

Multidimensional Lewis Acidity: A Consistent Data Set of Chloride, Hydride, Methide, Water and Ammonia Affinities for 183 p-Block Element Lewis Acids

Philipp Erdmann^[a] and Lutz Greb^{*[a]}

The computed fluoride ion affinity (FIA) is a widely applied descriptor to gauge Lewis acidity. Like every other singleparameter Lewis acidity scale, the FIA metric suffers from the one-dimensionality, that prohibits addressing Lewis acidity by the multidimensionality it inherently requires (i.e., reference Lewis base dependency). However, a systematic screening of computed affinities other than the FIA is much less developed. Herein, we extended our CCSD(T)/CBS benchmark of different density functionals and the DLPNO-CCSD(T) method for

1. Introduction

As a steadily developing field of interest, Lewis acids exhibit an astonishing number of applications in multiple areas of chemistry.^[1] Since G. N. Lewis qualitatively defined Lewis acids as electron-pair acceptors and Lewis bases as electron-pair donors,^[2] many metrics have been perceived to order and explain the meaning of Lewis pair formation and Lewis acidity.^[3] Nowadays, most experimental scales are based on the spectroscopic changes of a probe Lewis base upon forming an adduct to a Lewis acid (effective scales).^[4] At the same time, most theoretical methods compute the thermodynamic parameters $(\Delta H, \Delta G, alobal scales)$ of adduct formation. As an alternative, Lewis acid's intrinsic properties can be considered without a Lewis base perturbation to a limited extent (e.g., LUMO energy, global electrophilicity index, intrinsic scales).^[5] However, every scale has its limitation, mainly caused by the inevitable restriction to the reference Lewis base, and it is most meaningful to treat Lewis acidity as a multidimensional phenomenon.^[6] Although strategies to mitigate Lewis base dependencies have been proposed, and an empirical explanation was offered by Pearson's model of hard and soft acids and bases (HSAB), a unified Lewis acidity scale remains questionable, given the multitude of variables and the weight-

[a]	P. Erdmann, Dr. L. Greb
	Anorganisch-Chemisches Institut
	Ruprecht-Karls-Universität Heidelberg
	Im Neuenheimer Feld 270, 69120 Heidelberg
	E-mail: greb@uni-heidelberg.de

Supporting information for this article is available on the WWW under https://doi.org/10.1002/cphc.202100150

chloride (CIA), methide (MIA), hydride (HIA), water (WA), and ammonia (AA) affinities. The best performing methods are subsequently applied to yield nearly 800 affinities for 183 p-block element compounds of group 13–16 with an estimated accuracy of $< 10 \text{ kJ mol}^{-1}$. The study's output serves as a consistent library for qualitative analyses and a training set for future statistical approaches. A first holistic correlation analysis underscores the need for a multidimensional description of Lewis acidity.

ing of these variables for the specific problem of interest.^[6a,7] Hence, rather than attempting to condense Lewis acidity on a single parameter, it is more the quantity of data that promises to tackle Lewis acidity with the flexibility it demands.^[8] Modern quantum chemical computations matured to produce highly accurate adduct formation enthalpies, even for difficult cases and highly decorated but synthetically relevant Lewis acids.^[9] Such affinities (XIA) represent the negative enthalpy of the reaction of Lewis acids and a probe Lewis base X, conventionally in vacuum (Figure 1A). The predominantly applied fluoride ion affinity (FIA)^[10] is considered to reflect the hard Lewis acid character according to the HSAB principle and served to define Lewis superacids (Figure 1B).^[11] The calculation of FIA has been systematically benchmarked and applied.^[10b-d,12] Nevertheless, the FIA remains a one-dimensional metric, and the transfer to evaluate the respective Lewis acid for applications with different "demands" can lead to misinterpretation. Other ion affinity scales, such as hydride (HIA),^[12a,13] chloride (CIA)^[13d,14] and methide (MIA)^[13d,14a,15] ion affinities were also used to gauge varying Lewis acid characteristics (Figure 1C). Beyond the anion

Figure 1. A–C Previously applied Lewis base affinities (XIA) and D its shortcomings considered in this work.

^{© 2021} The Authors. ChemPhysChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

affinities, also ammonia affinity (AA)^[13c,14a,c,16] and water affinity (WA)^[14a] have been computed. However, the limited number of values available in the literature suffer from similar issues as reported for the FIA: comparability (*e.g.*, different theory levels) and reliability (quality of the used level of theory).

In the present work, we put the HIA, CIA, MIA, WA, and AA on the same level as we did for the FIA (Figure 1D).^[12c] In the first part, the DLPNO-CCSD(T) method and selected density functionals are benchmarked against canonical CCSD(T)/CBS values. The second part provides the data, and a brief discussion of the respective affinity of 183 literature-known and hypothetical p-block element Lewis acids under vacuum and solvation corrected conditions. It is intended as a de novo database in addition to our FIA calculations for a further theoretical and practical discussion on the topic of Lewis acidity to come. Hydride, being regarded as an easily polarizable Lewis base, should project information in the domain of soft interactions while keeping steric repulsion and π -bonding effects absent. On the opposite, beneath their varying HSAB character, chloride and methide affinities transport information on steric contributions to Lewis acidity. Ammonia and water as weaker donors reflect the domain of less stable Lewis adducts, whose formation enthalpies may be governed by additional Lewis acid properties (such as dispersion, H-bonding), less critical for the stronger adducts.^[17] Overall, the broad assessment of a variety of Lewis acid - Lewis base pair formation

Table 1. CCSD(T)/CBS benchmark values in kJ mol ⁻¹ after two-point extrap-
olation (aug-cc-pVnZ, $n = 3,4$). All numbers are based on non-isodesmic
adduct formation reaction. [a] Highest available ab initio level: DLPNO-
CCSD(T) aug-cc-pVQZ nPNO. [b] No stable adduct available. "ax"/"eq" =
Lewis base in axial/equatorial position (see Figure S1).

	HIA	CIA	MIA	WA	AA
TMS+	924	745	981	152	223
BH₃	305	143	342	47	116
BF ₃	296	146	356	30	84
BCl₃	405	196	462	25	105
BBr₃	437	218	499	33	121
$B(C_{6}F_{5})_{3}^{a}$	481	257	502	55	112
AIF3	401	308	454	123	164
AICI ₃	435	323	492	113	157
GaF₃	460	318	511	114	166
SiF _{4,"ax"}	254	111	304	12	33
SiCl _{4,"ax"}	300	109	351	0	6
GeF _{4,"ax"}	358	187	412	31	74
SiF _{4,"eq"}	269	103	320	_ ^b	_ ^b
SiCl _{4,"eq"}	318	_ ^b	371	_ ^b	_ ^b
GeF _{4,"eq"}	379	185	431	_ ^b	_ ^b
PF₅	404	163	437	23	89
AsF₅	483	245	533	60	131
SbF₅	533	326	585	96	159

enthalpies ideally prepares for a statistical treatment, which profits from a massive amount of reliable and comparable data.

Methods

Structure optimization of all compounds was carried out at the threefold-corrected PBEh-3c/def2-mSVP level of theory by basis which includes geometrical counterpoise correction to remove artificial overbinding effects by basis set superposition error (BSSE).^[18] The accuracy of this composite method is comparable to triple- ζ basis set second-order perturbation theory (MP2/TZ) throughout the periodic table.^[18] A small geometric benchmark against experimental data for neutral and anionic species confirmed the suitability (see supporting information, Table S1). VSEPR and non-VSEPR structures were applied as starting geometries, and all final structures were verified to be local minima by frequency analysis. Zero-point energies and thermal corrections as implemented in ORCA 4.2.1 were carried over for the single-point computations.^[19] It shall be noted that some starting geometries do not result in stable adducts, e.g., a considerable number for water and ammonia adducts, and were eliminated from the data set. A representative set of Lewis acids was selected for a benchmark of adduct formation enthalpies with all considered Lewis bases, and the reference data computed non-isodesmically at coupled-cluster theory with singles and doubles, including perturbative triples correction CCSD(T) (Table 1). Slow basis set conversion of CCSD(T) was treated by a two-point extrapolation scheme to the complete basis set (CBS) with aug-cc-pVnZ (n=3,4) using the optimized fitting parameters of Neese and Valeev.^[20] Potential errors by missed static electron correlation were excluded from T1-diagnostics and fractional occupation number weighted electron density (FOD) calculations.^[21] The calculated benchmark affinities correspond well with previous calculations on comparable coupledcluster levels of theory.^[13d,22] Against the limited number of experimentally determined values, the herby computed HIA are in good agreement.^[23] For the isodesmic anchoring at the lower level methods, the affinities for the Me₃Si⁺ were recomputed at the same CCSD(T)/CBS level.[13d]

Subsequently, selected density functionals and DLPNO/CCSD(T) methods at different thresholds of coupled pair truncation were considered for computing the benchmark enthalpy set.^[24] The XIAvalues were calculated with and without isodesmic anchoring to the CCSD(T)/CBS values of the trimethylsilylium (TMS) system. Nonisodesmic computation corresponds to the calculation of the bare reaction enthalpy $LA + X \rightarrow LA - X$, whereas isodesmic means computing $LA + TMS - X \rightarrow LA - X + TMS^+$ and subtracting the CCSD(T)/ CBS value of TMS–X \rightarrow TMS⁺ + X. Generally, isodesmic computation is meant to improve the absolute affinities for cases in which the proper description of "naked" X is feasible only at a highly correlated level of theory. Interestingly, the reliability of anion affinities (HIA, CIA, MIA) improves by isodesmic anchoring, while the computation of neutral Lewis bases' affinities (WA, AA) should be performed non-isodesmically (see Table S8). The best-performing methods and the respective MAD (mean average deviation) and

Table 2. Performance of the best density functional and ab initio method as "level of choice" for the respective affinity. HIA, CIA and MIA with isodesmic
anchoring to the TMS-reference system, WA and AA, non-isodesmic computation. L1 = DLPNO-CCSD(T)/aug-cc-pVQZ, L2a = DSD-PBEP86-D3BJ/def2-QZVPP,
L2b = DSD-BLYP-D3BJ/def2-QZVPP. Values in kJ mol⁻¹.

	HIA L1	L2a	CIA L1	L2a	MIA L1	L2a	WA L1	L2a	AA L1	L2a
MAD	1.4	2.0	1.8	1.6	1.7	3.1	1.4	2.2	1.4	3.5
RMSD	1.7	2.8	2.1	2.1	3.3	5.0	1.7	2.9	1.8	5.5

ChemPhysChem 2021, 22, 935-943

RMSD (root means square deviation) against the CCSD(T)/CBS values can be found in Table 2 (further details see Table S3–S8).

DLPNO-CCSD(T) at normal coupled pair truncation level (normal-PNO) with the aug-cc-pVQZ basis set was identified as the most suitable method and applied whenever allowed by the size of the system (denoted: standard model *L1*). The DSD-PBEP86-D3(BJ)/ def2-QZVPP density functional turned out as the second-most accurate model, whereas the DSD-BLYP–D3(BJ)/def2-QZVPP model was used for systems containing aromatic ring systems (better performance with $B(C_6F_5)_3$ in benchmark).^[25] Hence, those two double-hybrid models were used for the larger Lewis acids, denoted as standard model *L2a* (DSD-PBEP86) and *L2b* (DSD-BLYP). The basis set superposition error (BSSE) for the double-hybrid models was considered by counterpoise correction using the procedure of Boys and Bernardi (see Table S2).^[26] It does not improve performance, and all XIAs are presented without BSSE correction.

Cases for which both ab initio values (*L1*) and DFT results (*L2*) were available, a matching within chemical accuracy gave further confidence for the chosen methods' general accuracy and robustness (see Table S9). All anionic Lewis base affinities were computed with TMS anchoring but non-isodesmically (conventionally) for the neutral Lewis base affinities.

Solvation corrected affinities (denoted as XIA_{solv}) were obtained with COSMO-RS^[27] in dichloromethane, as implemented in the ADF^[28] quantum chemistry package, by computing the solvation energies of the isolated Lewis acids and Lewis bases and the respective adducts:

$$XIA_{solv} = XIA - [\varDelta E_{solv}(LA - X) - \varDelta E_{solv}(LA) - \varDelta E_{solv}(X)]$$

Overall, the applied computational models warrant an estimated accuracy of $< 3 \text{ kJmol}^{-1}$ for L1-values and $< 7 \text{ kJmol}^{-1}$ for L2-values and were chosen for the set of 183 literature-known and hypothetical Lewis acids p-block Lewis acids in the highest oxidation states (Table 3) and lower oxidation states (Table 4).

2. Results and Discussion

Plotting the affinities for two different Lewis bases gave, depending on the combination, from good to relatively low correlations (Figure 2 and Table 5). Notably, plotting HIA against

MIA, the correlation is quite good, while plotting HIA against the FIA shows signs of diffuseness (Figure 2A). The CIA's plots against the HIA and MIA are even more diffusive and correlate in similar quality with the non-anionic AA (Figure 2B). Plots of WA against AA indicate a reasonable linear correlation, while plots of, *e.g.*, HIA against WA appear virtually uncorrelated (Figure 2C). Hence, it can be stated that there is a gap between the FIA/HIA/MIA at the one hand and WA/AA at the other hand, that is bridged by the CIA. This analysis emphasizes at a glance the dependency of Lewis acidity on the reference Lewis base and the need to scale Lewis acidity (by definition, a thermodynamic value) by more than a single parameter. However, the overall trends indicate that a manageable number of terms should suffice to parametrize Lewis acidity up to a certain amount of validity.

Although the fluoride is considered the classical hard base and the hydride as the classical soft base, the uniform trends indicate that hardness and softness do not oppose each other. Instead, differences become more pronounced if the absolute affinity is lowered. For group 14, group 15 in oxidation state + III, and group 16 Lewis acids, the differences of affinities of axial vs. equatorial Lewis base binding were evaluated by comparing the corresponding values (cf. tables 3/4, equatorial vs. axial binding, for pictorial representation of binding modes, see Figure S1). The mean absolute differences for the two stereoisomeric binding modes among all affinities (Table S10) vary from large (group 15, +III, 51 kJmol⁻¹/group 16, 46 kJmol⁻¹) to modest (group 14, 16 kJmol⁻¹), but cannot be easily generalized by apicophilicity trends or Bent's rule.^[29]

Figure 3 holds exemplary information about affinity trends of group 13–15 elements in their highest oxidation state. The MIA dependence for varying halide ligands (Figure 3A) shows similar behavior as in the FIA case, which counts as well for HIA and less pronounced for the CIA (see Figure S2). The lighter central atoms (B, AI, P, Si) experience an increasing affinity along with F < CI < Br < I, whereas the heaviest central elements (Sn, Sb) show the inverse trend. For the intermediate cases (Ga, As, Ge), only a moderate effect is observed. Interestingly, these trends are different for the AA (Figure 3B) and the WA (Figure S2). Except for boron, the affinities against the neutral

Figure 2. A Correlation plots comparing HIA with MIA and FIA, B CIA with MIA, FIA and AA and C WA with HIA and AA.

Table 3. Collection of computed HIA, CIA, MIA, WA and AA for group 13–15 element compounds in their highest oxidation states and the respective solvation corrected values (XIA_{solv}) in dichloromethane (COSMO-RS). Italic numbers were obtained by the L2a standard model. [a] Computed with the L2b standard model. Empty cells = no stable adduct.

Compound	HIA	HIA _{solv}	CIA	CIA _{solv}	MIA	MIA _{solv}	WA	WA _{solv}	AA	AA_{solv}
BBr ₃	439	437	220	133	497	421	34	51	121	149
$B(C_{2}F_{5})_{3}$	624	589	397	281	662	552	164	175	260	277
$B(C_6F_5)_3$	484	416	254	110	506	361	54 ^a	57	122ª	134
B(CCH) ₃	364	378	167	99	408	344	28	41	101	125
BCl ₃	403	411	194	115	457	391	22	41	102	133
BF ₃	297	343	146	94	354	320	29	45	83	115
BH ₃	305	367	144	107	340	317	46	65	114	145
Bl3	473	455	243	141	525	433	31	46	122	147
B(Me) ₃	240	254	105	35	292	216	8	13	60	74
$B(N(C_6F_5)_2)_3$	386	293	118	-51	365	197			-14^{a}	-11
B(NH ₂) ₃	88	116	17	-29	143	84			-53	-48
$B(OC_6F_5)_3$	393	326	198	49	422	305	21	22	65	76
$B(OC(CF_3)_3)_3$	410	354	206	64	443	306	24	21	44	56
B(OH) ₃	140	188	37	-14	192	156			4	6
B(Ph) ₃	329	299	154	46	368	258	3 ^a	5	56 ^a	69
B(SH) ₃	320	320	125	39	372	295			35	58
AlBr ₃	447	425	331	226	506	412	111	126	157	179
$AI(C_2F_5)_3$	545	492	430	294	601	472	158	162	212	220
$AI(C_6F_5)_3$	476	402	361	210	528	376	119	122	154	164
AI(CCH) ₃	373	371	276	191	424	345	101	110	139	157
	433	423	321	224	488	400	110	124	154	177
AIF ₃	402	411	309	226	452	386	122	136	162	184
AIH ₃	317	326	227	152	360	296	//	90	114	135
All ₃	452	418	328	213	509	403	98	109	144	164
AI(Me) ₃	290	284	215	126	338	249	68	74	99	111
$\operatorname{AI}(\operatorname{N}(\operatorname{C}_6\operatorname{F}_5)_2)_3$	4/1	3/4	342	166	519	345	89	90	12/"	133
$AI(NH_2)_3$	232	247	159	8/	280	214	50	4/	1/	85
$AI(OC_6F_5)_3$	483	403	366	209	537	383	113"	119	151° 152	166
$AI(OC(CF_3)_3)_3$	4/3	407	305	219	529	380	109	118	152	105
	294	313	215	145	343	280	85 759	90 70	1009	131
	349	31Z 250	237	142	398	201	75 70	78 96	109	119
	377	330	273	202	429	422	79 00	00	141	151
	541	402	204	203	527	455	129	120	141	201
$Ga(C_2 I_5)_3$ Ga(C E)	180	493	320	182	524	373	128 07 ^a	101	1/13ª	154
$Ga(C_6I_5)_3$ Ga(CCH)	376	377	240	162	J24 420	3/3	37 77	84	145	134
GaCL	464	454	307	212	516	437	94	106	146	170
GaE	464	478	307	212	510	453	116	130	167	194
GaH.	309	330	190	125	345	291	60	69	99	118
Gal	466	436	299	189	519	418	74	83	128	147
Ga(Me)	272	271	174	92	313	230	44	48	75	87
Ga(N(C ₂ F ₂) ₂) ₂	480	392	309	145	523	360	46 ^a	57	92 ^a	109
Ga(NH ₂) ₂	248	261	148	75	292	225	40	37	64	71
$Ga(OC_6F_5)_3$	542	462	356	203	583	433	91	95	142	157
Ga(OC(CF ₃) ₃) ₃	538	472	368	221	584	442	92	99	149	165
Ga(OH) ₃	338	352	214	143	384	325	70	75	108	124
Ga(Ph) ₃	333	299	213	104	373	259	47 ^a	49	80 ^a	89
Ga(SH) ₃	379	364	238	139	428	340	57	61	97	111
axial Lewis base bin	ding in grou	р 14								
SiBr	307	308	125	26	378	288	6	6	13	20
SI(C E)	521	500	205	20 70	370 172	200 302	_1	0	15 24	27
$Si(C_2 I_5)_4$ Si(C_E)	236	156	125	_30	327	170		0	24	
Si(CCH)	191	198	64	_30 _7	245	172	8	4	11	12
SICI	300	201	107	15	357	276	_7	- 0	7	72
SIE	254	291	110	45	302	270	_, 4	14	7 34	55
SiH	92	120	35	–16	144	89	- 6	7	5	5
Sil	342	309	134	23	144	07	4	, _1	7	14
Si(Me).	68	62	43	0	104	13	7	I	,	1-7
$Si(N(C_{c}F_{c})_{a})$		~-	97	-88	471	314			-88^{a}	-90
Si(NH ₂),	96	116			137	72				
Si(OC _e F _e)	401	361	226	64		-	3.5 ^a	6.1	55 ^a	60
Si(OC(CF_1)_)	342	268	104	-51	334	185			-45	-41
Si(OH)	152	176	133	54	180	130				
Si(Ph)₄	160	119	48	-56	190	71				
Si(SH)	286	270	129	26	328	240			10	17
GeBr₄	354	333	146	45	410	318	10	10	22	33
$Ge(C_2F_5)_4$	360	313	172	47	380	257	-	-	13	17
$Ge(C_6F_5)_4$	278	196	118	-34	311	154				

ChemPhysChem 2021, 22, 935-943

Table 3. continued										
Compound	HIA	HIA_{solv}	CIA	CIA_{solv}	MIA	MIA_{solv}	WA	WA_{solv}	AA	AA _{solv}
Ge(CCH) ₄	177	181	56	-14	228	154	11	10	11	13
GeCl ₄	350	338	14/	52 111	401	319	6 29	5 35	26 72	36 60
GeH.	59	81	31	-11	108	48	6	11	5	5
Gel ₄	346	310	135	22	399	291	3	1	4	54
Ge(Me) ₄	53	45	49	3	88	-5				-
$Ge(N(C_6F_5)_2)_4$			142	-44	483	324	-41 ^a	-46	-52^{a}	-55
Ge(NH ₂) ₄	137	150	87	24	186	113				
$Ge(OC_6F_5)_4$	1 A E	271	276	115	520	364	20^{a}	24	60 ⁴	75
$Ge(OC(CF_3)_3)_4$ Ge(OH)	445 216	236	101	20 67	402 268	209			38	47
Ge(Ph)₄	210	250	50	-48	168	47			50	-15
Ge(SH) ₄	293	272	137	34	337	244	11	7	20	23
SnBr ₄	380	351	197	87	434	335	15	17	47	60
$Sn(C_2F_5)_4$	379	329	228	100	421	295	16	17	36	42
$Sn(C_6F_5)_4$	334	251	192	38	378	220	19 ^a	18	29 ⁴	33
Sn(CCH) ₄	202	371	211	29 106	278 435	345	15	14 26	20 57	31 72
SnF₄	440	445	269	182	484	420	64	73	110	131
SnH₄	111	120	53	-10	152	83	3	6	5	8
Snl₄	366	324	183	65	420	307	7	7	31	39
Sn(Me) ₄	112	96	59	-19	149	51		-	5	4
$Sn(N(C_6F_5)_2)_4$	210	200	250	66	475	295	<i>4^a</i>	2	384	39
$Sn(NH_2)_4$ Sn(OCE)	210	209	123	39 180	254	172	57 ^a	64	1234	137
$Sn(OC_6\Gamma_5)_4$ $Sn(OC(CE_3)_3)_6$	518	442	286	129	541	393	39	40	81	89
Sn(OH) ₄	294	302	188	97	328	264	49	45	76	83
Sn(Ph) ₄	209	164	108	-4	233	109			14^a	11
Sn(SH)₄	320	293	183	72	364	266	21	17	40	47
equatorial Lewis ba	se binding	g in group 14								
SiBr₄	344	328	126	27	399	313				
$Si(C_2F_5)_4$	409	362			425	304				
$Si(C_6F_5)_4$	339	257	108	-53	359	202			-80^{a}	-70
Si(CCH) ₄	210	214	39	-39	264	193				
SICI ₄	317	311	107	15	368	291				
SiH.	92	120	105	39	142	92				
Sil₄	359	329	135	23	414	314				
Si(Me) ₄	63	53			104	13				
$Si(N(C_6F_5)_2)_4$	432	326	129	-58			-96^{a}	-100	-74 ^a	-74
Si(NH ₂) ₄	89	101	217	05	134	65			2.24	12
$SI(OC_6F_5)_4$	413	327	217	95	459	299			32"	43
Si(OH),	144	168	95	-00	194	140				
Si(Ph)₄	161	117			197	74				
Si(SH) ₄	290	268	100	-4	340	246			-35	-20
GeBr ₄	376	358	144	41	433	347				
$Ge(C_2F_5)_4$	368	321		50	388	268				
$Ge(C_6F_5)_4$	326	242	107	-53	351	194				
Ge(LCH) ₄	372	204 364	19		233 425	349				
GeF ₄	377	400	184	112	426	379				
GeH₄	59	81			104	51				
Gel ₄	368	337	131	16	421	320				
Ge(Me) ₄	47	34			88	-5				
$Ge(N(C_6F_5)_2)_4$	469	363	153	-33	100	100	-73^{a}	-77	-33^{a}	-35
$Ge(NP_2)_4$ Ge(OC-F_).	142 488	408	276	113	102 548	391			64 ^a	76
Ge(OC(CF ₃) ₃) ₄	476	400	270	. 15	480	332			5,	
Ge(OH) ₄	240	255			299	234				
Ge(Ph) ₄	145	100			179	54				
Ge(SH) ₄	306	283	104	-2	356	261				
$SnBr_4$	395	369	196	85 82	450	356				
Sn(C E)	404 367	323 282	210 160	ŏ∠ 10	447 207	5∠3 748				
Sn(CCH).	251	245	88	4	297	220				
SnCl ₄	405	387	211	106	447	362				
SnF ₄	450	458	272	187	494	435				
SnH₄	113	122			150	86				
Snl ₄	381	343	179	58	434	326				

Table 3. continued										
Compound	HIA	HIA _{solv}	CIA	CIA _{solv}	MIA	MIA_{solv}	WA	WA_{solv}	AA	AA _{solv}
Sn(Me)₄	117	97			149	51				
$Sn(N(C_6F_5)_2)_4$	501	395	277	94	521	342	1ª	-1	29 ^a	30
Sn(NH ₂) ₄					254	173				
$Sn(OC_6F_5)_4$	560	476	357	193	616	459			110 ^a	119
$Sn(OC(CF_3)_3)_4$	537	461			566	417				
$Sn(OP)_4$	21Z 207	313			3/1 2/2	298				
$Sn(FI)_4$ Sn(SH)	207	305	150	45	242	277				
DBr	106	172	103	87	528	135	6	4	67	82
$P(C_{2}F_{2})_{2}$	580	525	271	135	550	420	52	-+ 50	91	99
$P(C_{r}F_{r})_{r}$	420	330	85	-81	339	175	52	50	-82 ^a	-82
P(CCH)	318	321	105	31	355	282	3	3	38	48
PCI	477	464	177	79	502	420	-3	-1	64	83
PF	406	432	165	97	437	390	23	34	89	118
PH₅	152	177	55	1	204	148	1	1	9	12
Pl₅	483	444	182	62	517	407	-3	-7	37	46
P(Me)₅	136	117	31	-27	156	57				
P(NH ₂) ₅	97	100			117	39			-92	-96
$P(OC_6F_5)_5$	505	416	223	56	624	517	8 ^a	9	50 ^a	61
$P(OC(CF_3)_3)_5$	584	503	203	40	622		-14	-17	38	42
P(OH)₅	189	211			220	163				
P(Ph)₅	258	204	56	-59	226	95				
P(SH)₅	328	300	73	-33	354	253	-37	-43	-32	-27
AsBr₅	491	467	215	108	546	453	22	22	78	91
$As(C_2F_5)_5$	480	423	214	/9	271	345	2	0	4.40	39
$As(C_6F_5)_5$	399	308	123	-43	3/1	205	11	7	-44°	-45
	31Z 401	309	110	37 110	202	280	11	7	41	40
	491	4// 509	210	176	533	437	23 67	20	127	150
	400 146	164	249 59	0	200	138	3	75	132	139
	473	433	195	168	518	407	7	2 52	46	54
As(Me).	135	114	50	-27	166	63	,	52	40	54
As(NH ₂) _c	158	158	50		191	110				
As(OC ₆ F ₅) ₅	587	497	324	156	624	459	68ª	70	116ª	127
As(OC(CF ₃) ₃) ₅	624	543	289	126	622	468	25	24	77	83
As(OH) ₅	268	285	89	15	313	253			22	29
As(Ph)₅	251	196	90	-26	250	119			2^a	-4
As(SH)₅	342	311	111	3	386	283	-15	-21	2	3
SbBr₅	487	457	260	148	549	450	43	46	93	107
$Sb(C_2F_5)_5$	483	424	275	138	519	387	36	37	75	84
$Sb(C_6F_5)_5$	416	323	211	43	441	274	2^a	-2	26 ^a	28
Sb(CCH)₅	343	339	167	86	385	307	32	33	68	77
SbCl₅	496	475	271	165	553	464	50	56	108	125
SbF₅	535	540	328	239	585	523	99	107	163	184
SbH₅	199	200	9/	22	246	1/4	8	9	21	25
	465	422	242	118	524	410	2/	2/	70	/9
	18/	162	89	-2	226	121	2	U	8	10
$SD(INH_2)_5$	233	22 I 516	114	21 217	208	181	0.09	05	0 1 <i>1</i> 1 <i>a</i>	0 155
$SU(OC_6F_5)_5$	652	575	303 271	217 211	003 674	499 504	90 70	25 20	141	122
SD(OC(CF3)3)5 SD(OH)	336	3/0	571 168	211	385	316	79 34	33	100 70	81
Sb(Orl)5	285	232	151	31	313	183	24 23 ^a	19	7∠ 37ª	37
Sb(SH)	364	333	178	64	412	310	10	6	41	46
					· · -					-

donors drop along with F>Cl>Br>l. Carbon-based ligands (Figure 3C) show a similar trend to that found for fluoride ion affinities.^[12c] Increasing the s-orbital character of the ligand-carbon atoms (Me(sp³) < Ph(sp²) < CCH(sp) leads to increasing group electronegativity, which in turn, increases the XIA.^[29a] The decreasing steric effect along those groups might certainly also play a role (Me(sp³) > Ph(sp²) > CCH(sp).^[30] For group 15 carbon-containing Lewis acids, some periodic "break" for C₆F₅ was found for phosphorus. This can be ascribed to steric effects that become detrimental for the small hexacoordinated phosphorous.

Considering the effect of solvation (CH₂Cl₂, COSMO-RS) for ionic affinities (HIA, MIA, CIA), similar and additional trends can be found as observed previously.^[12c] For the larger Lewis acids, chloride and methide affinities are harshly reduced in intensity because of the more considerable solvation free energy of the respective naked ion, which overcompensates the charged adduct's stabilization. Still, small Lewis acids form anionic adducts with large charge density, and solvation damping is thus less effective. Since the hydride anion is less strongly solvated (at least in the COSMO-RS framework) as methide and chloride, solution-phase HIA damping is less pronounced and even inverted for the small Lewis acids. Oversimplified state-

Table 4. Collection of computed HIA, CIA, MIA, WA and AA for group 15–16 element compounds in their lower oxidation states, some special Lewis acids and the respective solvation corrected values (XIA_{solv}) in dichloromethane (COSMO-RS). Italic numbers were obtained by the L2a standard model. [a] Computed with the L2b standard model.

Compound axial Lewis base binding in g	HIA group 15 an	HIA _{solv} d 16	CIA	CIA _{solv}	MIA	MIA_{solv}	WA	WA_{solv}	AA	AA_{solv}
S(C ₂ F ₅) ₄	352	307	34	-70	364	246				
SF ₄	397	427	24	-38	408	366			-33	-34
SH ₄	53	65								
$S(OC(CF_3)_3)_4$	270	227	99 50	-57	100	202				
Se(C ₂ F ₅) ₄	3/8 427	327	59 105	-68	406	282			27	20
	427	445	105	54	400 148	415 88			27	29
Se(OC(CF ₂) ₂) ₄	592	518	196	41	577	429				
$Te(C_2F_5)_4$	438	382	185	52	478	349	15	11	40	38
TeF₄	412	413	162	78	461	390	14	10	76	82
TeH₄	131	133	23	-18	188	119			0	0
$Te(OC(CF_3)_3)_4$	564	487	257	101	585	435	-39	-39	39	47
PBr ₃	343	362	119	29	382	339	11	11	15	21
$P(C_2F_5)_3$	295	263	103	-1	286	186	7	0	10	16
PCI ₃ DE	302 158	323 190	100 65	15	201	295	7	8 10	10	10
PH	26	51	05	,	51	-7	9	10	12	10
P(OC(CF ₃) ₂) ₂	316	260	110	-22	344	220	6	5		
AsBr ₃	336	346	145	50	376	320	19	20	23	31
$As(C_2F_5)_3$	295	259	111	3	300	193				
AsCl ₃	306	317	136	47	345	287	17	17	25	33
AsF ₃			113	44			20	20	31	37
AsH ₃	41	15			64	-41	4.0			
As(OC(CF ₃) ₃) ₃	336	266	166	16	366	222	12	1	20	14
SDBr ₃	323 210	312	161	79 45	240	215	27	26	40	51
SD(C ₂ F ₅) ₃	219	2/4	104	45 76	540	215	26	25	30	51
SbE			157	70	348	279	34	32	46	54
SbH ₂	90	99			122	53	5.	52	10	5.
Sb(OC(CF ₃) ₃) ₃			221	69	391	241	28	20	41	42
equatorial Lewis base bindin	ig in group	15 and 16								
$S(C_2F_5)_4$	349	307	87	-28	341	232				
SF ₄	296	330	90	25	321	282	13	14	19	25
SH ₄	53	65			67	67				
$S(OC(CF_3)_3)_4$	519	454	122	-31					-47	-44
$Se(C_2F_5)_4$	357	311	132	-28	368	252			13	13
	334	356	150	25	3/3	321	26	26	41	52
Se(OC(CE))	101	111	103	38	505	357	_10	_13	15	18
$Te(C_{-}F_{-})$	412	360	220	90	438	313	41	39	52	55
TeF4	347	352	198	109	392	323	34	34	59	73
TeH₄	131	133	66	6	158	85				-
$Te(OC(CF_3)_3)_4$	473	397	253	96	503	354	23	24	59	65
PBr ₃	410	400	129	35	448	367	-100	-86	-23	6
$P(C_2F_5)_3$	341	304	49	-70	344	235			-132	-117
PCI ₃	375	375	100	15	411	341			-36	-6
рн	218 26	252 51	I	-60	259 55	21/ 8			-80	-58
$P(OC(CE_{1}))$	20 388	325	111	-33	412	273	-129	-122	-59	-46
AsBr.	411	396	151	54	457	371	-74	-64	-7	20
As(C ₂ F ₅) ₃	332	292	63	-58	363	250		v .		
AsCl ₃	388	383	136	47	434	357	-72	-62	-9	18
AsF ₃	277	305	71	4	321	270			-30	-10
AsH ₃	41	15			70	-25				
As(OC(CF ₃) ₃) ₃	422	350	162	7	457	306	-68	-74	-6	-4
	396	372	185	81	444	349	-30	-24	15	33
SD(C2F5)3	335 277	309 261	135	10 76	393 125	2/4			-58 14	-51 22
ShE	300	304	174	70 51	423	221			14 14	3∠ 27
SbH ₂	90	99	152		122	53				21
Sb(OC(CF ₃) ₃) ₃	425	350	229	76	475	325	-12	-18	34	35
"special" Lewis acids										
AI(C-E-N)	526	444	414	253	578	419	138	144	179	193
AI(OC₅F₄N)₃	521	430	402	234	576	413	110	124	151	172
$AI(OC(C_6F_5)_3)_3$	459	351	329	141	485	305	50 ^a	47	76 ^a	79

Table 4. continued										
Compound axial Lewis base binding ir	HIA n group 15 a	HIA _{solv} and 16	CIA	CIA_{solv}	MIA	MIA_{solv}	WA	WA_{solv}	AA	AA_{solv}
AI(OTeF ₅) ₃	534	469	408	263	593	454	131ª	137	177ª	189
$F_4C_6(1,2-B(C_6F_5)_2)_2$	535	459	331	174	505	359	22^a	25	75 ^a	89
$F_4C_6(1,2-B(C_{12}F_8))_2$	517	428	333	164	515	359	4 ^a	11	75 ^a	89
$B(OC_5F_4N)_3$	460	379	255	92	509	361	26^{a}	51	91ª	130
B(OTeF ₅) ₃	497	418	281	124	547	393	44^a	47	111ª	126
$B(C_6F_4-pCF_3)_3$	536	473	300	157	557	420	69 ^a	70	139 ^a	151
pentaphenylborole-F ₂₅	534	450	311	152	567	408	65 ^a	71	147ª	162
As(OTeF ₅) ₅	676	589	383	221	719	556	75 ^a	79	144 ^a	156
Sb(OTeF ₅) ₅	705	630	460	301	771	624	117ª	123	186ª	202

Table 5. Correlation coefficients for the applied affinity scales.											
	FIA	HIA	CIA	MIA	WA						
HIA	0.92										
CIA	0.93	0.81									
MIA	0.93	0.99	0.85								
WA	0.60	0.35	0.74	0.41							
AA	0.72	0.56	0.85	0.41	0.93						

ments based on ion radii and Born's equation should be taken with caution, since explicit solvation effects might come into account. Interestingly, affinity solvation damping does not happen for the neutral Lewis bases, and water and ammonia affinities become even larger in solution. This effect can be ascribed to the poor solvation of H₂O and NH₃ in CH₂Cl₂ and the increased polarization/dipole moment of Lewis adducts, increasing the solvation free energy of the adducts in comparison to the sum of the less-polarized Lewis acid and base.^[31] Plots of XIA_{solv} against its respective vacuum XIA show in all cases a linear correlation. However, the correlation is more "broadened" for ionic XIAs than for neutral XIA scales, emphasizing the need to compute XIA_{solv} to describe Lewis acidity adequately (Figure 4).

Figure 4. Correlation plots of the vacuum XIA against its respective $\mathsf{XIA}_{\mathsf{solvr}}$ shown for water and chloride.

3. Conclusions

In the present paper, we extended the large-scale comparison of Lewis acids by methide, chloride, hydride, water, and ammonia affinities within accuracy to coupled-cluster values. Correlations and comparison plots tie connections between affinity scales and underscore the necessity of a multidimen-

Figure 3. Representative comparison plots of different ligand classes: A propagation of MIA for halides, B propagation of AA for halides and C CIA for C-substituents.

sional picture of Lewis acidity. With the FIA, six metrics are now available to discuss Lewis acidity from a proper thermodynamic perspective and support future Lewis acid design.

Acknowledgements

We thank Prof. H.-J. Himmel for his constant support and the DFG (GR5007/2-1) and FCI for funding. The federal state of Baden-Württemberg is greatly acknowledged for providing computational resources at the BWFor/BWUni Cluster. Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Lewis acids \cdot affinity scales \cdot benchmark \cdot p-block elements \cdot computational Lewis acidity

- a) H. Yamamoto, Lewis acids in organic synthesis, Wiley-VCH, Weinheim, 2002; b) A. Corma, H. Garcia, Chem. Rev. 2003, 103, 4307–4366; c) T. Heckel, R. Wilhelm, in Comprehensive Enantioselective Organocatalysis, Wiley-VCH, Weinheim, 2013, pp. 431–462; d) S. A. Weicker, D. W. Stephan, Bull. Chem. Soc. Jpn. 2015, 88, 1003–1016; e) J. Becica, G. E. Dobereiner, Org. Biomol. Chem. 2019, 17, 2055–2069.
- [2] G. N. Lewis, Valence and the structure of atoms and molecules, The Chemical Catalog Company, Book Department, New York, **1923**.
- [3] a) D. P. N. Satchell, R. S. Satchell, Q. Rev. Chem. Soc. 1971, 25, 171–199;
 b) R. S. Drago, Structure and Bonding, Vol. 15, Springer Berlin Heidelberg, Berlin, Heidelberg, 1973, pp. 73–139; c) W. B. Jensen, J. Adhes. Sci. Technol. 1991, 5, 1–21; d) D. Fărcaşiu, A. Ghenciu, Prog. Nucl. Magn. Reson. Spectrosc. 1996, 29, 129–168; e) D. Willcox, R. L. Melen, Chem 2019, 5, 1362–1363.
- [4] a) U. Mayer, V. Gutmann, W. Gerger, Monatsh. Chem. 1975, 106, 1235–1257; b) R. F. Childs, D. L. Mulholland, A. Nixon, Can. J. Chem. 1982, 60, 801–808; c) P. Laszlo, M. Teston, J. Am. Chem. Soc. 1990, 112, 8750–8754; d) M. A. Beckett, G. C. Strickland, J. R. Holland, K. S. Varma, Polymer 1996, 37, 4629–4631; e) G. Hilt, A. Nödling, Eur. J. Org. Chem. 2011, 2011, 7071–7075; f) G. Hilt, F. Pünner, J. Möbus, V. Naseri, M. A. Bohn, Eur. J. Org. Chem. 2011, 2011, 5962–5966; g) J. J. Jennings, B. W. Wigman, B. M. Armstrong, A. K. Franz, J. Org. Chem. 2019, 84, 15845–15853; h) S. Künzler, S. Rathjen, A. Merk, M. Schmidtmann, T. Müller, Chem. Eur. J. 2019, 25, 15123–15130; i) J. R. Gaffen, J. N. Bentley, L. C. Torres, C. Chu, T. Baumgartner, C. B. Caputo, Chem 2019, 5, 1567–1583; j) J. Ramler, C. Lichtenberg, Chem. Eur. J. 2020, 26, 10250–10258.
- [5] a) Y. Zhang, *Inorg. Chem.* **1982**, *21*, 3889–3893; b) I. D. Brown, A. Skowron, *J. Am. Chem. Soc.* **1990**, *112*, 3401–3403; c) R. G. Parr, L. v. Szentpály, S. Liu, *J. Am. Chem. Soc.* **1999**, *121*, 1922–1924; d) A. R. Jupp, T. C. Johnstone, D. W. Stephan, *Dalton Trans.* **2018**, *47*, 7029–7035; e) A. R. Jupp, T. C. Johnstone, D. W. Stephan, *Inorg. Chem.* **2018**, *57*, 14764–14771.
- [6] a) R. S. Drago, *Inorg. Chem.* 1990, 29, 1379–1382; b) L. Greb, *Chem. Eur. J.* 2018, 24, 17881–17896.
- [7] a) R. S. Drago, G. C. Vogel, T. E. Needham, J. Am. Chem. Soc. 1971, 93, 6014–6026; b) G. C. Vogel, R. S. Drago, J. Chem. Educ. 1996, 73, 701; c) R. J. Mayer, N. Hampel, A. R. Ofial, Chem. Eur. J. 2021, 10.1002/chem.202003916.
- [8] P. C. Maria, J. F. Gal, J. De Franceschi, E. Fargin, J. Am. Chem. Soc. 1987, 109, 483–492.
- [9] a) L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, *Phys. Chem. Chem. Phys.* 2017, *19*, 32184–32215; b) N. Mardirossian, M. Head-Gordon, *Mol. Phys.* 2017, *115*, 2315–2372; c) L. Goerigk, N. Mehta, *Aust. J. Chem.* 2019, *72*, 563–573.

- [10] a) T. E. Mallouk, G. L. Rosenthal, G. Mueller, R. Brusasco, N. Bartlett, *Inorg. Chem.* **1984**, *23*, 3167–3173; b) M. O'Keeffe, *J. Am. Chem. Soc.* **1986**, *108*, 4341–4343; c) K. O. Christe, D. A. Dixon, D. McLemore, W. W. Wilson, J. A. Sheehy, J. A. Boatz, *J. Fluorine Chem.* **2000**, *101*, 151–153; d) I. Krossing, I. Raabe, *Chem. Eur. J.* **2004**, *10*, 5017–5030.
- [11] a) R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533–3539; b) L. O. Müller,
 D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V.
 Brecht, I. Krossing, Angew. Chem. Int. Ed. 2008, 47, 7659–7663; Angew.
 Chem. 2008, 120, 7772–7776.
- [12] a) D. J. Grant, D. A. Dixon, D. Camaioni, R. G. Potter, K. O. Christe, *Inorg. Chem.* 2009, *48*, 8811–8821; b) H. Böhrer, N. Trapp, D. Himmel, M. Schleep, I. Krossing, *Dalton Trans.* 2015, *44*, 7489–7499; c) P. Erdmann, J. Leitner, J. Schwarz, L. Greb, *ChemPhysChem* 2020, 987–994.
- [13] a) R. E. Rosenberg, J. Am. Chem. Soc. 1995, 117, 10358–10364; b) R. Vianello, Z. B. Maksić, Inorg. Chem. 2005, 44, 1095–1102; c) M. Méndez, A. Cedillo, Comp. Theo. Chem. 2013, 1011, 44–56; d) H. Böhrer, N. Trapp, D. Himmel, M. Schleep, I. Krossing, Dalton Trans. 2015, 44, 7489–7499; e) Z. M. Heiden, A. P. Lathem, Organometallics 2015, 34, 1818–1827; f) S. Ilic, A. Alherz, C. B. Musgrave, K. D. Glusac, Chem. Soc. Rev. 2018, 47, 2809–2836; g) S. Ilic, U. Pandey Kadel, Y. Basdogan, J. A. Keith, K. D. Glusac, J. Am. Chem. Soc. 2018, 140, 4569–4579.
- [14] a) A. Y. Timoshkin, G. Frenking, Organometallics 2008, 27, 371–380; b) A. Kraft, J. Beck, I. Krossing, Chem. Eur. J. 2011, 17, 12975–12980; c) E. Engelage, D. Reinhard, S. M. Huber, Chem. Eur. J. 2020, 26, 3843–3861.
- [15] L. Luo, T. J. Marks, *Top. Catal.* **1999**, *7*, 97–106.
- [16] A. Y. Timoshkin, A. V. Suvorov, H. F. Bettinger, H. F. Schaefer, J. Am. Chem. Soc. 1999, 121, 5687–5699.
- [17] a) H. W. Kim, Y. M. Rhee, Chem. Eur. J. 2009, 15, 13348–13355; b) G. Bistoni, A. A. Auer, F. Neese, Chem. Eur. J. 2017, 23, 865–873.
- [18] a) S. Grimme, J. G. Brandenburg, C. Bannwarth, A. Hansen, *J. Chem. Phys.* **2015**, *143*, 054107; b) A. T. Cavasin, A. Hillisch, F. Uellendahl, S. Schneckener, A. H. Göller, *J. Chem. Inf. Model.* **2018**, *58*, 1005–1020.
- [19] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
- [20] F. Neese, E. F. Valeev, J. Chem. Theory Comput. 2011, 7, 33-43.
- [21] a) S. Grimme, A. Hansen, Angew. Chem. Int. Ed. 2015, 54, 12308–12313;
 Angew. Chem. 2015, 127, 12483–12488; b) C. A. Bauer, A. Hansen, S. Grimme, Chem. Eur. J. 2017, 23, 6150–6164.
- [22] D. J. Grant, D. A. Dixon, D. Camaioni, R. G. Potter, K. O. Christe, *Inorg. Chem.* 2009, 48, 8811–8821.
- [23] D. J. Goebbert, P. G. Wenthold, Int. J. Mass Spectrom. 2006, 257, 1-11.
- [24] a) F. Neese, A. Hansen, D. G. Liakos, J. Chem. Phys. 2009, 131, 064103;
 b) C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138, 034106; c) R. Pollice,
 P. Chen, J. Am. Chem. Soc. 2019, 141, 3489–3506.
- [25] a) S. Kozuch, D. Gruzman, J. M. L. Martin, J. Phys. Chem. C. 2010, 114, 20801–20808; b) S. Kozuch, J. M. L. Martin, Phys. Chem. Chem. Phys. 2011, 13, 20104–20107.
- [26] S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553–566.
- [27] a) A. Klamt, J. Phys. Chem. **1995**, 99, 2224–2235; b) F. Eckert, A. Klamt, AlChE J. **2002**, 48, 369–385; c) A. Klamt, B. Mennucci, J. Tomasi, V. Barone, C. Curutchet, M. Orozco, F. J. Luque, Acc. Chem. Res. **2009**, 42, 489–492.
- [28] C. C. Pye, T. Ziegler, E. Van Lenthe, J. N. Louwen, Can. J. Chem. 2009, 87, 790–797.
- [29] a) H. A. Bent, *Chem. Rev.* **1961**, *61*, 275–311; b) E. L. Muetterties, W. Mahler, R. Schmutzler, *Inorg. Chem.* **1963**, *2*, 613–618; c) R. J. P. Corriu, M. Poirier, G. Royo, *J. Organomet. Chem.* **1982**, *233*, 165–168; d) R. S. McDowell, A. Streitwieser, *J. Am. Chem. Soc.* **1985**, *107*, 5849–5855; e) J. A. Deiters, R. R. Holmes, J. M. Holmes, *J. Am. Chem. Soc.* **1988**, *110*, 7672–7681; f) P. Wang, Y. Zhang, R. Glaser, A. E. Reed, P. v. R. Schleyer, A. Streitwieser, *J. Am. Chem. Soc.* **1991**, 113, 55–64.
- [30] P. Vermeeren, W.-J. van Zeist, T. A. Hamlin, C. Fonseca Guerra, F. M. Bickelhaupt, Chem. Eur. J. 2021, 10.1002/chem.202004653.
- [31] a) V. Jonas, G. Frenking, M. T. Reetz, J. Am. Chem. Soc. 1994, 116, 8741– 8753; b) K. R. Leopold, M. Canagaratna, J. A. Phillips, Acc. Chem. Res. 1997, 30, 57–64.

Manuscript received: February 24, 2021 Revised manuscript received: March 22, 2021 Accepted manuscript online: March 23, 2021 Version of record online: May 4, 2021