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Automatic estimation of knee 
effusion from limited MRI data
Sandhya Raman1, Garry E. Gold2, Matthew S. Rosen1,3,4 & Bragi Sveinsson1,3*

Knee effusion is a common comorbidity in osteoarthritis. To quantify the amount of effusion, semi 
quantitative assessment scales have been developed that classify fluid levels on an integer scale from 
0 to 3. In this work, we investigated the use of a neural network (NN) that used MRI Osteoarthritis 
Knee Scores effusion-synovitis (MOAKS-ES) values to distinguish physiologic fluid levels from higher 
fluid levels in MR images of the knee. We evaluate its effectiveness on low-resolution images to 
examine its potential in low-field, low-cost MRI. We created a dense NN (dNN) for detecting effusion, 
defined as a nonzero MOAKS-ES score, from MRI scans. Both the training and performance evaluation 
of the network were conducted using public radiological data from the Osteoarthritis Initiative (OAI). 
The model was trained using sagittal turbo-spin-echo (TSE) MR images from 1628 knees. The accuracy 
was compared to VGG16, a commonly used convolutional classification network. Robustness of the 
dNN was assessed by adding zero-mean Gaussian noise to the test images with a standard deviation 
of 5–30% of the maximum test data intensity. Also, inference was performed on a test data set of 
163 knees, which includes a smaller test set of 36 knees that was also assessed by a musculoskeletal 
radiologist and the performance of the dNN and the radiologist compared. For the larger test data 
set, the dNN performed with an average accuracy of 62%. In addition, the network proved robust to 
noise, classifying the noisy images with minimal degradation to accuracy. When given MRI scans with 
5% Gaussian noise, the network performed similarly, with an average accuracy of 61%. For the smaller 
36-knee test data set, assessed both by the dNN and by a radiologist, the network performed better 
than the radiologist on average. Classifying knee effusion from low-resolution images with a similar 
accuracy as a human radiologist using neural networks is feasible, suggesting automatic assessment 
of images from low-cost, low-field scanners as a potentially useful assessment tool.

Osteoarthritis (OA) is a debilitating joint disease, estimated to affect 27 million adults in the United  States1 and 
leading to medical care expenditures of close to $200 billion  annually2. While OA used to be thought of primarily 
as wear and tear of the joint cartilage, it is now considered a disease of the whole joint, affecting cartilage, bone, 
ligaments, and joint fluid  accumulation3. OA becomes more prevalent with age, which is the strongest risk factor 
for the  disease1. With an aging US  population4, an increased demand for methods for OA diagnosis can therefore 
be expected. This includes medical imaging technologies such as magnetic resonance imaging (MRI), which is 
frequently listed as the preferred cross-sectional imaging technology of choice for a wide variety of indications in 
the  extremities5. However, musculoskeletal MR imaging is already experiencing substantial growth, with a 350% 
increase in use rate in 1996–20055. This leads to increased medical costs from imaging diagnosis, which were 
estimated as 19% of all Medicare imaging spending in  20066. There is therefore increased urgency for developing 
more efficient imaging and diagnosis of OA and its related conditions using MRI.

Recently, the development of Artificial Intelligence (AI) and Deep Learning (DL) applications in radiology 
has allowed for increased automation of radiological  assessments7. This has included using DL for automated 
applications of various imaging modalities, such as X-ray  mammography8, multiplanar computed tomography 
(CT) lung module  detection9, and ultrasound (US) of the  prostate10. In the field of OA MRI, important work 
has been done to automatically segment knee  images11 and to detect lesion severity in cartilage, bone marrow, 
meniscus, and anterior cruciate ligaments (ACL)12. AI has also been demonstrated to detect meniscus tears 
and predict osteoporotic fractures, as well as to generate quantitative relaxation  maps13–15. Additionally, several 
approaches have been suggested for reducing data acquisitions times using AI, including both approaches that 
construct images from undersampled k-space data as well as methods to improve image  data16,17. Such devel-
opments have led to increased optimism of AI and DL improving the value of MRI as a high-end diagnostic 
modality by increasing its throughput and reducing its  cost18.
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Joint effusion, or accumulation of fluid, is commonly seen in OA  patients19. This feature of OA has been 
associated with increased levels of  pain20 and risk of cartilage  loss21, demonstrating the importance of accurate 
assessment of effusion in OA patients. Although the composition of effusion is not well understood, its severity 
is correlated with the inflammation present and graded as mild, moderate, or severe. While there are multiple 
methodologies for quantitatively assessing effusion  severity19, one commonly used metric is the MRI Osteoar-
thritis Knee Score (MOAKS) effusion-synovitis  score22. This metric takes into account the fluid equivalent signal 
within the joint cavity on images with T2-, intermediate-, or proton-density-weighted contrast including synovitis 
and effusion and therefore uses the term effusion-synovitis, and will be referred to as MOAKS-ES in this work 
for brevity. This is scored on a scale of 0–3, with 0 being a physiologic amount, 1 being small (fluid continuous 
in the retropatellar space), 2 being medium (with slight convexity of the suprapatellar bursa), and 3 being large 
(with evidence of capsular distention). Examples of sagittal TSE images with each of these grades are shown in 
Fig. 1. This methodology has been used in several studies, including using data from the Osteoarthritis Initia-
tive (OAI), a large multi-center study evaluating close to 5,000 OA  patients23,24. However, this assessment often 
requires manual evaluation by a radiologist of a high-resolution image in the axial plane, which can become a 
laborious process for large patient volumes. Furthermore, such assessment can result in substantial inter- and 
intra-rater  disagreements22. Additionally, several benefits would result from enabling effusion grading based 
on low-resolution images. A lower-resolution scan, employing fewer phase encodes, would shorten the scan, 
improving the patient experience and potentially increasing scanner throughput. Low-resolution processing also 
has value when using low-field MRI devices. This technique has seen substantial development in recent years 
and allows low-cost medical imaging in settings not applicable for conventional scanners, but typically acquires 
lower-resolution  data25–29. There is therefore an unmet need for automating effusion estimation from MR images, 
including from images acquired non-axially with a low resolution.

In this proof-of-principle study, we examine the performance of a dense Neural Network (dNN) to auto-
matically detect effusion from low-resolution sagittal Turbo Spin Echo (TSE) MR images and whether it can 
perform comparably to a human reader. We train the network on images from the OAI data set and associated 
MOAKS-ES labels provided with the publicly available OAI data. Images with MOAKS-ES value of 0 were 
separated from images of MOAKS-ES value of 1, 2, and 3, to enable a binary classification. The MOAKS-ES = 0 

Figure 1.  Examples of subjects with (a) Normal knee (MOAKS score 0), (b) Small effusion (MOAKS score 
1), (c) Medium effusion (MOAKS score 2), and (d) Large (MOAKS score 3) effusion. In this work, a binary 
classification is used, with images as in panel (a) classified as without effusion, while images as in panels (b–d) 
are classified as with effusion.
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and MOAKS-ES > 0 will be referred to as datasets without effusion, or normal knees, and knees with effusion, 
respectively. We demonstrate that the dNN classifies effusion in a low-resolution test data set with 163 knees with 
a mean accuracy of about 62%. We compare the accuracy of the dNN to VGG16, a commonly used convolutional 
network. We also conduct a reader comparison, obtaining a binary effusion classification in a limited set of 36 
patients both from our dNN as well as from an experienced musculoskeletal radiologist, and compare how well 
these agree with the classification labels included with the OAI, hereafter referred to as the ground truth clas-
sification labels. Such an approach could potentially allow automatic estimation of effusion from low-cost, low-
field scanners or quick low-resolution images from standard clinical scanners, as well as possibly substantially 
reducing workloads for musculoskeletal radiologists assessing effusion severity.

Materials and methods
The images for this study were collected as a part of the OAI between 2004 and 2006 using its first (baseline) 
timepoint. This involved imaging 4,796 male and female participants with, or at risk of, knee OA with Siemens 
Trio 3T MRI scanners, in addition to collecting other clinical and radiographic  information23,30. Imaging was 
performed at 4 different imaging centers and data coordination performed at a fifth center. The participants 
provided informed consent as required by the Institutional Review Boards of the respective imaging centers (the 
Human Research Protection Programs or Offices of The Ohio State University, Columbus; University of Maryland 
School of Medicine, Baltimore; University of Pittsburgh School of Medicine; Brown University and Memorial 
Hospital of Rhode Island, Pawtucket), and the results were made publicly available for scientific investigation and 
OA drug development, with data coordinating centered at the University of California, San Francisco School of 
Medicine. We had institutional approval for use of this data. All methods were carried out in accordance with 
relevant guidelines and regulations.

Data preprocessing. The OAI obtained several different MRI pulse sequences, with the data stored as 
digital imaging and communication in medicine (DICOM) files. Of these sequences, this study used sagittal TSE 
images as the dNN input to predict the effusion class, due to it giving the highest fluid contrast of the sequences 
available. The sequence parameters are shown in Table 1. While the TSE scans typically contained 37 slices as 
shown in Table 1, our approach was to format the input data in the form of 2D color images, both to enable 
comparisons with image-based networks such as VGG16 as well as to reduce the amount of input data used. 
To achieve this, we selected three uniformly distributed slices (14, 19, and 24). We then combined these into a 
single color image by associating the slices in ascending order with red (R), green (G), and blue (B) channels 
respectively, as shown in Fig. 2a. In addition, the DICOM images had been initially constructed at a resolution 
of 448 × 448 pixels. As one of the goals of this study was to investigate performance with limited data, this image 
resolution was lowered. This was done by inspecting several image sizes and evaluating the amount of energy 
retained, defined as its mean square intensity; the energy was then compared to the energy of the original image 
with the goal of retaining at least 99% of the energy. Images resized to n × n pixels, with an n of 2, 4, 8, 16, and 
32, didn’t retain comparable energy as the original scan (> 1% difference). Conversely images with n of 64 and 
above closely matched the original scan (< 1% difference), as shown in Fig. 2b. Based on this analysis, all scans 
were resized to 128 × 128 pixels using Python’s (version 7.2.2) cv2 library. This resulted in an in-plane resolution 
of 1.25 mm, similar to what is reported in recent low-field studies.

Patients with incomplete imaging or without effusion labels were excluded from the study. After discarding 
incomplete radiological data, there were 1628 total scans, including 882 left knees and 746 right knees. The 
characteristics of the data set, including female/male ratios and mean age, effusion grade, and the commonly 
used OA severity measure of Kellgren Lawrence (KL)  grade31 are shown in Table 2.

To ensure adequate testing of our method, 10% of the original data (163 scans) was set aside. Of this testing 
data, 36 scans were utilized for performance comparison between the trained network and a musculoskeletal 
radiologist. This test data subset contained an equal number of scans from both left and right knees, as well as 
18, 6, 6, and 6 scans for MOAKS-ES values of 0, 1, 2, and 3 respectively.

Table 1.  Scan parameters for the sagittal TSE sequence used for effusion prediction.

Plane Sagittal

Matrix (frequency × phase) 448 × 313

Slices 37

Field of View (mm) 160

Slice thickness/gap 3/0

Flip angle (°) 180

TR/TE (ms/ms) 3200/30

Bandwidth (Hz/pixel) 248

Averages 1

Echo train length 5

Phase encode axis A/P

Scan time (min) 4.7
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The rest of the data was non-uniformly distributed with 633, 542, 214, and 76 scans having effusion values of 
0, 1, 2, and 3, respectively. Optimizing on such non-uniform data resulted in predicting no effusion (MOAKS-ES 
value of 0) or effusion (MOAKS-ES values of 1, 2, or 3) for all scans. To obtain uniformly distributed data with 
equivalent representative images for normal and higher effusion levels, we performed data augmentation on 
images of effusion value 0, 2, and 3, and utilized different slice combinations to create new color images. This was 
achieved by taking the slices adjacent to the original and combining to create a single, color image. For example, 
the original data was constructed using slices 14, 19, and 24 while augmented data was assigned the same label, 
and constructed using slices 14 + n, 19 + n, 24 + n where n ranged from -3 to 4 and was not equal to 0. After aug-
mentation the data was equally balanced with MOAKS-ES values of 1, 2, and 3 having 542 representative scans 
each, and MOAKS-ES value of 0 having 1626 representative scans. The original distribution of the labels before 
augmentation is shown in Fig. 3a.

The split validation method was utilized by randomly splitting the remaining data with the proportions of 
80% and 20% (2599 and 653 scans) into the training and validation subsets respectively. The data distribution 
was checked to assure equal distribution between knees with and without effusion. Since the testing subset was 
separated prior to augmentation, no additional data was added, to ensure no data leakage from augmentation.

Figure 2.  (a) Data creation through image slice combinations. Input images are created by treating intermediate 
slices as red, green, and blue color channels, and stacking them. Augmented images are created by stacking 
adjacent intermediate slices. (b) Example of image energy retained with progressively higher resolution.

Table 2.  Patient characteristics of data set.

% female 61.8

% male 38.2

Mean age 61.7

Effusion grade % (0, 1, 2, 3) 43.5/37.2/14.4/4.8

Mean KL grade (right knee) 1.01

Mean KL grade (left knee) 1.04
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Network design. Currently, pre-trained models are widely used for image classification problems as they’ve 
already been trained on millions of images. These networks are considered state-of-the-art (SOTA) and are quite 
large with billions of parameters, allowing the network to achieve relatively high levels of accuracy. In this work, 
however, we chose a feed-forward neural network with relatively few parameters as it would allow us to have 
complete control over its structure and parameters and be less computationally intensive. Its performance was 
then compared to VGG16, a popular SOTA  network32. In its final design, the architecture was a fully connected 
five-layer neural network with a 10% dropout after the first dense layer. After flattening the 128 × 128 × 3-sized 
image data into a 49,152-valued input, the data was passed through successive dense layers with 1,024, 512, 
256, and 128 nodes, as shown in Fig. 3b. The final classification layer consists of one node and uses the sigmoid 
activation function for categorizing the MR images into the two labels: 0 representing physiologic fluid levels 
(MOAKS-ES value of 0), and 1 representing higher fluid levels (MOAKS-ES values of 1, 2, or 3). For both 
VGG16 and the dNN, we optimized the hyper-parameters including learning rate, batch size, epochs, and activa-
tion function. Training, validation, and testing results were compared between the two networks.

The dNN was trained using the Adam optimizer on a binary cross-entropy loss function, a batch size of 
300, and learning rate of 0.0004. The network was set to train for a maximum of 50 epochs, with early stopping 
applied, so that if 4 epochs passed without improvement in the validation loss, the training stopped. The weights 
of VGG16’s final layer, with other layers pre-trained using ImageNet, were trained using the RMS-prop optimizer 

Figure 3.  (a) Initial distribution of MOAKS-ES labels before data augmentation. (b) Schematic of network 
architecture. A flattened 49,152-valued input layer is followed by dense layers with 1,024, 512, 256, and 128 
nodes, with 10% dropout after the first dense layer.
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on a binary cross-entropy loss function with a batch size of 20 and learning rate of 0.0001, using the same early 
stopping condition. The network was set to train for a maximum of 50 epochs. Both networks were compiled 
using Tensorflow (v. 1.13.1) with Keras (v. 1.0.8) backend on Python (v. 3.7.1). The networks were trained on 
the training subset and hyperparameters tuned with the validation subset. Development took place on a Dell 
Latitude 7390 computer with Intel i5-8350U CPU, and a 16.0 GB RAM.

After testing the dNN, robustness to reduced SNR was evaluated by adding zero-mean Gaussian noise to all 
test images with a standard deviation of 5%, 10%, 15%, 20%, 25%, and 30% of the maximum test data intensity. 
Accuracy was determined by the percentage of categorizations where the predicted class matched the ground 
truth class. ROC curves, associated AUC values, and Matthews Correlation Coefficient (MCC) calculations were 
implemented to analyze the dNN’s performance for no added noise and 5–30% added noise. Robustness was 
assessed to account for the high variability in biomedical images and gauge realistic applicability. To assess the 
regional sensitivity of the network, an activity map analysis was performed. As the network was not convolutional, 
this was done using occlusion sensitivity  computation33 instead of techniques such as grad-CAM34.

Reader comparison. As previously mentioned, a smaller test set of 36 test subjects, included in the 
163-subject test set, was used for reader comparison. No augmentation was performed on this data. The data was 
distributed with 18, 6, 6, and 6 scans representative of effusion values 0, 1, 2, and 3 respectively. For each effusion 
value, half the scans were from the left knee and half were from the right knee. A musculoskeletal radiologist 
reader with 28 years of experience evaluated images from these subjects with the same 128 × 128 × 3 resolution 
as used with the dNN, and assigned them an estimated binary class. The agreement between the reader and the 
ground truth class, based on MOAKS-ES scores, was examined by calculating the percentage of subjects where 
the reader agreed with the ground truth class as well as calculating the mean error and mean absolute error, with 
error defined as the ground truth class subtracted from the reader class. The same analysis was then performed 
for the classes predicted by the dNN. The mean errors of the two approaches were statistically compared by 
applying a two-tailed t-test with α = 0.05. The agreement between the reader assessment and dNN assessment 
was evaluated with a Cohen’s kappa calculation.

Results
The training of the dNN took about 9 s per epoch, resulting in a total training time of approximately 3 min. The 
training stopped due to the validation loss curve flattening after 20 epochs, as shown in Fig. 4a. For the test data 
set, the dNN achieved a 71% and 52% accuracy for classifying images without and with effusion, respectively, 
giving an average accuracy of 61.5%. Figure 4b shows the minimal change to the area under the testing ROC 
curve (AUC) with additive noise. Similarly, accuracy degradation to increasing percentages of noise is shown 
in Fig. 4c. The figure shows that even for very strong additive noise levels, up to 30% of the maximum signal 
intensity, the accuracy of the network remained good. Figure 4d demonstrates the minimal degradation to MCC, 
which measures the quality of binary classifications on a scale from − 1 to 1, even with increasing noise. ROC 
curves and associated AUC values for training, validation, and testing subsets are shown in Fig. 5.

The training of VGG16 took about 72 s per epoch, resulting in a total training time of approximately 1 h. 
The training stopped when the validation loss curve did not appreciably decrease with time. For the larger test 
data set, VGG16 classified all images into the effusion class, giving an average accuracy of 50%. Despite multiple 
attempts at hyper-parameter tuning, all results yielded an equivalent or even lower agreement. Therefore, the 
AUC for testing data was consistently less than or equal to 0.5.

Table 3 shows the results from the comparison of the reader assessments to the dNN assessments for the 
smaller 36-knee test data set. On average, the dNN had a 47.2% agreement with the OAI scores, while the reader 
had a 41.7% agreement. The dNN had a higher agreement than the reader for knees without effusion, while 
having slightly lower agreement for the knees with effusion. The mean error of the dNN was − 0.19 and for the 
reader it was − 0.08. This difference was not determined to be statistically significant based on the described t-test 
(p > 0.05). The mean absolute error for the dNN was 0.53, while for the reader it was 0.58. Calculation of Cohen’s 
kappa between the reader and the dNN resulted in an index of 0.29.

Figure 6 shows examples of where the reader and the dNN disagreed. In Fig. 6a, the dNN and the reader both 
agreed with the ground truth value of normal fluid amount, while in Fig. 6b the dNN agreed with the ground 
truth of normal fluid while the reader assessed the data set to represent a knee with effusion (MOAKS-ES > 0).

A sample occlusion map, demonstrating which regions the network was sensitive to when making a classi-
fication, is shown in Fig. 7. The map shows increased sensitivity in the joint space and around the suprapatellar 
bursa, although some variability in such maps was noted.

Discussion
In this study we investigated, as a proof-of-principle, the feasibility of a deep learning system playing a role in 
classifying low-resolution MRI images into categories of no effusion (physiological fluid amount, MOAKS-ES = 0) 
or having effusion (MOAKS-ES > 0) with a comparable accuracy as a human reader, which has relevance for low-
cost MRI. The performance of our proposed model was trained and evaluated on images from the Osteoarthritis 
Initiative (OAI) and MOAKS-ES labels available with that public data set. Performance analysis demonstrated 
that this methodology holds promise, performing with comparable or better accuracy to a radiologist when 
using low-resolution data.

As one of the goals of automatic effusion classification as presented in this work is to reduce radiologist work-
load, the classification accuracy should ideally be similar to reported inter-rater agreement for effusion grading. 
A previous study analyzed the reliability of reading MRI Osteoarthritis Knee Scores (MOAKS) features including 
effusion-synovitis  values22. In that study, two expert radiologists with 8 and 10 years of experience assessed MRIs 
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Figure 4.  (a) Learning curves for the training and validation data sets of the dNN. (b) The testing data was 
degraded with additive Gaussian noise with a standard deviation varying from 0 to 30% of the maximum pixel 
intensity. ROC curves were recorded, and the AUC was calculated. (c) The same method as panel b, mean and 
standard deviation of accuracy was recorded for each class. (d) The same noise addition method as panel b, 
mean and standard deviation of Matthews correlation coefficient was recorded with additive noise.

Figure 5.  The dNN’s training, validation, and testing ROC curves with associated AUC values.

Table 3.  Comparison of reader network label estimates for a 36-subject data set. “Correct” is defined as 
giving the same effusion estimate as given in the OAI. “Error” is defined as the OAI label subtracted from the 
estimated label.

Total correct (%) No effusion correct (%) Effusion correct (%) Mean error Mean absolute error

Reader 41.7 50 33.3 − 0.08 0.58

Network 47.2 66.7 27.8 − 0.19 0.53
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of 20 knees from the OAI, resulting in an inter-rater percent agreement of 0.70 when assigning effusion values. In 
another study, where two trained orthopedic surgeons evaluated 160 knees using MOAKS, interclass reliability 
was reported as 0.7235. Although our model only achieved 61.5% binary classification accuracy on average for 
the larger test data set, given the inherent subjectivity of effusion estimation and the fact that our data was much 
more limited in terms of resolution and slice range, we consider the results promising.

As already described, we applied data augmentation in this work to get a more even distribution of MOAKS-
ES training labels as well as to generally have more data for training. In machine learning, such augmentation is 
often achieved by operations such as flipping, rotating, or cropping the original images. We did not see this as 
a realistic approach in this work, as the field of view and patient orientation are quite standardized during the 

Figure 6.  Two sample subjects, one with agreement between the dNN and the reader and the other with 
disagreement. As described in Fig. 2, the three slices were combined into a color image as shown in the 
top labels to facilitate classification by 2D image-based networks. (a) A subject where the dNN and reader 
assessments agreed with the OAI class (both giving a value of 0). (b) A subject where the dNN agreed with the 
ground truth of normal fluid amounts, while the reader estimated effusion.

Figure 7.  Sample occlusion map, demonstrating regions of high sensitivity for classification.
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scan by a professional MRI technologist. We therefore used the approach of generating new slices by combining 
adjacent original slices as described, maintaining the patient orientation and field of view.

The testing results demonstrate that the dNN performs substantially better than the VGG16 network in dis-
tinguishing normal from high fluid levels. The area under the VGG16 ROC test curve was 0.5, indicating that 
the VGG16 approach is incapable of distinguishing between the two classes and only classifies with an accuracy 
equal to random chance. Since the classification between normal fluid levels and effusion is often subtle, perhaps 
the data, even after augmentation, is not enough to fully train the multi-million parameters. The superior per-
formance of the dense network could also indicate the importance of localized pattern detection in the image 
instead of globally detected patterns.

It should be kept in mind that complete agreement of the dNN with the ground truth effusion classification, 
while ideal, is not the primary goal of this project, but rather to see whether it achieves equivalent or better 
agreement than a human reader. The reader comparison of 36 subjects in the smaller test data set suggests that 
a dNN can perform as well or better than a trained musculoskeletal radiologist in assessing binary effusion clas-
sification, based on MOAKS-ES scores, using low-resolution sagittal TSE images. The rate of agreement between 
the reader and the dNN was observed to be 67%. Calculation of Cohen’s kappa gave the probability of random 
agreement between reader and network in the 36 images as 0.53, suggesting that agreement with the reader was 
more than random, and yielded an index of 0.29, indicating fair to good agreement beyond random chance. The 
mean absolute difference between reader and dNN classification was 0.33. Notably, the network performed better 
than the reader for images without effusion and comparably for images with effusion. The results could indicate 
that using neural nets for low-resolution effusion scoring might help when making a binary choice between 
normal knees and knees with effusion, but it should be kept in mind that this 36-knee test data set is quite small 
and a larger study would need to be performed to assess this with statistical significance. With only 18 data sets 
per class (with one misclassified point resulting in a 5.6% error for that class), some statistical variability is to be 
expected, which was indeed observed even without change in hyperparameters. A larger data set, while more 
demanding of the reader, could reduce such variability. Nonetheless, the result from even this small data set 
serves as an indication that matching or outperforming a human reader is feasible.

An important aspect of this work is the capability of the dNN to detect effusion from low-resolution 128 × 128 
images. As MRI scan time increases with the number of phase encodes, one could reduce the scan time of the 
original 448 × 313 high-resolution acquisition by approximately a factor of 2.5. Given that our network performed 
well compared to a radiologist with this resolution, the dNN could help to accurately diagnose patients with 
a substantially reduced MRI scan time. This is beneficial to the patient, as long scan time can lead to patient 
 discomfort36 and potential  motion37, leading to image artifacts. This could be especially relevant for OA patients 
due to the pain commonly associated with  OA38. Furthermore, shorter scan time can lead to higher patient 
throughput, and thus potentially reducing the economic burden of OA diagnosis and  monitoring39 as well as 
improving patient experience and clinical  effectiveness40,41. Some scanner systems, including low-cost, low-field 
portable MRI scanners, use lower resolution due to system  limitations26,28. This study demonstrates that data from 
such scanners could possibly be automatically classified for effusion, potentially helping to expand the possible 
user base for such systems, allowing more widespread use of medical imaging. Additionally, the lower resolution 
results in reduced data size, requiring less memory for post-processing, and the ability to process lower-resolution 
data also allows for improving the signal-to-noise ratio (SNR) by using larger voxels.

Although the presented model showed promise, it has some limitations. Firstly, effusion classifications are 
inherently subject to interpretation, leading to reader disagreements and variability in any effusion assessment, 
including the ground truth scores. Second, our data set was deliberately kept limited, both in terms of resolution 
and slice range, to emulate the conditions of technically limited scanner systems and to enable comparisons with 
2D image-based networks. This can result in certain anatomical details, relevant for MOAKS-ES classification 
as described in the Introduction, to be missing from the data. The method attempts to predict the effusion clas-
sification in spite of such limitations, but this will undoubtedly lead to less accuracy than for data sets with higher 
detail. Using other effusion metrics, such as volumetric quantification of  fluid42,43, might yield different levels of 
agreement. Additionally, as has already been described, the small size of the 36-knee data set inevitably results 
in variability and makes statistical comparisons challenging, and a larger data set for reader comparisons would 
likely be beneficial. Finally, the available OAI data contained relatively few radiological scans with a MOAKS-ES 
value of 2 and 3. As a result, the model in the paper has not been trained with high variability in this category 
and is potentially not as robust at classifying images with very high fluid levels. Training the network further and 
refining parameters when more data is available would be a valuable future direction of this work.

Conclusion
In this proof-of-principle work, we estimated the feasibility of classifying knee effusion using neural networks. 
We demonstrated that having a neural network classify low-resolution images into categories of effusion or no 
effusion with an accuracy comparable to a radiologist is feasible. This has relevance for low-cost, low-resolution 
knee scanning and could also be integrated into clinical osteoarthritis studies to save scan time and reduce 
radiological work.
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