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Atherosclerosis is a complex disease closely related to the function of endothelial cells

(ECs), monocytes/macrophages, and vascular smooth muscle cells (VSMCs). Despite a

good understanding of the pathogenesis of atherosclerosis, the underlying molecular

mechanisms are still only poorly understood. Therefore, atherosclerosis continues to

be an important clinical issue worthy of further research. Recent evidence has shown

that long non-coding RNAs (lncRNAs) and RNA-binding proteins (RBPs) can serve as

important regulators of cellular function in atherosclerosis. Besides, several studies have

shown that lncRNAs are partly dependent on the specific interaction with RBPs to exert

their function. This review summarizes the important contributions of lncRNAs and RBPs

in atherosclerosis and provides novel and comprehensible interaction models of lncRNAs

and RBPs.

Keywords: long non-coding RNA, RNA-binding protein, atherosclerosis, endothelial cells, macrophages, smooth

muscle cells

INTRODUCTION

Atherosclerosis is the main cause of large-artery atherosclerotic (LAA) stroke (1). While its
etiology is complicated and multifactorial; the exact mechanism is still unknown. Generally, when
stimulated by dyslipidemia, hypertension, or pro-inflammatory mediators, endothelial cells (ECs)
are injured, which enhances the expression of cell adhesion molecules (AMs), causing leukocytes
to adhere on their surface (2). Low-density lipoprotein (LDL) penetrates the ECs and the space
between the ECs (3). Monocytes migrate and differentiate into tissue macrophages and can form
macrophage-derived foam cells by endocytosing the oxidized modified LDL (ox-LDL), leading to
intracellular cholesterol accumulation (2). Vascular smooth muscle cells (VSMCs) migrate into the
intima and engulf lipids to form muscle-derived foam cells. Once the initial process is completed,
the atherosclerotic plaque progresses owing to the persistent accumulation of lipids and foam
cells. Atherosclerosis is usually asymptomatic; however, unstable plaques may rupture and provoke
thrombosis. Therefore, addressing the molecular mechanism of atherosclerosis is crucial to lay the
foundation and highlight the prevention and treatment of stroke.

Recent, research has identified a functional genetic material called long non-coding RNA
(lncRNA), which exert significant biological roles in multiple diseases. Although, the function
of lncRNA is complex and still controversial, there is sufficient evidence to suggest that many
lncRNAs have important cellular functions (4). Significantly, lncRNA regulates plaque development
in all stages. They are involved in the process of atherosclerosis such as the regulation of
ECs, macrophages, and VSMCs (5). Yan et al. found that lncRNA-RNCR3 was significantly
upregulated in ECs and VSMCs cultured in vitro after ox-LDL treatment, and downregulation of
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RNCR3 accelerated the progress of atherosclerosis, exacerbated
hypercholesterolemia and inflammatory factor release, and
decreased ECs and VSMCs proliferation (6). Furthermore,
studies found that some lncRNAs may be regarded as novel
diagnostic biomarkers in LAA (7). Some small-molecule
epigenetics drugs have not only been approved by the US Food
and Drug Administration but also shown effects in preclinical
studies of atherosclerosis (8). However, despite studies have
shown that lncRNAs have a variety of important functions, their
mechanism of action by which they regulate atherosclerosis is still
complex and poorly understood.

Several studies have supported that lncRNAs perform many
different functions by directly interacting with RNA-binding
proteins (RBPs) (9). In the cytoplasm, for instance, exert their
function by interacting with RBP through sequence motifs
or by forming unique structural motifs (4). The expression
of most RBPs is ubiquitous, usually higher than the average
level of cellular protein. With the increase in the number of
RBPs in higher eukaryotes, the relative sizes of different RBPs
against different RNA targets remain unchanged throughout
the phylogeny. However, the non-codingRNA-binding protein
family and mRBP family have the lowest conservation rates, only
20% of the ncRNA-binding protein family has a homologous
family in yeast (10). Furthermore, it has been found that 98%
of RBP homologous families are universally expressed, and their
deep evolutionary protection supports their superior basic cell
functions. Among them, 20% families have tissue-specific and
pervasive analogs, and members of the family are enriched in
certain tissues (10). RBPs bound to the same type of RNA
usually affect the same tissue and exhibits similar pathology
(10). Nevertheless, their molecular function is largely determined
by the localization of lncRNA and RBPs (11). Given that
lncRNAs represent pivotal regulators in atherosclerosis, it is not
unexpected that RBPs play key roles in atherosclerosis. Similarly,
it has previously been observed that the RBP human antigen
R(HuR) can regulate the progress of atherosclerosis (12). Hence,
we also intend to focus on the effect of RBPs for a better
understanding of the molecular mechanism in atherosclerosis.

lncRNAs and RBPs are a major area of interest within the
field of atherosclerosis. At present, the mechanism of lncRNAs
and lncRNAs-RBPs interaction in atherosclerosis remains an area
of high research interest. Therefore, it is important to elucidate
these molecular interactions to better understand the underlying
mechanisms of atherosclerosis. In this review, we first briefly
introduce the biology of lncRNA and RBPs. Next, we discuss
how lncRNAs and RBPs regulate endothelial cells, macrophages,
and vascular smooth muscle cells in atherosclerosis. Finally,
we provide three novel and simple interaction models between
lncRNAs and RBPs.

THE BIOLOGY OF LONG NON-CODING
RNA AND RNA-BINDING PROTEIN

lncRNAs are defined as non-coding transcripts of more than
200 nucleotides in length, that do not translate into functional
proteins (4), and they have low conservation with species (13).

Based on the origin from different genomic locations, we classify
lncRNAs are classified into intergenic lncRNAs (also known
as lincRNA), intronic lncRNAs, sense lncRNAs, and antisense
lncRNAs (14). Elements that determine the extent of lncRNA
expression include core promoters, enhancers, and transposable
elements (15). Like coding protein genes, most lncRNAs are
transcribed by RNA polymerase II, but the promoters of non-
coding protein genes have fewer overlapping transcription
factor binding motifs and therefore give low levels of lncRNA
expression (15). Moreover, many lncRNAs can be produced
from enhancers, which are genomic binding sites encoding
sequence-specific activator or repressor transcription factors
(TFs) regions, and these elements often confer more tissue-
specific expression (15). Transposable elements (TEs) are also
an important component of lncRNAs biology. Approximately
75% of lncRNAs transcripts contain sequence elements derived
from TEs. In addition, 25% of TEs overlap with the transcription
start site (TSS) and poly (A) signal (PAS) of lncRNA genes
(16). Thus, they are important drivers of lncRNA expression.
The localization of lncRNAs within the cell determines its
function (17). lncRNAs have been found to exist in the nucleolus,
chromatin speckles, and paratopes (18). In addition, some
lncRNAs can be transferred into the cytoplasm, further be
selectively localized in the mitochondria, ribosomes, extracellular
membranes, and exosomes (11).

Accumulated evidence shows that lncRNAs can bind to DNA,
RNA, and proteins; change the stability and translation of
cytoplasmic mRNAs; and interfere with signaling pathways (4).
According to the molecular mechanism of action, lncRNAs can
be divided into three subgroups: (1) lncRNA loci containing
enhancers that regulate gene expression; (2) lncRNA loci whose
transcriptional behavior, rather than the transcript itself, has an
important role in regulating neighboring genes; and (3) lncRNA
transcripts that achieve their cellular functions by interacting
with DNA, other RNAs, and proteins (19, 20). However, the
mechanism of lncRNA directly interacting with RNA-binding
proteins have attracted our attention.

RNA-binding proteins are proteins that bind RNA through
one or more RNA-binding domains (RBDs) and alter the fate
or function of the bound RNA, its activity, or the expression
of the target gene (21). The structures and mechanisms by
which RBP binds and regulates RNA are very diverse (22).
Because the structure and function of RBDs provide some
insights about the binding preference and target of RBP, it is
usually classified according to its specific RBDs (10). Normally,
RBPs assemble with RNA to form ribonucleoprotein particles
(RNPs) that mature, process, regulate, or transport RNAs (10,
23). The RBDs are the functional unit of protein-bound RNA
(22). Most RBPs contain an RNA recognition motif (RRM), a
K homology (KH) domain, a DEAD motif, a double-stranded
RNA-binding motif (DSRM), or a zinc-finger domain (10).
Additionally, some RBPs lacking conventional RNA-binding
domains have been discovered (21, 22). As an RBP that needs
to typically bind to AU-rich elements (ARE, core sequence 5

′

-
AUUUA), thereby govern the fate of mRNA transcripts from
biogenesis, stabilization, translation to RNA decay (24). Based
on target-RNA categorization, among the 20,500 protein-coding
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genes in humans, nearly 39% of RBPs were involved in the
non-coding RNA metabolic processes (10).

Similar to lncRNAs, RBP regulatory function in
atherosclerosis has also garnered attention. Therefore,
understanding the regulatory molecules of lncRNAs and
RBPs in atherosclerosis as well as the interaction mode between
lncRNA and RBP will lay a foundation for future understanding
and prevention and treatment of atherosclerosis from the
perspective of molecular biology.

lncRNA AND RBP AS REGULATORS OF
ATHEROSCLEROSIS

There is increasing evidence that lncRNAs and RBPs can serve
as important regulators of cellular function in atherosclerosis. It
is reported that lncRNA ANRIL was the first non-coding RNA
identified to be associated with atherosclerosis and expressed
in endothelial cells, smooth muscle cells, and immune cells
(25). Nevertheless, the regulatory mechanisms of non-coding
RNA in atherosclerosis were poorly studied at that time.
Subsequent researchers verified that ANRIL can promote cell
proliferation, migration, and inhibit apoptosis through various
mechanisms, such as trans-regulation of target genes or spongy
miR-399-5p, and regulation of the RAS/RAF/ERK signaling
pathway (26–30). The research on regulatory mechanisms of
lncRNAs in atherosclerosis has started a boom. Additionally,
through a PubMed search from March 2012 through March
2021, many lncRNAs related to atherosclerosis have been
discovered in the past 10 years. We have summarized their
regulatory mechanisms in detail in Table 1. However, RBPs have
yet to be extensively researched in atherosclerosis. The few
studies that have investigated RBPs involved in atherosclerosis
suggest an important role in proliferation, migration, and
apoptosis. and, a small amount of RBPs have been shown
to regulate cholesterol homeostasis. For example, the RBP
VIGILIN can regulate the hepatic very low-density lipoprotein
(VLDL) secretion, and inhibition of VIGILIN decreases hepatic
VLDL secretion and circulating LDL-C levels (92). By retrieving
information from PubMed up to January 2021, we summarize
RBPs’ regulatory mechanisms as follows (Table 2). Given that
ECs, monocytes/macrophages, and VSMCs are crucial in the
development of atherosclerosis, we have summed up the
significance of lncRNAs and RBPs in each of these cells below.

Endothelial Cells
The vascular endothelium is a single layer of ECs that constitute
the intima of arteries, veins, and capillaries (102). It is widely
acknowledged that EC dysfunction is a key step in atherosclerosis
initiation (103). Endothelial stimulation by NF-κB signaling
increases the expression of EC adhesion molecules and promotes
monocyte recruitment in the vessel wall, which can cause
oxidative stress and promote the progression of inflammation
(103). A large and growing body of literature has reported
that lncRNA plays a role in ECs. Analysis of human umbilical
vein endothelial cells after ox-LDL stimulation by lncRNA
expression microarray reveals a large number of differentially

expressed lncRNAs (104). Clopidogrel, a commonly antiplatelet
medication, has been found to inhibit the expression of lncRNA
HIF1A-AS1 to reduce EC injury (105).

More recently, several published studies have described
that lncRNAs may contribute to their role in inflammation,
proliferation, migration, and apoptosis. For example, Hu et al.
observed that the expression of NEXN was upregulated by
lncRNA NEXN-AS1 (62). Prior studies found that initiation
of the TLR4/NF-κB signaling pathway would induce the
expression of inflammatory molecules such as MCP1, TNF-
α, and IL-6 (62, 106, 107). Theoretically, however, NEXN
is a filamentous actin-binding protein (108), which can
cause TLR4/NF-κB inactivity, diminish inflammatory molecules,
suppresses monocyte recruitment, and prevent atherosclerosis
(62). Experimental studies have also found that lncRNAs
can regulate EC gene expression; for instance, lncRNA-CCL2
upregulates the levels of its adjacent CCL2 gene, which is a pro-
atherosclerotic chemokine gene in the EC lines. Further, the
lncRNA APTR can promote the proliferation and migration of
ECs (67). HULC can promote the apoptosis of ECs (35). These
are the interesting examples used to demonstrate that lncRNA
regulates atherosclerotic ECs. Overall, many more studies have
confirmed the value of lncRNAs to ECs, even though other
mechanisms are not yet clear and need further study in the future.

Similar to lncRNAs, evidence has shown that RBPs play
important roles in EC function. For example, the RBP
QKI-7 promotes degradation of CD144/NLGN1/TSG6 mRNA,
which plays a negative role in EC barrier function and
angiogenesis, thus aggravating the progress of atherosclerosis
(94). More recently, a variety of RBPs have been shown to
affect autophagy, apoptosis, proliferation, and migration of
ECs. MEX3A is an RBP that can form a ternary complex
with AGO2 on the autophagosome surface and facilitates its
nuclear localization to inhibiting proteolytic activity and limiting
apoptosis (95). Another interesting study revealed that FUS can
also regulate endothelial function. FUS is an atheroprotective
factor that inhibits EC proliferation and migration by directly
interacting with the lncRNAXXYLT1-AS2. If XXYLT1-AS2/FUS
is inhibited, the expression of adhesionmolecules (VCAM-1) and
chemoattractant proteins (MCP-1) is increased, and monocytes
can more easily adhere to ECs (82). The growing evidence
reported here draws attention to the contributions of RBPs,
particularly in human EC models. However, the significance
of these RBPs to whole organism development and function is
less well-understood.

Macrophages
During the development of atherosclerosis, macrophages
differentiate from monocytes entering the intima and become
macrophage-derived foam cells by taking up ox-LDL (109). At
the same time, macrophages further secrete cytokines such as
inflammatory cytokines (IL-1, IL6, TNF) and chemokines (CCL2,
CCL5, CXCL1), and protein hydrolases to exacerbate plaque
inflammation by recruiting reinforcements such as monocytes,
neutrophils, and T-lymphocytes (110, 111). Macrophage are also
defined as an immune cell that can express pattern recognition
receptors (PRR) including NOD-like receptors, scavenger

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 November 2021 | Volume 8 | Article 731958

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ding et al. lncRNA and RBP in Atherosclerosis

TABLE 1 | Long non-coding RNAs in atherosclerosis-related research.

lncRNAs Endothelial

cells

Smooth

muscle cells

Monocytes/

macrophages

Atherogenic/

atheroprotective

Experimentally validated function References

ANRIL Yes Yes Yes Atherogenic Promote cell proliferation, adhesion, migration, and

decrease apoptosis

(28–30)

DYNLRB2-

2

No No Yes Atheroprotective Promote cholesterol efflux and inhibit inflammatory

response

(31)

lincRNA-

p21

No Yes Yes Atheroprotective Inhibit cell proliferation and induce apoptosis (32)

RP5833A20.1 No No Yes Atherogenic Affect cholesterol homeostasis and inflammation (33)

HOXC-

AS1

No No Yes Atheroprotective Suppress Ox-LDL-induced cholesterol accumulation (34)

HULC Yes No No Atherogenic Regulate TNF-α-induced apoptosis (35)

RNCR3 Yes Yes No Atheroprotective Decrease proliferation, migration, and accelerate

apoptosis

(6)

HOTAIR Yes No Yes Atheroprotective Regulate the EC proliferation and migration/aggravate

oxidative stress and inflammation response in

macrophages

(36, 37)

LINC00305 No Yes Yes Atherogenic Promote monocyte inflammation and induce HASMC

phenotype switching

(38)

TUG1 No Yes No Atherogenic Promote proliferation, migration, invasion, and

metastasis

(39, 40)

MALAT1 Yes No No Atheroprotective/

atherogenic

Suppress inflammatory cytokine release, apoptosis,

and promote EndMT

(41, 42)

DYN-

LRB2-2

No No Yes Atheroprotective Upregulate cholesterol efflux (43)

DIGIT Yes No No Atheroprotective Promote growth, migration, and tube formation (44)

MeXis No No Yes Atheroprotective Promote cholesterol efflux (45)

UCA1 No Yes No Atherogenic Regulate migration and proliferation (46)

XIST Yes No No Atherogenic Regulate the expression of NOD2 (47)

SRA Yes No No Atherogenic Repress inflammatory-related cytokines (48)

ENST00113 Yes Yes No Atherogenic Promote proliferation, survival, and migration (49)

GAS5 Yes No Yes Atherogenic Aggravate inflammatory response, MMP expression,

autophagy dysfunction, apoptosis

(50–52)

H19 No Yes No Atherogenic Promote proliferation and anti-apoptosis (53)

MEG3 Yes Yes No Atherogenic Enhance pyroptosis and modulate proliferation and

apoptosis balance

(54, 55)

MIAT Yes Yes No Atherogenic Promote proliferation, angiogenesis, inflammatory

factors expression, and hinders apoptosis

(56, 57)

SNHG16 No Yes Yes Atherogenic Promote proliferation, migration, and inflammatory

response

(58, 59)

430945 No Yes No Atherogenic Promote proliferation and migration (60)

FA2H-2 Yes Yes No Atheroprotective Suppress MLKL expression, activate autophagy, and

restrain inflammation

(61)

NEXN- as1 Yes Yes No Atheroprotective Inhibit TLR4 oligomerization and NF-κB activity (62)

CCL2 Yes No No Atherogenic Positively regulate CCL2 mRNA levels (63)

CDKN2B-

AS1

No No Yes Atheroprotective Reduce inflammatory response and promote

cholesterol efflux

(64)

Linc00299 Yes Yes No Atherogenic Increase proliferation, migration, and inhibit apoptosis (65)

AF131217.1 Yes No No Atheroprotective Inhibit inflammation (66)

APTR Yes No No Atherogenic Elevate proliferation, migration, and pipe-formation (67)

RAPIA No No Yes Atherogenic Promote proliferation and reduce apoptosis (68)

SNHG12 No Yes No Atherogenic Promote proliferation and migration (69)

CASC11 No Yes No Atheroprotective Downregulation of IL-9, proliferation, and promote

apoptosis

(70)

NEAT1 No No Yes Atherogenic Increase inflammation response and lipid uptake (71)

MEG8 No Yes No Atheroprotective Suppress proliferation, migration, and induce apoptosis (72)

(Continued)
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TABLE 1 | Continued

lncRNAs Endothelial

cells

Smooth

muscle cells

Monocytes/

macrophages

Atherogenic/

atheroprotective

Experimentally validated function References

LEF1-AS1 No Yes No Atherogenic Regulate migration and proliferation (73)

DAPK-IT1 No No Yes Atherogenic Regulate cholesterol metabolism and inflammatory

response

(74)

HOXA-AS3 Yes No No Atherogenic Promote NF-κB-mediated endothelium inflammation (75)

NORAD Yes No No Atheroprotective Attenuate senescence, apoptosis (76)

LOC285194 No Yes No Atherogenic Promote proliferation, invasion, migration, and inhibit

apoptosis

(77)

HOTTIP No Yes No Atherogenic Promote proliferation and migration (78)

Linc-ROR No Yes No Atherogenic Promote proliferation and migration (79)

HCG11 No Yes No Atherogenic Promote the proliferation and inhibit apoptosis (80)

MAARS No No Yes Atherogenic Induce apoptosis (81)

XXYLT1-

AS2

Yes No No Atheroprotective Inhibit proliferation and migration (82)

CTBP1-

AS2

No Yes No Atheroprotective Inhibit proliferation and autophagy (83)

FOXC2-

AS1

No Yes No Atherogenic Promote proliferation and inhibit apoptosis (84)

LINC00657 Yes No No Atherogenic Induce endothelial cell injury (85)

SENCR No Yes No Atheroprotective Inhibit proliferation, migration, and block cell cycle (86)

kcnq1ot1 No No Yes Atherogenic Promote lipid accumulation (87)

PEBP1P2 No Yes No Atheroprotective Decrease proliferation and migration (88)

SNHG7 Yes No No Atheroprotective Repress proliferation and migration (89)

RP11-

728F11.4

No No Yes Atherogenic Increase intracellular cholesterol accumulation and

proinflammatory cytokine

(90)

SMILR No Yes No Atherogenic Promote proliferation (91)

receptors, and Toll-like receptors, and are often triggered by
“damage” signals from ox-LDL (109, 112). The proliferation
of inflammatory macrophages and phenotypic switching are
the main factors involved in the progression of atherosclerosis.
Macrophages can shift toward a pro-inflammatory phenotype
that we call M1 type, or to an anti-inflammatory phenotype that
we call M2 type (112).

When macrophages are activated, they trigger an innate
immune response. IFN-γ which belongs to Th1 cytokines
and lipopolysaccharides can activate M1 macrophages to make
pro-inflammatory cytokines. These proinflammatory cytokines
contain TNF-α, IL-1β, IL-6, IL-12, and IL-23 (113). M2
macrophages are stimulated by Th2 cytokines that include IL-4
and IL-13, and further produce anti-inflammatory cytokines such
as TGF-β and IL-10 (113, 114). Macrophages differentiate into
different morphological and functional phenotypes according to
changes in the microenvironment (115, 116).

Macrophage polarization is a plastic process. Pathways
that have been described in the regulation of macrophage
polarization include the PI3K/Akt pathway, Notch pathway,
JAK-STAT pathway, TGF-β signal pathway, and Wnt/β-catenin
pathway, among others. The PI3K/Akt pathway is activated
by TLR4 and other pathogen recognition receptors, cytokines
and chemokines, and Fc receptors, which regulate downstream
signals that control cytokine production. Akt promotes M2-
type macrophage polarization and inhibits M1-type polarization.

It is essential for the anti-inflammatory response (117).
Signal regulatory protein (SIRP) α is abundantly expressed in
macrophages, and plays a critical role in regulating innate
immune activation, and can as a novel target of Notch-mediated
macrophage polarization (118). SOCS proteins function as
feedback inhibitors for cytokines that use the JAK/STAT
pathway, given that SOCS3 deficiency, IFN-γ-induced STAT1
and STAT3, and GM-CSF–induced STAT5 will be activated,
promote M1 polarization (119). Conversely, IL-4 not merely
activates STAT6 but promotes the differentiation of TH2 cells that
stimulate M2 macrophage responses (120). Therefore, through
the JAK/STAT pathway, cytokines can lead to the activation
of transcription factors that dictate M1/M2 polarization and
mediate inflammatory responses in macrophages. Likewise,
Interleukin-4 (IL-4) regulates macrophages polarization via
the TGF-β1/Smad pathway (121). The Wnt/β-catenin pathway
activation promotes differentiation of macrophages in the M2
direction, which exhibits anti-inflammatory activity (122).

Increasing evidence suggests that lncRNAs play crucial
roles during the differentiation of monocyte/macrophage,
proliferation, decay, and phenotypic switching of macrophages.
However, our insight into the contribution of lncRNAs is still
in the early stages. For example, gene overexpression and
knockdown experiments show that lncRNA MALAT1 has a
positive effect on the pyroptosis of normal macrophages, and
downregulation of lncRNA-MALAT1 can abate the pyroptosis
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TABLE 2 | RNA-binding proteins in atherosclerosis-related research.

RBPs RNA interactors Endothelial

cells

Smooth

muscle cells

Monocyte/

macrophages

Atherogenic/

atheroprotective

Experimentally validated function References

HUR LncRNA

MAARS/ABCA1

mRNA

No No Yes Atherogenic Induce apoptosis and promote cellular

cholesterol efflux

(81, 93)

STAU1 LncRNA SMILR No Yes No Atherogenic Degrades the SMILR: CENPF interaction to

mediate VSMC proliferation

(91)

QKI-7 mRNACD144/

NLGN1/ TSG6

Yes No No Atherogenic Defective EC barrier function and

compromised angiogenesis

(94)

MEX3A MIR126-5p Yes No No Atheroprotective Inhibit proteolytic activity and limit apoptosis (95)

IGF2BP1 EV-derived

miR-146a

No No Yes Atherogenic Decrease migration and promote

macrophage entrapment

(96)

EWSR1 lncRNA

RP11-728F11.4

No No Yes Atherogenic Increase intracellular cholesterol

accumulation and proinflammatory cytokine

(90)

LARP6 COL1a1/COL1a2

mRNA

No Yes No Atherogenic IGF-1 enhances collagen fibrillogenesis via

induction of LARP6

(97)

FUS lncRNAXXYLT1-

AS2

Yes No No Atheroprotective Inhibit proliferation and migration (82)

KSRP miR-185 No No No Atherogenic Negatively regulate the expression of LDLR

in hepatic cells to control cholesterol

homeostasis

(98)

VIGILIN Apolipoprotein B

/Apob mRNA

No No No Atherogenic Increase VLDL/LDL levels and formation of

atherosclerotic plaques

(92)

ZFP36 IL-6/MCP-1

mRNA

Yes No Yes Atheroprotective Regulate MCP-1 and IL-6 mRNA stability

and reduce its expression

(99)

hnRNPL linc-AAM No No Yes Atherogenic Activate macrophages and promote the

immune response

(100)

TTP NLRP3 mRNA No No Yes Atheroprotective As a negative regulator of NLRP3

inflammasome

(101)

of macrophages in rats with diabetic atherosclerosis (123).
Additionally, LXR, a ligand-activated nuclear receptor, is also
a transcription factor that regulates the expression of genes
related to the macrophage’s response to cholesterol, including
ABCA1, which encodes the plasma membrane transport protein
ABCA1, to promote macrophage cholesterol efflux. Sallam et al.
found that the LXR-activated lncRNA Mexis increased ABCA1
protein expression levels while enhancing cholesterol efflux
(45), which provides novel insights into the prevention and
treatment of atherosclerosis. Similarly, the lncRNA DYNLRB2-
2 exerts its atheroprotective effect by increasing cholesterol
efflux and decreasing inflammatory responses (31). lncRNA
HOXC-AS1 can prevent atherosclerosis by decreasing cholesterol
accumulation by the mechanism of upregulating HOXC6
expression (34).

Additional studies have revealed that RBPs play a vital role
in macrophage migration, apoptosis, and cholesterol regulation
and is a crucial driver of atherosclerosis and integration factors of
metabolic and inflammatory signals. RBP IGF2BP1 interacts with
extracellular vesicle-derived miR-146a to decrease cell migration
and promotes macrophage entrapment (96). A recent study
identified that HuR not only interacts with ABCA1mRNA to
promote cellular cholesterol efflux (93); but also interacts with
lncRNA MAARS in the macrophage nucleus, preventing its
shuttling to the cytosol and interfering with its RNA-stabilizing
function to induce apoptosis (81). The RNA-binding protein

tristetraprolin (TTP, encoded by ZFP36) has been found early
in eukaryotes (124). This was characterized by the RNA-binding
tandem zinc finger (TZF) domain and often be associated with
cancer, as well as other inflammatory diseases (101, 125–127).
Its function is as a decay signal of RNA by binding to AREs,
and adenylate/uridylate-rich RNA motifs (128). As is known, the
NLRP3 inflammasome drives the progression of atherosclerosis.
Studies have shown that TTP possibly binds to a main ARE and
inhibits the expression of NLRP3 in macrophages and other cell
types, while, directly affecting TTP expression (101). However,
its main test in animal experiments, further research some
wonderful strategies to targeted therapy are promising.

Smooth Muscle Cells
It is known that VSMCs are the pivotal cells in the media layer of
arteries. Their effects include regulation of arterial contraction,
compliance, and production of extracellular matrix (ECM) (129,
130). VSMCs are essential in the stages of atherosclerotic plaque
formation and are beneficial and essential for plaque stability
(129, 131). Ox-LDL, proinflammatory cytokines, high levels of
nitric oxide (NO), and mechanical damage can induce VSMC
apoptosis. Furthermore, VSMC apoptosis contributes to plaque
inflammation (131). As mentioned before, ox-LDL can stimulate
VSMC necrosis and highly oxidized LDL induces necrosis, while
mildly oxidized LDL induces ER stress/apoptosis (131). ECs,
macrophages, and VSMCs may present autophagic activation
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in human atherosclerotic plaques, but this needs validation
in further studies (131, 132). During atherosclerosis, VSMCs
undergo complex structural and functional changes that produce
a wide range of phenotypes, including foam cell formation (133).

Published studies have identified many lncRNAs that play
a role in controlling VSMCs proliferation, migration, and
apoptosis. For example, lncRNA SNHG16 regulates smooth
muscle cell proliferation and migration through sponging miR-
205 and regulating Smad2. Overexpression of SNHG16 promotes
VSMC proliferation and migration, whereas downregulation
of SNHG16 inhibits PDGF-bb-stimulated VSMC proliferation
and migration (59). Furthermore, the imbalance between
proliferation and apoptosis of VSMCs also plays a crucial role
during the early stage of atherosclerosis. Li et al. identified
lncRNA-MEG3 as a crucial regulator in the balance between
proliferation and apoptosis of VSMCs, which could sponge
miR-26a as a competing endogenous RNA (55). In addition to
lncRNA-MEG3, Chen et al. revealed that targeting LOC285194
can boost cell proliferation and obstruct apoptosis (77). Another
novel regulatory factor, lncRNA 430945, significantly suppressed
VSMC proliferation and migration via ROR2 (60).

There are fewer RBPs that were found to play a regulatory
role in atherosclerotic SMCs than lncRNAs. RNA-sequencing
identified smooth muscle–induced lncRNA (SMILR) as a novel
intergenic lncRNA activated by VSMCs proliferation. Recent
evidence suggests that SMILR interacts with CENPF mRNA
and STAU1 in the Cell Cycle Network (91). Because STAU1
is a universally expressed and multifunctional RNA-binding
protein, STAU1 participates in mRNA transport and localization
to mediate further translation (134).

Taken together, these studies show that lncRNAs are
crucially important in the proliferation, migration, apoptosis,
and senescence of ECs, VSMCs, and monocytes/macrophages,
resulting in two different outcomes of promoting the progression
of atherosclerosis or protecting from atherosclerosis. Given the
recent curiosity in relating proliferative pathways to plaque
development, lncRNAs, and RBPs may be a hopeful direction.

EMERGING RBPs INTERACT WITH lncRNA
IN ATHEROSCLEROSIS

Thus far, few RBPs associated with atherosclerosis have been
found to interact with lncRNAs to exert regulatory functions.
Although these RBPs are not particularly well-reported, it is
worthwhile to further investigate the related aspects of the
mechanism, which will be beneficial to provide a basis for future
disease treatment through etiology. Collectively, the interaction
of lncRNA and RBP in atherosclerosis is shown in Figure 1.

Human Antigen R
HuR (also known as Elavl1) is an RBP that is essential in cellular
responses to the immune system and cell cycle (135) and has
anti-apoptotic functions (136). Studies have found that HuR
is expressed in endothelial cells, VSMCs, and macrophages in
the atherosclerotic plaque (137). Nevertheless, the role of HuR
in atherosclerosis may be highly dependent on the cell type

specificity. According to Feinberg et al. (81), lncRNA MAARS
can interact with HuR/ELAVL1, 14 HuR-specific AREs have
been identified in the MAARS transcript and the ARE-specific
binding of MAARS to HuR was confirmed. The interaction of
lncRNAMAARS andHuR can inducemacrophage apoptosis and
decrease their efferocytosis in advanced plaques by regulating
HuR targets such as p53, p27, caspase-9, and Bcl2 to alter HuR
cytosolic shuttling. Interestingly, Zhang et al. (138) used smooth
muscle-specific HuR knockout mice (HuRSMKO) to investigate
the function of HuR in atherosclerosis. The plaque load was
increased in the HuRSMKO mouse model of atherosclerosis
compared with controls. It was verified that HuR could bind
mRNA of adenosine 5-monophosphate-activated protein kinase
(AMPK) α1 and AMPKα2, thus improving their stability and
translational ability. In contrast, HuR deficiency lead to decreased
p-AMPK and LC3II levels and increased p62 levels, resulting
in defective autophagy. In turn, AMPK activation induces
autophagy and inhibits atherosclerosis in HuRSMKO mice.
However, previous studies reported a novel mechanism by which
the anti-inflammatory cytokine IL-19 can decrease HuR mRNA
expression, leading to decreases in mRNA stability of pro-
inflammatory cytokines, to mediated atheroprotective effects.
However, the lack of IL-19 leads to increased atherosclerosis
(137). In addition, studies have revealed the role of endothelial
HuR deficiency in attenuating atherosclerosis, and this effect
may be partly due to the decreased expression of proatherogenic
molecules and suppressed local inflammation (139). Collectively,
HuR as direct or indirect regulators in atherosclerosis is a
complex concept and needs to be further explored.

Heterogeneous Nuclear
Ribonucleoproteins
The hnRNPs are a type of ribonucleoprotein (RNP) and belong
to a large family of RBPs that play an essential role in the
cellular nucleic acidmetabolism. Their function varies depending
on the cellular localization (140, 141). The hnRNPs family
has many members such as hnRNPA/B, hnRNPC, hnRNPD,
hnRNPE, hnRNPF/H, hnRNPG, hnRNP I (PTBP1)/L, hnRNPK,
and hnRNPM/Q, hnRNP P2 (FUS/TLS), and hnRNP R/U and
they have different and complex functions (140). The reported
functions are as follows: alternative splicing, formation of RNP
complex with pre-mRNA, mRNA stabilization, RNA transport,
transcriptional and translational regulation, and inhibition of
cell differentiation (140, 142). Nuclear lncRNAs interact with
heterogeneous nuclear ribonucleoproteins in regulating cellular
functions such as glucose and lipid metabolism, immune
response, DNA damage response, and others (141).

In an atherosclerosis model, the level of hnRNPK protein
was elevated in SMCs, and its subcellular localization was
related to the cell cycle. Early in the cell cycle, a slight
increase in cytoplasmic hnRNPK may be associated with
increased neogenesis, but at the end of the cell cycle, hnRNPK
accumulated in the cytoplasm and decreased in the nucleus,
indicating translocation of nuclear hnRNPK to the cytoplasm
and suggesting that hnRNPK regulates vascular smooth muscle
proliferation (143). Chen et al. found that linC-AAM can
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FIGURE 1 | The interaction of lncRNA and RBP in atherosclerosis. The picture schematically represents the interaction of emerging RBPs and lncRNAs in

atherosclerotic endothelial cells, smooth muscle cells, and macrophages. (A) Endothelial cells. (B) Smooth muscle cells. (C) Macrophages.

interact with the RBP hnRNPL through the CACACA motif
to activate macrophages and promote immune response; In
their experiments, they localized the lncRNA in the nucleus
by RNA fluorescence in situ hybridization (FISH) and detected
hnRNPL by RNA pull-down assay and confirmed its activation
of macrophages and promotion of immune response gene
expression by linc-AAM silencing or knockout (KO) and
overexpression of lncRNA (100). Studies of hnRNPC expression
in atherosclerosis are particularly scarce. A previous study found
that hnRNP is mainly expressed in ECs and that hnPRNC is
involved in vascular cell signaling pathways activated by low
physiological levels of hydrogen peroxide, which can regulate
vascular cell proliferation (144). The hnRNP P2 as the RBP fused
in sarcoma/translocated in liposarcoma (FUS/TLS), is also called
FUS, which mutants often be reported to relate to cancer and
neurodegeneration in humans (140, 145). Recently, a study found
that lncRNA that interacts with FUS can regulate proliferation
and migration of ECs in atherosclerosis (82).

Ewing Sarcoma Breakpoint Region 1/EWS
RNA Binding Protein 1
EWSR1 plays an important role in neurodegeneration, epigenetic
alteration, and cellular functions such as autophagy and
mitochondrial activity (146). A growing body of evidence
indicates that lncRNA is an important player in atherosclerosis.
For example, researchers revealed that lncRNA RP11-728F11.4
interaction with the RNA-binding protein upregulated the
cognate gene FXYD6 in atherosclerotic plaques. Knockdown
or overexpression of RP11-728F11.4 affected cholesterol uptake,
inflammatorymolecule production, levels of lipids inmonocytes-
derived macrophage (90). Hence, EWSR1 is also a key regulator
in atherosclerosis.

Staufen 1
STAU1 is a double-stranded (ds) RNA-binding protein known
to be involved in mRNA decay. It binds dsRNA structures
that are formed not only by intramolecular base-pairing of
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3
′

UTR sequences but also by intermolecular base-pairing of
3’UTR sequences with a lncRNA via partially complementary Alu
elements (134). The lncRNA SMILR is a novel intergenic lncRNA
activated by VSMC proliferation and is related to atherosclerosis.
It was shown to interact with centromere protein F (CENPF)
mRNA to promote VSMC proliferation. Interestingly, using RNA
pull-down and mass spectrometric analysis, STAU1 was found
likely to bind to SMILR within the first half of its sequence,
which is the predicted interaction site with CENPF. Knockdown
of STAU1 upregulates the expression of SMILR and CENPF
mRNA (91).

The structures and mechanisms via which RNA-binding
proteins interact with transcripts are varied and complex. Not to
mention the binding to lncRNAs, because lncRNAs are involved
in a variety of biological functions.

THE INTERACTION MODEL OF lncRNA
AND RBP

RBPs Regulate the Expression of lncRNAs
Degradation, repression and overexpression of lncRNAs are
important for the regulation of biological messaging; however,
in addition to physiological factors (infection, tumor) (147,

148), physical factors (temperature) (149), that has been found
to affect lncRNA normal expression. A few known lncRNAs
have been reported to be affected by their binding protein.
For example, Bachand et al. identified a class of poly(A)-
binding protein nuclear 1(PABPN1) sensitive lncRNAs, PABPN1
promotes post-transcriptional regulation of sensitive lncRNAs
through polyadenylation (150). Similarly, the serine/arginine-

rich splicing factor 1 (SRSF1) plays a positive role on the
regulation of lncRNA NEAT1 in gliomas (151). Based on RNA-
Binding Protein Immunoprecipitation (RIP) analysis, the RBP
SRSF1 directly interacts with NEAT1, if knock down the SRSF1,
the NEAT1 would fast degradation (151). There are also reports
that HuR plays a similar role in lncRNA NEAT1 (152). In short,
RBPs can regulate the stability of lncRNA. Furthermore, the
study found that PTB-associated splicing factor (PSF) a protein
that has both RNA-binding domains and DNA-binding domains,
binds to and represses the lncRNA CTBP1-AS promoter. CTBP1
expression is generally upregulated in prostate cancer, and
they could be promising targets for therapeutic options of
prostate cancer (153). Furthermore, Tian et al. found that TTP
regulates lncRNA HOTAIR expression by a posttranscriptional
mechanism. HOTAIR is a downstream target of TTP, and
according to the AUUUA consensus sequence, the researcher

FIGURE 2 | The interaction models between lncRNA and RNA-binding protein. (A) PABP interacts with lncRNA induces the degradation of lncRNA. (B) The interaction

of lncRNA AFAP1-AS1 and RBP AUF1 can promote the expression of ERBB2 mRNA. (C) The combination of lncRNA MALAT1 and SRSF2 can promote the

phosphorylation of SRSF2 by AKT2 to alternative splicing PKCδ. (D) The interaction of hnRNPK and lincRNA-P21 can repress the expression of the target gene P53.
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predicted four TTP-binding sites of HOTAIR. They also used
RIP to investigate the role of TTP in the regulation of HOTAIR
expression (154).

Taken together, the expression of RBPs effect the level of
lncRNAs, but the mechanism is yet unclear and needs further
investigation, the same RBPs can regulate different lncRNAs, by
contrast, the same lncRNA can be regulated by different RBPs in
a different environment.

lncRNAs Regulate the Target Gene
Expression by Interacting With RBPs
In addition to binding to lncRNAs to affect the expression of
lncRNAs, RBPs can also affect the expression of lncRNA target
genes. For example, Chen et al. found that exosomal lncRNA
LNMAT2 recruited hnRNPA2B1 to the PROX1 promoter to
upregulate PROX1 expression by directly interacting with
hnRNPA2B1, leading to lymphangiogenesis and lymphatic
metastasis in bladder cancer (155). The exosome-mediated
lncRNA AFAP1-AS1 can bind to AUF1 and activate ERBB2
translation to regulate the resistance of trastuzumab (156).
The lncRNA RP11-728F11.4 was shown to interact with the
RBP EWSR1 and upregulate the expression of the homologous
gene FXYD6, which encodes a Na+/K+- ATPase regulator
and Na+-ATPase. The increased activity of Na+-ATPase,
intracellular cholesterol accumulation, and pro-inflammatory
cytokine production increased atherosclerotic lesions (90).

The molecular mechanisms by which lncRNAs bind to RBP
to affect the expression of lncRNA target genes are complex
and much is still unknown. We know that lncRNA can act as a
scaffold, specifically, lncRNA acts as a structural component for
nucleic acid-protein (also name ribonucleoprotein) complexes
formed with proteins to connect multiple proteins to regulate
the expression of their target genes. For instance, hnRNPK and
YBX1 are lncRNA SCAT7-interacting proteins, and recruitment
of the FGFR2 and FGFR3 promoter regions SCAT7-hnRNPK-
YBX1 RNP complexes promotes transcriptional activation of
the FGF/FGFR pathway, resulting in sustained cell proliferation
via the PI3K/AKT and Ras/MAPK pathways (157). Further,
hnRNPK has been reported to bind to lincRNA-p21 to repress
the target p53 transcription (158).

lncRNAs Regulate the Activity of Their
Specific Binding Proteins
The binding of lncRNA to RBP can regulate the expression of
lncRNA and affect the expression of the target gene, and it can
also affect the activity of the binding proteins; the outcomes are
similar, in that all of them will affect the corresponding signaling

pathway and thus change the regulatory outcome of themolecule.
For example, the interaction between lncRNA and UPFI can
regulate the expression of other mRNA but also decrease the
stability of the lncRNAs. In some cases, the binding of lncRNA
and UPF1 will affect the expression of UPF1, though the specific
mechanisms involved need to be further investigated (159).
Additionally, the lncRNA MALAT1 recruits SRSF2 and binds
tightly to it, thus making the AKT2 (serine/threonine kinase2)
effectively phosphorylate SRSF2 and form a stable combination
of PKCδ pre-mRNA, promoting selective splicing of PKCdII in
HT22 cells (160). Apart from phosphorylation modification to
alter protein activity, ubiquitination is also a common modality.
Studies have found that lncRNAmamRNA supports antagonistic
RBPs Mmi1 andMei2 to ensure their mutual inhibition, allowing
Mmi1 to target Mei2 for ubiquitin-mediated downregulation,
and in turn, allowing Mei2 accumulation to impede Mmi1
activity and fine-tune mitotic growth during meiotic mRNA
degradation (161). The regulation mode between the above
lncRNA and RBP is shown in Figure 2.

The limitation is that there were few extensive studies so far
on the mechanism of lncRNA and RBP interaction in the field of
atherosclerosis; most of the model construction in this review is
based on studies on tumor-specific conditions.

CONCLUSION AND PERSPECTIVE

Taken together, the studies discussed in this review show that
lncRNAs and RBPs play biological functions in atherosclerotic
ECs, SMCs, and macrophages; simultaneously, this review
provided novel and understandable interaction models of
lncRNAs and RBPs. Further extensive research is needed in the
future to understand the functions and mechanisms of lncRNAs
and RBPs, and provide novel and effective methods for the
diagnosis, prevention and treatment of atherosclerosis.
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