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Abstract

Conformational changes are essential for protein-protein and protein-ligand recognition. Here we probed changes in the
structure of the protein ubiquitin at low temperatures in supercooled water using NMR spectroscopy. We demonstrate that
ubiquitin is well folded down to 263 K, although slight rearrangements in the hydrophobic core occur. However, amide
proton chemical shifts show non-linear temperature dependence in supercooled solution and backbone hydrogen bonds
become weaker in the region that is most prone to cold-denaturation. Our data suggest that the weakening of the
hydrogen bonds in the b-sheet of ubiquitin might be one of the first events that occur during cold-denaturation of
ubiquitin. Interestingly, the same region is strongly involved in ubiquitin-protein complexes suggesting that this part of
ubiquitin more easily adjusts to conformational changes required for complex formation.
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Introduction

Conformational changes are essential for protein-protein and

protein-ligand recognition [1]. For efficient interaction, it is

assumed that a certain amount of plasticity in the active site is

required to accommodate its ligand in combination with a

conformational change induced by the ligand at the binding site

[2]. In addition, intrinsic dynamics can play a key role such that

the ligand will bind selectively to the active conformation, thereby

biasing the equilibrium toward the binding conformation [3].

NMR dipolar couplings observed in the protein ubiquitin in

combination with 3D structures of ubiquitin in complex with

binding partners have recently provided support for the presence

of binding-relevant conformations in the native state [4].

The stability of protein conformations can be probed by

exposing the protein to external perturbations such as high

pressure, acidic pH, chemical denaturants or high and low

temperature. Particularly interesting is cold denaturation of

proteins. When the temperature of the solution is reduced

sufficiently without freezing, proteins can be cold denatured

without the need for chemicals that would potentially interfere

with the ensemble of conformations present in solution. Thus,

insight into the origin of the cooperativity of protein folding and

the nature of partially folded states might be obtained

[5,6,7,8,9,10]. The predicted cold-denaturation temperature of

proteins is typically 20 K or more below the equilibrium freezing

point of water [9,11].

Measurements in supercooled water – that is at temperatures

well below the freezing point of water but above those at which

proteins cold-denature - can provide a wealth of information about

protein structure, dynamics and hydration [5,12]. In particular,

interconversion between different conformations that causes

averaging of spectroscopic probes at higher temperatures is slowed

down. This can be used to reduce the flip-broadening of aromatic

NMR lines [13,14]. In addition, the temperature-dependent

exchange of protons in RNA duplexes is reduced in supercooled

water, allowing the observation of non-base-paired imino protons

of RNA [15]. We previously showed that supercooled water can

be used to slow down interconversion between different confor-

mations of the protein a-synuclein in its monomeric, disordered

state thereby allowing access to its intrinsic residual secondary

structure [16].

In the current study, we investigated the structure of the 76-

residue protein ubiquitin at low temperatures in supercooled water

using NMR spectroscopy. We compare our findings of cold-

induced changes with regions that are dynamic and involved in

protein interactions in the native state of ubiquitin.

Results and Discussion

Figure 1A shows two-dimensional [1H,15N]-heteronuclear

single quantum coherence (HSQC) spectra of ubiquitin during a

stepwise decrease in temperature from 298 K to 263 K. Many

residues such as Q62 displayed linearly changing chemical shifts

across the whole temperature range (Figure 1B–E and Figure S1),

as expected for stably folded structures and in agreement with the

known hydrogen bonds of ubiquitin [17,18]. In contrast, for

several other residues the chemical shift changes deviated from a

linear temperature dependence (Figure S1). R42, I44, H68 and

V70 showed deviations from linearity already in the range from

298 K to 273 K. For several other residues, however, chemical

shift changes could be well approximated by a linear function

above and below 273 K, but experienced strong non-linearity

close to 273 K (Figure 1B–E and Figure S1). We therefore

determined two temperature coefficients, one in the range from

298 K to 273 K and the other from 273 K to 263 K
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Figure 1. Non-linearity of the [1H,15N] chemical shift changes in ubiquitin at decreasing temperatures. (A) 2D [1H,15N]-HSQCs of
ubiquitin for temperatures from 298 K to 263 K. Selected resonance assignments are indicated. (B–E) Weighted average [1H,15N] chemical shift
changes as a function of temperature for selected residues. The red line shows the straight line fit to the data in the range 298K-273K. Differences
between amide proton (F) and nitrogen (G) temperature coefficients in the range 273 K-263 K and 298 K-273 K. The location of helices and b-strands
is schematically shown above.
doi:10.1371/journal.pone.0037270.g001
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Figure 2. Cold-induced changes in the amide proton temperature coefficients. (A, B) Residue-specific differences in the amide proton (A)
and amide (B) temperature coefficients above (298 K-273 K) and below 273 K (273 K-263 K) (black bars). Only values for those residues are shown for
which p-value ,0.02% in the F-test. For comparison, the number of ubiquitin-binding protein contacts per residue (red) and the amide 1H-15N
relaxation rate constants for multiple-quantum coherences, DRMQ, measured for ubiquitin at 280 K (green) are shown [28]. The location of helices and
b-strands is schematically shown above. (C) 3D structure of ubiquitin highlighting residues that showed statistically significant differences in the
amide proton temperature coefficients above and below 273 K (as shown in A). The color coding follows the magnitude of D1H(temp) shown in A).
doi:10.1371/journal.pone.0037270.g002
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(Figures 1F,1G and S2; Table S1). Note that the linear fit is only

an approximation to approximately quantify the strength of the

temperature-induced changes. Statistical analysis of the changes in

the amide protein chemical shifts using F-tests with a p-value of

,0.02% identified in total 12 residues: 5–8, 13, 34, 36, 42, 44, 45,

68 and 70 (Figures 1F, 2A). The same analysis for nitrogen

chemical shifts highlighted similar regions, but revealed non-

linearity for a few more residues and highlighted the changes in

the regions of residues 13–14, 42–45 and 68–70 (Figures 1G, 2B).

Mapping of the changes in amide proton temperature coefficients

onto the 3D structure of ubiquitin showed that the b-sheet of

ubiquitin is most strongly affected (Figure 2C). In particular,

Figure 3. Weakening of hydrogen bonds in supercooled solution. Ratios of h3JNC’ trans-hydrogen bond scalar couplings at 278 K and 298 K
(A), and at 270 K and 278 K (B). Only residues not affected by signal overlap were included. Errors were calculated on the basis of the signal-to-noise
ratio of the cross and reference peak. On the x-axis the donor and acceptor residue are indicated.
doi:10.1371/journal.pone.0037270.g003
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residues connected by hydrogen bonds across the b-sheet (I13-V5/

K6-H68-I44) appear as a continuous ridge.

Non-linear chemical shift changes reflect the temperature

dependence of the populations of states of different free energies

and these states can reflect any number of physical changes,

including hydrogen bonding, changes in electrostatics, changes in

dihedral angles and packing [19]. Moreover, amide proton

temperature coefficients depend on the strength of hydrogen

bonds, as well as other factors such as deshielding due to

conformational changes in nearby aromatic groups [17]. We

therefore directly probed the sensitivity of the hydrogen bonds of

ubiquitin to low temperature using three-bond trans-hydrogen

bond scalar couplings [20,21,22]. To obtain sufficient accuracy

even at low temperatures where the rotational diffusion is reduced,

the measurements were performed at a concentration of 5 mM of
2H/15N/13C-labeled ubiquitin. In addition, only cross-peaks not

affected by signal overlap were included into the analysis. Upon

lowering the temperature from 298 K to 278 K the magnitude of

the h3J(CO-N) trans-hydrogen bond scalar coupling increased in a

rather uniform manner by about 4–8% (Figure 3A). This is in line

with previous observations that reported an increase in h3J(CO-N)

values with decreasing temperatures [18]. When the temperature

was decreased to 270 K the h3J(CO-N) values of the amide protons

of residues 4, 7, 15, 17, 56, 60, 64 and 67 further increased

(Figure 3B), while for residues 13, 30 and 32 the errors were too

large to reliably identify changes (Figure 3B). In contrast, for the

amide protons of residues 5, 6, 42, 44 and 68 the h3J(CO-N) values

decreased or were unchanged within the experimental error. The

decreased/unchanged magnitude of h3J(CO-N) for these amide

protons demonstrates that the corresponding hydrogen bonds

become weaker in supercooled solution, in line with increased

amide proton temperature coefficients (Figure 1F). The amide

proton of Thr7, which is hydrogen bonded to the carbonyl of

residue 11 in the native state of ubiquitin, did not show a decrease

in the magnitude of h3J(CO-N) (Figure 3B). Moreover, the amide

proton temperature coefficient of Thr7 became more negative

when the temperature was reduced below 273 K (Figure S2),

suggesting that the non-linear chemical shift changes of Thr7 are

not related to changes in the strength of the hydrogen bond. Note

that although Thr7 is involved in a hydrogen bond its amide

proton temperature coefficient is approximately 25 ppb/K for

temperatures above 273 K and thus below the value of 24.6 ppb/

K that is usually used as cutoff for the identification of hydrogen

bonds [17]. Taken together our data demonstrate that at low

temperatures in supercooled solutions hydrogen bonds in the b-

sheet of ubiquitin are weakened. At the same time it should be kept

in mind that the lengthening (weakening) of a hydrogen bond does

not necessarily lead directly to a loss of stability of the protein.

Compensating enthalpic and entropic effects, such as better

repacking of the core can mitigate changes in hydrogen bonding.

To probe for structural changes connected to the weakening of

hydrogen bonds, we recorded residual dipolar couplings. Residual

dipolar couplings depend on the orientation of internuclear vectors

relative to the magnetic field and are therefore highly sensitive

reporters of protein structure [23]. [1H,15N] residual dipolar

couplings (1DNH) measured at 298 K, 278 K, 270 K and 263 K fit

very well to the 3D structure of ubiquitin that was determined at

298 K (PDB code: 1D3Z; Figures 4 and S3). The data

demonstrate that the protein is folded down to 263 K in

supercooled solution, in agreement with previous observations

that ubiquitin is thermodynamically stable at least down to 241 K

[11]. At subzero temperatures the quality of the fit decreased as a

result of the lower experimental signal-to-noise ratio in the spectra,

which is due to the much slower tumbling at low temperature

(Figure S4) [9], such that at 263 K none of the experimental [1H,
15N] residual dipolar coupling deviated significantly from the

values expected on the basis of the native structure (Figure S3A).

At 270 K the dipolar couplings for a few residues (Glu34, Glu64,

Ala46, Ile61) slightly deviated from the native structure (Figure 4A),

but repeat measurements indicated larger experimental errors

than estimated on the basis of the signal-to-noise ratio for Ala46

and Glu64 (Figure S3C). The observation that the 1DNH value

observed for Glu34 does not fit to the published 3D structure

suggests that this residue might indeed experience slight structural

changes at decreasing temperatures and in line with the non-

linearity of its chemical shift changes (Figures 2A,B).

To obtain further insight into the impact of low temperature on

the 3D structure of ubiquitin, we measured two-dimensional

[1H,13C]-HSQC spectra (Figure 5). Down to 263 K only very

small chemical shift changes were observed. Ca and Ha secondary

chemical shifts observed at 263 K were highly similar to the values

at 298 K (Figures 5D, S5A and Table S2). We could not detect a

Figure 4. Ubiquitin remains folded in supercooled solution down to 263 K. (A, B) Correlation between experimental backbone [1H,15N]
residual dipolar couplings observed at (A) 270 K and (B) at 278 K with values calculated by singular-value decomposition from the solution NMR
structure of ubiquitin (PDB entry 1D3Z). Residues deviating from a linear fit are marked.
doi:10.1371/journal.pone.0037270.g004
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Figure 5. Cold-induced perturbation of the hydrophobic core of ubiquitin. Superposition of the methyl (A) and backbone Ca (C) regions of
2D [1H,13C] constant-time HSQC spectra at 263 K (red for positive peaks and green for negative peaks) and 298 K (blue for positive peaks and yellow
for negative peaks). (D) Differences in Ha chemical shifts at 263 K and 298 K as a function of residue number in ubiquitin. The location of helices and
b-strands is schematically shown above. (E) Methyl carbon atoms that experience chemical shift changes of more than 0.2 ppm when going from
298 K to 263 K (see B)) are highlighted on the 3D structure of ubiquitin.
doi:10.1371/journal.pone.0037270.g005
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consistent increase or decrease of secondary chemical shifts, with

the exception of the Ca secondary chemical shifts in the a-helix of

ubiquitin that were slightly increased at 263 K (Figure S5A). The

largest changes in Ha chemical shifts were observed in the regions

comprising Leu8 and Val70 (Figure 5D). Analysis of the methyl

groups showed that all side chains pointing into the core of the

ubiquitin structure were affected (Figures 5B,E and Table S3). The

strongest changes in methyl proton chemical shifts were observed

for Val17, Ile61, Leu69 and Val70 (Figures S5B,C). The data

suggest that decreasing temperatures result in conformational

rearrangements in the hydrophobic core of ubiquitin.

Previously, it was demonstrated that ubiquitin encapsulated in

reverse micelles undergoes cold-denaturation at about 253 K [24].

Residues in spatial proximity to Val70 were the ones that were

most affected at the onset of cold-denaturation [24]. Figure 2C

demonstrates that the same regions showed non-linear chemical

shift changes and that these changes can be connected to a

weakening of the corresponding backbone hydrogen bonds

(Figure 3B). A lower stability of these regions is also suggested

by residue-specific stability constants (Figure 6) that were estimated

on the basis of the 3D structure of ubiquitin using the COREX

algorithm [24,25,26]. Note that we performed on purpose – that is

to investigate cold-denaturation of ubiquitin - the calculations at

203 K, as 203 K is below the temperature at which ubiquitin cold-

denatures in solution [11]. At 263 K ubiquitin showed only small

changes in the regional variations in stability (data not shown), in

line with its folded state (Figure 4). In contrast, at 203 K COREX

predicts reduced stability for residues 8, 13, 42–44 and 68–70.

Another hint that the observed non-linear chemical shift changes

and the weakening of hydrogen bonds (Figures 1, 2 and 3) might

be related to cold-denaturation comes from a comparison with

NMR chemical shifts of chemically denatured ubiquitin (Figure 7):

some cross peaks in the [1H,15N]-HSQC spectra appear to move

towards the unfolded state of ubiquitin in 8 M urea at pH 2

(BMRB 4375) [27]. However, for other residues such as Leu8 and

Ile44 no such trend was apparent, either because there is no

connection or it cannot be established because of the largely

different sample conditions that is pH 2 and 8 M urea in the

chemically denatured state.

A certain amount of conformational plasticity is important to

accommodate a binding partner at the binding site. Here we

compared the number of contacts for each residue of ubiquitin

involved in known ubiquitin-protein complex structures

(Figure 2A, red) [4] to the profile of significant changes in amide

proton chemical shifts (Figure 2A, black bar): a good match

between residues affected by low temperature in supercooled

solution and those involved in intermolecular interactions was

observed. We further extended the comparison to the intrinsic

dynamics of the backbone of ubiquitin (Figure 2A, green). To this

end we used the amide 1H-15N differential relaxation rate

constants for zero and double quantum coherences that were

previously reported by Palmer and co-workers [28], as these rates

highlight residues that experience slow time scale dynamics. The

dynamic residues of ubiquitin can be grouped into two clusters.

Cluster one is the ubiquitin binding surface containing Leu8, Ile44

and Val70 that is affected by the transition into supercooled

solution (Figures 1 and 2). The second cluster comprises Ile23 and

Thr55 connecting the N-terminus of the a-helix and the loop

residues Glu51-Leu56. At pH 7.0, the pH of our measurement,

Glu24 and Gly53 were not observed at any temperature due to

strong line broadening. The slow motions in this region have

recently been attributed to a hydrogen bond between the side-

chain carboxyl oxygen of Glu24 and its backbone amide, as well as

the amide of Gly53 [29]. This hydrogen bond was suggested to

regulate slow motions in ubiquitin by modulating a b-turn flip at

residues Glu51 through Arg54 [29]. The comparison shown in

Figure 2A indicates that the dynamic cluster comprising I23 and

T55 is not strongly perturbed in supercooled solution and is also

not at the core of the binding hot spot of ubiquitin. In contrast, a

good match was present between regions in which the hydrogen

bonds are weakened in supercooled solution and those involved in

protein-protein interactions.

Figure 6. Stability constants of ubiquitin at 298 K and 203 K calculated by the COREX/BEST server. The location of helices and b-strands
in the native state is schematically shown above. To reveal regions most prone to cold-denaturation, the calculations were performed at 203 K, i.e.
below the temperature of cold-denaturation of ubiquitin.
doi:10.1371/journal.pone.0037270.g006
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Our data demonstrate that at low temperature in supercooled

solution the 3D structure of ubiquitin is perturbed. This

perturbation is very gentle with only minor changes in chemical

shifts - that is the state of ubiquitin at 263 K is not a partially

denatured state and the observed changes in chemical shifts may

well reflect local changes in structure unrelated to cold-denatur-

ation. However, trans-hydrogen bond scalar couplings demon-

strated that the hydrogen bonds in the b-sheet of ubiquitin are

already weakened at 270 K. Thus, the enhanced motions that

were previously detected for Val70 and Ile13 in supercooled water

[5,30] might be related to the weakening of hydrogen bonds in

supercooled solution. In addition, the region where we find

changes in trans-hydrogen bond scalar couplings as well as the

non-linear behavior of amide proton chemical shifts overlaps with

the region that is most sensitive to cold-denaturation in reverse

micelles [24]. Thus, the weakening of the hydrogen bonds that we

observed in this region already at 270 K might be one of the first

events that occur during cold-denaturation of ubiquitin. The

observation that it is also the region that is most strongly involved

in protein-protein interaction is in line with the hypothesis that this

part of ubiquitin more easily adjusts to the conformational changes

that are required for complex formation.

Materials and Methods

15N and 13C/15N-labeled ubiquitin was prepared as described

previously [4]. NMR samples contained 0.5 mM of protein in

50 mM HEPES, pH 7, 300 mM NaCl. The use of HEPES results

in a small pH increase as the temperature decreases (20.014/uC),

so that the overall pH change is below 0.5, which results in only

very weak changes in the HSQC spectrum of ubiquitin. Chemical

shift referencing was done with an additional capillary tube

containing 0.1% DSS dissolved in the same buffer solution.

NMR spectra were acquired on a Bruker 700 MHz NMR

spectrometer. To avoid freezing at sub-zero temperatures, the

protein solution was put into glass capillaries of 1.0 mm outer

diameter, and the capillaries were placed in a 5 mm NMR tube

[9]. Two-dimensional [1H,15N]-HSQC spectra were recorded at

298 K, 293 K, 288 K, 284 K, 280 K, 278 K, 276.5 K, 274.5 K,

274 K, 273.5 K, 273.2 K, 272.7 K, 272 K, 271 K, 270 K,

269 K, 268 K, 266 K, 265 K and 263 K. Temperatures were

carefully adjusted to the desired value and checked by a methanol

reference sample. NMR data were processed and analyzed using

NMRPipe [31] and Sparky 3 (University of California, San

Francisco). The weighted average of 1H and 15N chemical shift

changes was calculated according to ((DH)2+(DN/5)2)K and fitted

to a linear function of temperature. For the comparison of two

linear fittings above or below a specific temperature, the slope

comparison function [32] in PRISM (GraphPad, CA) was used.

The change of slope (Diff/Ref in Table S1) was calculated as the

difference of the two slopes divided by the slope for the 298 K-

273 K temperature range. Two-dimensional constant-time

[1H,13C]-HSQC spectra were recorded at 298 K, 278 K,

270 K, 268 K and 263 K with 5126125 complex points (sweep

width = 30 ppm, carrier at 54 ppm). Side-chain and backbone

assignments of ubiquitin at 298 K were taken from the BMRB

database (code 6457) and were transferred to lower temperatures

by following the temperature-dependent chemical shift changes.

[1H,15N] residual dipolar couplings (1DNH) were determined by

using the two-dimensional inphase-antiphase (IPAP)-HSQC

sequence [33]. DNH values were calculated as the difference

between splittings measured in the isotropic phase and in a sample,

in which ubiquitin had been aligned in 10 mg/ml Pf1 bacterio-

phage (Asla, Riga, Latvia). RDCs were not corrected for the

Figure 7. 1H-15N chemical shift changes of specific residues in
comparison to the chemically denatured state. Selected regions
of 2D [1H,15N]-HSQCs with decreasing temperature: 298 K (red), 288 K
(blue), 278 K (green), 268 K (maroon), and 260 K (purple). The unfolded
state of ubiquitin was obtained by addition of 8 M urea at pH 2 (shown
in thick grey).
doi:10.1371/journal.pone.0037270.g007
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negative gyromagnetic ratio of 15N. Errors in experimental RDCs

were calculated based on signal-to-noise ratios [34]. RDCs were

best-fit to the 3D structure of ubiquitin using singular value

decomposition as implemented in the software PALES [35].

Errors in back-calculated RDCs were obtained by performing the

singular value decomposition for all members of the ensemble of

NMR structures (PDB code: 1D3Z).
h3JNC’ trans-hydrogen bond measurements were carried on a

sample of 5 mM 2H/15N/13C-labeled ubiquitin with deuteration

lever higher than 80%, in 50 mM phosphate buffer, pH 6.5. The

trans H-bond scalar couplings were measured by 2D long-range

Trosy-HNCO experiments as described previously [20,21,22].

Acquisition times on carbonyl and amide proton were 48.3 ms

and 56.3 ms, respectively. Reference spectra were recorded in

5.2 h at 270 K, 1.8 h at 278 K and 298 K. Cross peak spectra

required 17.3 h at 298 K, 43.2 h at 278 K, 64 hours at 270 k,

respectively, to obtain high signal-to-noise ratios.

COREX calculations were performed using the COREX/

BEST online server at http://best.bio.jhu.edu/BEST/[26]. Mod-

el 1 of the NMR ensemble (PDB code: 1D3Z) was used as

template. Calculations were performed as described previously [6].

Supporting Information

Figure S1 Weighted average of backbone 1H, 15N
chemical shift changes for all non-overlapping, non-
proline residues in ubiquitin induced by cooling down
from 298 K to 263 K. Red lines indicate straight-line fits for the

range 298 K-273 K. Dashed grey lines indicate 273 K.

(TIF)

Figure S2 Amide proton (upper) and amide nitrogen
(lower) temperature coefficients of ubiquitin within
298 K-273 K (grey bars) and 273 K-263 K (blue line).
Amide protons with temperature coefficients of less than

24.6 ppb/K are likely to be not involved in hydrogen bonds [17].

(TIF)

Figure S3 [1H,15N] residual dipolar couplings at de-
creasing temperatures. Correlation between experimental
1H–15N RDCs at (A) 263 K and (B) at 298 K to couplings

calculated from the best-fit to the solution NMR structure of

ubiquitin (PDB entry 1D3Z) using singular value decomposition.

(C) Correlation of RDC values from two independent measure-

ments at 270 K. (D) RDC quality factor of the best-fit of RDCs to

the solution structure of ubiquitin at different temperatures. Lower

RDC quality factors indicate a better fit to the structure. The

increase in RDC quality factor at lower temperatures is most likely

due to the lower signal-to-noise ratio of the NMR spectra of

ubiquitin at low temperatures that is caused by the slower overall

tumbling (see Figure S4).

(TIF)

Figure S4 Global rotational correlation times of ubiq-
uitin for decreasing temperatures. Global correlation times

were estimated from 1H–15N TRACT experiments2. The global

correlation time is due to the increase in viscosity at low

temperatures and can be predicted from hydrodynamic theory

as reported previously for ubiquitin [9].

(TIF)

Figure S5 Chemical shifts changes at low temperature
in supercooled solution. (A) Ca chemical shift differences

between 263 K and 298 K as a function of residue number in

ubiquitin. The location of helices and b-strands is schematically

shown above. (B) Methyl proton chemical shifts difference between

263 K and 298 K. (C) Methyl protons that experience chemical

shift changes of more than 0.02 ppm when going from 298 K to

263 K (see B)) are highlighted on the 3D structure of ubiquitin.

(TIF)

Table S1 1H and 15N temperature coefficients of
ubiquitin and statistical analysis for two linear regres-
sions on 298-273 K vs. 273-263 K.

(DOC)

Table S2 Ca and Ha Chemical shifts of ubiquitin at
298 K, 278 K and 263 K.

(DOC)

Table S3 Carbon and Proton Chemical shifts of ubiq-
uitin methyl groups at 298 K, 278 K and 263 K.

(DOC)
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