human TNFc~ in the mouse is in excess of 1 mg/kg body 
weight (BW) 1, whereas murine TNFc~ causes death with 
doses as low as 10 #g/kg BW (13). Thus, a TNFol agonist 
that binds to p55 but not p75 in humans might produce 
less pronounced systemic toxicity than wild-type TNFol 
(wtTNFo 0, while retaining antitumor and antiviral activi- 
ties. Van Ostade et al. (14) have recently shown that a mu- 
tant TNFo~ exclusively binding to the human p55 receptor 
has antitumor activity against a sensitive human tumor cell 
line growing as a solid tumor in nude mice without any as- 
sociated toxicity. However, recent studies using p55-deficient 
mice showed that TNF binding to p55 was required for its 
systemic toxicity (15, 16). 

Here we present a study of the relative in vivo toxicity 
in baboons of human wtTNFce compared with that of a 
TNFce mutant which binds with wild-type activity to human 
p55, but does not bind to p75. This TNFce mutant was pre- 
viously generated by introducing two point mutations 
replacing Arg 32 by Trp, and Ser s6 by Thr (identified as a 
double mutant TNFce [dmTNFce]) (17). dmTNFol also binds 
selectively to the baboon p55, but not to p75, whereas 
wtTNFce binds to both baboon TNF receptors. When ad- 
ministered to healthy Papio at a dose of 100/~g/kg BW, 
dmTNFol and wtTNFce produced comparable cardiovascular 
disturbances and tissue injuries. These data demonstrate that 
the p55 TNF receptor has an important role in systemic TNF 
toxicity. 

Materials and Methods 
The generation of a dmTNFce mutant specific for the human 

p55 receptor has been reported (17). wtTNFc~ and dmTNF~ were 
purified by sequential gel filtration (Q-Sepharose, Pharmacia, 
Uppsala, Sweden) and ion exchange chromatography (Mono-S; 
LKB-Pharmacia) as described in reference 17 to yield an electropho- 
retically pure protein preparation. The identity of the TNFcx prepa- 
rations was confirmed by amino acid composition analyses or ion 
spray mass spectrometry. Samples were diluted in sterile, endotoxin- 
free, physiologic saline to a final concentration of 500/~g/ml. En- 
dotoxin content of the final preparations was <14 EU/mg protein. 

Solid-phase Radioligand Binding Assay. To demonstrate that 
receptor type specificities of the human wild-type TNFc~ and mu- 
tant TNFc~ were maintained in Papio, solid-phase radioligand 
binding studies were performed. HL60 cells were cultured and lysed 
with Triton X-100 as previously described (18). Baboon buffy coats 
were obtained from 100 ml of venous blood from Papio anticoagu- 
lated with EDTA; cells were subsequently pelleted and frozen at 
-70~ Cell pellets containing ,,~10 s leukocytes were resuspended 
in 1.0 ml of PBS, pH 7.4, containing a cocktail of protease inhibi- 
tors (19) and diluted with an equal volume of the same buffer con- 
taining 2% Triton X-100. After extraction overnight at 4~ the 
samples were clarified by centrifirgatinn and immediately used for 
radioligand binding assay or stored at -80~ 

96-well microtiter phtes were coated with affxnity-purified poly- 
clonal antibodies (10/~g/ml in PBS) raised against recombinant 

1 Abbreviations used in this paper: BW, body weight; dmTNFa, double 
mutant TNFce; PBS-A, PBS and 0.1% sodium azide; wtTNFce, wild- 
type TNFce. 

soluble human p55 and p75 (8). After blocking with 1% defatted 
milk powder in 50 mM Tris, 140 mM NaC1, 5 mM EDTA, 0.001% 
Kathon MW/WT for 1-2 h at room temperature, HL60 cell ex- 
tract (2.3 x 10 s cells/nil) or baboon buffy coat extract (5 x 107 
leukocytes/ml) were added (100 #l/well) and incubated overnight 
at 4~ The wells were then incubated with 15 ng/ml human I:sI- 
TNFc~ (sp act 0.3-1.0 x 10 s cpm/#g [19]) in blocking buffer con- 
taining 0.1% defatted milk powder in the presence or absence of 
3 #g/ml unlabeled human wtTNFcr or dmTNFa mutant. After 
incubation at room temperature for 4 h, the amount of I~I-TNFc~ 
bound to each well was determined in a Phosphoimager | (Molec- 
ular Dynamics, Inc., Sunnyvale, CA). 

Treatment of ExperimentalAnimals. Nine young adult male and 
female Papio s F baboons were purchased from Southwest Founda- 
tion for Biomedical Research (San Antonio, TX). All animals were 
quarantined for a minimum of 2 wk at the Research Animal Re- 
source Center of Cornell University Medical College (CUMC) to 
confirm their good health and lack of disease transmissible to 
humans. The experimental protocol was approved by the Institu- 
tional Animal Care and Use Committee at CUMC. 

Study Protocol. After an overnight fast, animals were initially 
anesthetized with ketamine (10 mg/kg intramuscularly) and 
anesthesia was thereafter maintained by intravenous administration 
of sodium pentobarbital at 3-5 mg/kg BW/h i.v. The animals 
were instrumented for invasive monitoring as described previously 
(20, 21). 

After baseline blood sampling and a waiting period of at least 
an hour to allow equilibration, 100/zg/kg BW of either wtTNFcr 
(n = 3) or dmTNFa (n = 3) were administered via the femoral 
vein as a bolus injection. An additional three baboons received no 
injections and served as instrumented controls. Arterial blood 
samples were obtained at 0.5, 1, 3, 5, 10, 15, 30, 60, 90, and 120 
min, at hourly intervals through 8 h, and again at 24, 48, and 96 h 
for pharmacokinetic and blood chemistry analyses. The investigators 
caring for the animals were blinded to treatment. Leukocyte and 
thrombocyte counts were measured on venous blood anticoagu- 
lated with EDTA by flow cytometric, light scatter, and Coulter 
counter analyses, respectively, as previously reported (20). Pro- 
thrombin and partial thromboplastin times were measured by the 
clinical laboratories at the Animal Medical Center (New York). 
TNF receptors on granul'ocytes were quantitated by cytofluorom- 
etry using biotinylated TNFa and PE-conjugated streptavidin. 
Briefly, baboon blood was anticoagulated with Na-EDTA. Erythro- 
cytes were lysed with a bicarbonate-buffered (pH 7.2) ammonium 
chloride solution. Leukocytes were recovered by centrifugation and 
washed with PBS containing 0.1% sodium azide (PBS-A). Specific 
staining was determined with 1.0 #g/ml biotinylated, human TNFc~ 
whereas nonspecific staining was determined with biotinylated 
TNFc~ plus 100-fold excess, unlabeled human TNFcr After incu- 
bation on ice for 15 min, cells were washed with PBS-A and in- 
cubated with 0.5/~g/ml streptavidin-conjugated PE for 15 min on 
ice. Cells were then washed and resuspended in PBS-A for flow 
cytofluorometric analysis. For each experiment, the flow cytom- 
eter photomultiplier gain was standardized using a single lot of 
PE-conjugated beads. Mean channel fluorescence (>570 nm) of for- 
ward and side angle light scatter-gated granulocytes was assessed. 
Data are presented as the difference (linear units) between mean 
channel fluorescence intensities of specifically and nonspecifically 
stained cells. 

The plasma fraction of additional EDTA and heparinized samples 
was separated by centrifugation at 4~ and stored at -70~ until 
assayed for TNFcr and sTNFR I (p55) immunoactivity, as previ- 
ously described (20, 21). TNFc~ bioactivity was determined using 
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the murine W E H I  clone 13 cytotoxicity assay (21). IL-6 bioactivity 
(R9 hybridoma proliferation) and Ib8  immunoactivity were also 
assayed (20, 21). At the end of an 8-h monitoring period, all catheters 
were removed, and animals were awakened and returned to their 
cages. Blood was sampled at 24, 48, and 96 h. After the last blood 
sampling, baboons were sacrificed by the intravenous administra- 
tion of 65 mgs /kg  sodium pentobarbital. Necropsy was performed 
at death, and tissues were fixed in 10% buffered formalin for light 
microscopy. 

Statistical Analyses. Values are presented as the mean + stan- 
dard error. Differences in responses between baboons administered 
wild-type and mutant TNFc~ were analyzed by two-way analysis 
of variance. In some cases, differences from baseline were analyzed 
by one-way analysis of variance, and Dunnett 's  multiple range test. 
Significance was determined at the 95% level of confidence em- 
ploying a one-tailed test. 

Results 

Specificity of TNFcr Mutant in Papi~ To test whether 
receptor-type selectivity for p55 of dmTNFo~ was maintained 
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tant to human and baboon p55 and p75. Sohbilized human and baboon 
TNF receptors were captured on microtiter plates by coating the wells 
with polyclonal antibodies specific for human p55 and p75. Binding of 
human wild-type 12SI-TNFa to the TNF receptors was determined in the 
presence or absence of excess unlabeled wtTNF~ or dmTNFc~ mutant. 
The amount of radioactivity bound in the absence of competitor is taken 
as 100% and was 24,911 and 74,383 counts for the p55 from baboon PBMC 
and HL60 cells, respectively, and 11,077 and 20,587 counts for the p75 
from baboon PBMC and HL60 cells, respectively. (~p) Binding competi- 
tion to p55 (receptors from both species immobilized by antihuman p55 
ann~x~dies); (bottom) binding competition to p75 (receptors from both species 
immobilized by antihuman p75 antibodies). 

in baboons, the competitive binding of wtTNFoL and dmTNFoe 
to p55 and p75 TNF receptors derived from a human cell 
line and from Papio leukocytes was compared. Detergent- 
extracted receptors from both species were immobilized on 
a solid-phase coated with receptor-type-specific polyclonal 
antibodies that had been raised in rabbits against recombinant 
human receptors and that cross-reacted with the respective 
baboon receptors. As shown in Fig. 1, binding of 12SI-labeled 
wtTNFot to the immobilized human and Papio p55 TNF 
receptors was competitively inhibited by unlabeled wtTNFc~ 
or dmTNFot, whereas binding to the p75 receptors of both 
species was competed by wtTNFoe but not by dmTNFce. 

Papio Cardiovascular and Physiologic Responses. Administra- 
tion of 100 I~g/kg BW of human wtTNPcY produced sig- 
nificant hypotension and tachycardia in the anesthetized ba- 
boon (Fig. 2). Cardiac output declined (data not shown) and 
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Figure 2. Hemodynamic and body temperature changes in baboons 
treated with 100/~g/kg BW of either wtTNFot or dmTNFot. (~p) Heart 
rate (middle), mean arterial pressure, and (bottom) core temperature were 
all measured as described in Materials and Methods. Administration of 
both TNFr molecules resulted in a significant tachycardia and fails in mean 
arterial pressure and cardiac output. The difference in increase in core tem- 
perature in baboons treated with wtTNFot and dmTNFo~ was statistically 
significant. 
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a significant rise in blood lactate concentrations was also evi- 
dent (Table 1). The animals also developed a pyrexic response. 
Although none of the animals administered wtTNFot ex- 
pired over the subsequent 4 d, significant organ dysfunction 
was observed. For example, serum creatinine and blood urea 
nitrogen (BUN) concentrations markedly increased over 48 h 
in the TNFot-treated animals indicating impairment of renal 
function (Table 1). In addition, concomitant increases in he- 
patic enzyme levels (serum glutamate-oxaloacetate transami- 
nase [SGOT], serum glutamate-pyurate transaminase [SGPT]) 
were consistent with acute hepatocellular damage. The ba- 
boons receiving wtTNFc~ also developed a significant plasma 
IL-6 and IL-8 response. 

Administration of dmTNFo~ at 100/~g/kg BW produced 
comparable degrees of hypotension and tachycardia; however, 
the pyrexic response was significantly less pronounced (Fig. 
2). The elevation of blood lactate and presence of renal and 
hepatic dysfunction were similar between the animals treated 
with wtTNFc~ and with dmTNFcr in the initial phase of 
the study, but these dysfunctions tended to be more protracted 
in the animals treated with dmTNFoz. One of the three animals 
treated with dmTNFoL became unresponsive and moribund 
after 48 h, and was euthanized because of animal welfare 
concerns. 

Sham infusions had no effect on hemodynamic responses 

in healthy baboons (Fig. 2), nor were there any observed 
changes in measures of organ function (data not shown). 

Hematopoietic Responses. Administration of the wtTNFol 
produced a significant granulocytosis (p <0.05 at 1, 3, 4, and 
5 h versus baseline; Fig. 3). Blood monocyte and lymphocyte 
numbers rapidly declined (data not shown). Despite this 
granulocytosis, there was an almost complete loss of total 
cellular TNF receptors from blood granulocytes (Fig. 3). Un- 
fortunately, because of the lympho- and monocytopenia in- 
duced by the TNFc~ administration, there were insufficient 
numbers to perform flow cytofluorometric analysis of TNF 
receptors upon these cells. Platelet counts declined from about 
300,000/#13 to 100,000-150,000//~P 2 A, A.8 h after wtTNFc~ 
treatment, although prothrombin and partial thromboplastin 
times were only modestly affected (data not shown). 

In baboons administered dmTNFo~, granulocytosis was not 
observed. In addition, TNF receptors on granulocytes declined 
only transiently and then rapidly returned to levels comparable 
to baseline, suggesting an important role for p75 TNF receptor 
in receptor shedding. Baboons treated with the dmTNFo~ ex- 
hibited a similar monocytopenia and lymphopenia as seen in 
animals treated with wtTNFo~. The soluble TNF p55 receptor 
concentrations increased in baboons treated with both 
wtTNFob and dmTNFo~, although concentrations were mar- 
ginally higher in baboons treated with wtTNFc~. Adminis- 

T a b l e  1. Biochemical Parameters in Baboons Treated with 100/zg/kg BI/V wtTNFot or draTNFcr 

wtTNFc~ dmTNFc~ 

0 8 24 48 h 0 8 24 48 h* 

Lactate 
mg/dl 4.2 _+ 0.7 40.6 _+ 14.5' 35.5 -+ 7.8* 

BUN, 
mg/dl 14.2 _+ 0.7 15.8 _+ 2.1 32.6 + 9.1' 

Creatinine, 
mg/dl 0.8 +_ 0.1 1.2 _+ 0.1' 2.0 + 0.5* 

SGOT, 
IU/ml 28 _+ 6 100 _+ 24* 332 + 31' 

SGPT, 
IU/ml 28 _+ 8 56 _+ 17 274 _+ 36t 

IL-6, 
B.9 ng/ml 0 + 0 26.9 _+ 4.7* ND 

IL-8, 
ng/ml 0 _+ 0 17.8 + 3.0 ND 

24.0 _+ 0.6* 5.5 + 0.9 27.9 _+ 1.4' 118 _+ 43.7* 95 _+ 45.3* 

37.4 _+ 12.5# 15.8 + 4.8 13.6 _+ 3.2 34.0 _+ 8.8* 41.8 _+ 8.2* 

1.7 _+ 0.4* 1.0 +_ 0.1 1.3 + 0.1 2.7 _+ 0.4* 3.3 _+ 1.2' 

156 + 34* 30 _+ 4 57 _+ 11 244 +_ 39* 366 + 165~ 

227 _+ 44~ 29 + 11 36 _+ 14 139 _+ 13~ 197 + 56* 

ND 0 _+ 0 21.9 _+ 2.1' ND ND 

ND 0 + 0 19.9 +_ 3.5 ND ND 

" One baboon (No. 92-150) that received the dmTNF was euthanized at 48 h because of animal welfare concerns. The animal was unresponsive, 
and could not adequately eat or drink. 
* p <0.05 versus baseline (time zero) by one-way analysis of variance, and Dunnett's multiple range test. 
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Figure 3. (Top) Total granulocyte numbers, (middle) granulocyte TNF 
receptor activity, and (bottom) soluble TNF receptor I concentrations. Ad- 
ministration of either wtTNFot or dmTNFo~ resulted in increased soluble 
TNF p55 receptor concentrations, as determined by immunoassay. Infu- 
sion of wtTNFot, but not dmTNFot, resulted in a sustained loss of granu- 
locyte cellular TNF receptors (*, p <0.05, one-sided test). 

tration of the dmTNFc~ produced a similar thrombocytopenia 
as seen with wtTNFc~, and had no significant effect on ei- 
ther prothrombin or partial thromboplastin times (data not 
shown). 

Instrumentation and the sham procedure had no effect on 
hematologic parameters (data not shown). 

Histological Examination. Treatment of baboons with 
wtTNFc~ produced only modest histopathologic changes, in- 
cluding hepatocellular edema in one animal. In the three ba- 
boons treated with dmTNFoe, mild hepatocellular edema was 
also noted. Furthermore, in the one dmTNFot-treated baboon 
that was euthanized for animal welfare concerns, moderate 
necrosis and hemorrhage of the spleen and adrenals was also 
observed, as well as some neutrophil margimtion and pooling 
in the lungs. 

TNFol Pharmacokinetics. The apparent/3-phase half-life 

1189 Van Zee et al. 

& 
o_ 

o 

E 
E 

& 
{3. 

> 

< 

I 
bJ 

10000000 

1000000 

100000 

10000 

1000 

100 

TNFc~ I m m u n o a c t i v i f y  

0 wfTNF~ ( n = 5 )  

�9 d m T N F ~  ( n = 5 )  

10000000 

1000000 

100000 

10000 

1000 

100 

10 

WEHI C y t o f o x i c i t y  

I I I I I ~ [ I _ _ l  

0 60 120 180 240 300 560 420 480 

T ime In Minu tes  

Figure 4. Plasma TNFot immunoactivity and bioactivity. (~p) TNF~x 
immunoactivity was determined by ELLS.& employing monoclonal and 
polydonal antibodies raised against recombinant human wtTNFa.  TNFot 
bioactivity was assessed by (bottom) WEHI clone 13 cytotoxicity assay. 
In baboons treated with dmTNFoe, a monophasic peak of TNFot bioac- 
tivity was observed 90-120 min after the infusion suggesting endogenous 
production of TNFot. 

wtTNFcz immunoactivity in Papio was 61 rain (Fig. 4). The 
half-life of wtTNFc* bioactivity, as determined by the WEHI 
cytotoxicity assay, was comparable. In contrast, the dmTNFot 
mutant had an apparent 3-phase half-life that was significantly 
longer, •169 min. Previous in vitro studies have shown that 
this dmTNFot does not bind to the routine p55, although 
its affinity for human p55 is not different than wtTNF&s 
affinity for p55 (16). Thus, incubation of dmTNFot with the 
murine WEHI clone 13 cell does not induce cytotoxicity. 
However, when dmTNFot was infused into otherwise healthy 
baboons and plasma from such animals was coincubated with 
WEHI clone 13 cells, cytotoxidty was observed in plasma 
90-120 rain later (Fig. 4, bottom). Since dmTNFot is not bio- 
active in this assay, cytotoxicity must have resulted from an- 
other source. Coincubation of these plasma samples with ei- 
ther a mAb directed against human TNFot (mAb 18.1.2) or 
a chimeric p55, human IgG fusion protein (22), completely 



eliminated this cytotoxicity (data not shown), confirming that 
the plasma appearance of WEHI cytotoxicity was endoge- 
nous TNFol. 

Discussion 
In this study, administration of recombinant human TNFot 

at a dose of 100/~g/kg BW to the healthy baboon (Papio) 
produced a 35% fall in mean arterial pressure, tachycardia, 
and evidence of both renal and hepatic dysfunction. These 
responses are key elements of systemic TNF toxicity and have 
also been observed in cancer patients receiving TNFot as an 
antitumor agent (4). In dogs receiving comparable doses of 
TNFot, irreversible tissue damage and mortality have also been 
reported (6). 

Healthy baboons treated with the same dose of the p55- 
specific dmTNFc~ responded similarly in several respects. For 
example, the hemodynamic changes and organ damage were 
of similar magnitude in both groups of animals. In fact, one 
mutant TNFot-treated baboon had to be euthanized, because 
the animal was unresponsive and unable to eat and drink. 
The binding studies confirm that dmTNFot competes with 
wtTNFc~ for Papio p55, but not for p75. Thus, it must be 
concluded that the systemic toxicity of dmTNFot in Papio 
is a result of its binding to the baboon p55 receptor exclusively. 

The more protracted signs of organ dysfunction and the 
histological changes in the animals treated with dmTNFoe 
could be the consequence of its longer pharmacologic half- 
life which translates into a higher persistent dose at the later 
phases of the experiment. The reasons for the different half- 
lives of wtTNFc~ and dmTNFc~ are not understood, but the 
present results are consistent with a significant role for p75 
and its soluble form in TNFc~ elimination, which might be 
correlated with the role of p75 in TNF receptor shedding. 

One novel observation of this study was that infusion of 
dmTNFot induced an endogenous, drculating TNFo~ response. 
It is unlikely that the minute contamination of dmTNFc~ with 
endotoxin (14 EU/mg protein) can explain the endogenous 
TNFot response. The baboon is the most endotoxin-resistant 
of all nonhuman primates (23), and our previous studies have 
demonstrated that 500/tg/kg BW of Salmonella typhosa LPS 
is required to produce a 1 ng/ml TNFc~ plasma response (24), 
whereas the current animals received only "~150 pg/kg BW. 

However, the present studies cannot exclude entirely the 
possibility that toxicity induced by dmTNFcz was secondary 

to the endogenous TNFot response. The toxicity seen is clearly 
due to the p55 agonist, but it cannot be distinguished whether 
these responses are the direct result of dmTNFot binding to 
p55 or are the result of the induced endogenous TNFc~ that 
subsequently binds to both p55 and p75. The onset of hypoten- 
sion and hemodynamic disturbances was not delayed in animals 
treated with dmTNFot, relative to those animals receiving 
wtTNFcr as might have been expected if the changes were 
due to endogenous TNFot production. Nevertheless, the 
present studies do not distinguish rigorously between responses 
due to exogenous dmTNFot administration and endogenous 
TNFot because of the variability in the onset of clinical symp- 
toms or signs. Furthermore, if p55 receptors were fully oc- 
cupied by dmTNFot, then endogenous baboon TNFc~ is com- 
peted at p55 and would bind with some preference to the 
p75 receptor. Thus, the relatively low concentrations of en- 
dogenous TNFot might have disproportionate activities and 
elicit toxic host responses equivalent to higher TNFot con- 
centrations. 

Based on in vitro studies, distinct functions have been at- 
tributed to TNFot binding to these two TNF receptor types 
in various cells. However, the significance of TNFc~ in vivo, 
like that of other cytokines, cannot be easily deduced from 
individual tissue responses, but rather, should be understood 
from its integrated actions on the complex assembly of cells 
and organ systems in a living organism. The systemic tox- 
icity of TNFoe, as reflected in hemodynamic changes and organ 
dysfunction, is undoubtedly the sum of responses by different 
cells in various organs. 

It has been proposed from the differing toxicities of mouse 
and human TNFc~ in mice that p55 selective agonists can 
be expected to have a lower systemic toxicity than wild-type 
TNFot. This hypothesis has not been confirmed in this study. 
In fact, the results of this study are more consistent with 
the conclusion of Pfeffer et al. (15) who demonstrated that 
p55-deficient mice sensitized with D-galactosamine were 
tolerant of endotoxic shock. Furthermore, Rothe et al. (16) 
demonstrated that p55-deficient mice are insensitive to TNF 
toxicity, although they remain susceptible to the lethal effects 
of LPS in the absence of D-galactosamine sensitization. Fi- 
nally, the fact that TNFc~ induction of endothelial cdl adhe- 
sion molecules, which must be considered part of systemic 
toxicity, is under dominant p55 control (8) also argues that 
p55 selective agonists cannot be completely devoid of sys- 
temic toxicity. 
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